Exponentially Fitted Finite Difference Schemes for Reaction-Diffusion Equations
Abstract
:1. Introduction
2. Exponentially Fitted Finite Difference Formulation
2.1. Pure Diffusion
Stability of the Method
2.2. Reaction-Diffusion
3. Numerical Examples
3.1. Diffusion Equation
3.2. Nonlinear Diffusion
3.3. Fisher Equation
3.4. Coupled Nonlinear System
3.5. Stiff Coupled System
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Multidisciplinary Digital Publishing Institute |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Hundsdorfer, W.; Verwer, J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer Series in Computational Mathematics; Springer-Verlag: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Alvarez-Ramirez, J.; Valdes-Parada, F.J.; Alvarez, J.; Ochoa-Tapia, J.A. A Green’s function formulation for finite-differences schemes. Chem. Eng. Sci. 2007, 62, 3083–3091. [Google Scholar] [CrossRef]
- Mickens, R.E. Nonstandard Finite Difference Schemes for Differential Equations. J. Differ. Equ. Appl. 2002, 8, 823–847. [Google Scholar]
- Gautschi, W. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 1961, 3, 381–397. [Google Scholar] [CrossRef]
- Paternoster, B. Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 2012, 183, 2499–2512. [Google Scholar] [CrossRef]
- Anastassi, Z.; Simos, T. A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 2009, 45, 1102–1129. [Google Scholar] [CrossRef]
- Erdogan, U.; Ozis, T. A smart nonstandard finite difference scheme for second order nonlinear boundary value problems. J. Comput. Phys. 2011, 230, 6464–6474. [Google Scholar] [CrossRef]
- Gurski, K. A simple construction of nonstandard finite-difference schemes for small nonlinear systems applied to SIR models. Comput. Math. Appl. 2013, 66, 2165–2177. [Google Scholar] [CrossRef]
- Roos, H.G.; Stynes, M.; Tobiska, L. Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 24. [Google Scholar]
- Öziş, T.; Erdoğan, U. An exponentially fitted method for solving Burgers’ equation. Int. J. Numer. Methods Eng. 2009, 79, 696–705. [Google Scholar] [CrossRef]
- Marušić, M. On ϵ uniform convergence of exponentially fitted methods. Math. Commun. 2014, 19, 545–559. [Google Scholar]
- Erdogan, U.; Kocak, H. Numerical study of the asymptotics of the second Painlevé equation by a functional fitting method. Math. Methods Appl. Sci. 2013, 36, 2347–2352. [Google Scholar] [CrossRef]
- Ramos, H.; Vigo-Aguiar, J. On the frequency choice in trigonometrically fitted methods. Appl. Math. Lett. 2010, 23, 1378–1381. [Google Scholar] [CrossRef]
- Erdogan, U. Improved upwind discretization of the advection equation. Numer. Methods Partial Differ. Equ. 2014, 30, 773–787. [Google Scholar] [CrossRef]
- Ixaru, L.; Berghe, G. Exponential fitting. In Mathematics and its Applications; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Ascher, U.M. Numerical Methods for Evolutionary Differential Equations; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008. [Google Scholar]
- Uddin, R. Comparison of the nodal integral method and nonstandard finite-difference schemes for the fisher equation. SIAM J. Sci. Comput. 2000, 22, 1926–1942. [Google Scholar] [CrossRef]
- Ehrhardt, M.; Mickens, R.E. A nonstandard finite difference scheme for convection–diffusion equations having constant coefficients. Appl. Math. Comput. 2013, 219, 6591–6604. [Google Scholar]
- Wazwaz, A.M. Exact solutions to nonlinear diffusion equations obtained by the decomposition method. Appl. Math. Comput. 2001, 123, 109–122. [Google Scholar] [CrossRef]
- Cattani, C.; Kudreyko, A. Mutiscale Analysis of the Fisher Equation. Comput. Sci. Appl. ICCSA 2008 2008, 5072, 1171–1180. [Google Scholar]
- Mittal, R.C.; Arora, G. Efficient numerical solution of Fisher’s equation by using B-spline method. Int. J. Comput. Math. 2010, 87, 3039–3051. [Google Scholar] [CrossRef]
- Feng, X. Exact wave front solutions to two generalized coupled nonlinear physical equations. Phys. Lett. A 1996, 213, 167–176. [Google Scholar] [CrossRef]
- El-Wakil, S.; Abdou, M. New applications of Adomian decomposition method. Chaos Solitons Fractals 2007, 33, 513–522. [Google Scholar] [CrossRef]
- Abbas, M.; Majid, A.A.; Ismail, A.I.M.; Rashid, A. Numerical method using cubic B-spline for a strongly coupled reaction-diffusion system. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.Y.; Sun, Z.Z. A second-order linearized difference scheme for a strongly coupled reaction-diffusion system. Numer. Methods Partial Differ. Equ. 2008, 24, 9–23. [Google Scholar] [CrossRef]
- Boyd, J. Chebyshev and Fourier Spectral Methods; Dover books on mathematics; DOVER PUBN Incorporated: New York, NY, USA, 2001. [Google Scholar]
Space Step Size | |||||
---|---|---|---|---|---|
Time Step Size | |||||
9.43 × | 9.43 × | 2.22 × | 4.44 × | 3.88 × | |
EF | 1.43 × | 8.99 × | 1.09 × | 3.59 × | 3.17 × |
Classical FD | 2.52 × | 1.59 × | 1.95 × | 1.12 × | 1.55 × |
Space Step Size | ||||
---|---|---|---|---|
Time Step Size | ||||
EF | 2.8 × | 2.8 × | 7.0 × | 7.0 × |
Classical explicit FD | 4.5 × | 7.08 × | 1.1 × | 5.0 × |
x | Wavelet | B-Spline | Present | Exact | Errors | Errors of |
---|---|---|---|---|---|---|
Method | Solution | of B-Spline | Present Method | |||
−20 | 0.498678 | 0.499412 | 0.49941337 | 0.499413331 | 1.35 × | 3.48 × |
−16 | 0.498525 | 0.498146 | 0.49814210 | 0.498142011 | 4.01 × | 9.32 × |
−12 | 0.494757 | 0.494149 | 0.49414023 | 0.494140001 | 8.86 × | 2.31 × |
−8 | 0.481776 | 0.481763 | 0.48175680 | 0.481755704 | 7.28 × | 1.09 × |
−4 | 0.445508 | 0.445372 | 0.44540611 | 0.445397724 | 2.53 × | 8.38 × |
2 | 0.279025 | 0.280082 | 0.27998956 | 0.279941256 | 1.41 × | 4.83 × |
6 | 0.11698 | 0.117196 | 0.11699390 | 0.116963394 | 2.33 × | 3.05 × |
10 | 0.025927 | 0.025881 | 0.02598319 | 0.025974116 | 9.30 × | 9.07 × |
14 | 0.003695 | 0.003559 | 0.00362421 | 0.003622347 | 6.29 × | 1.86 × |
18 | 0.000409 | 0.000395 | 0.00040592 | 0.000405692 | 1.12 × | 2.24 × |
Space Step Size | |||
---|---|---|---|
Implicit EF | 7.39 × | 6.37 × | 4.35 × |
Implicit FD | 1.79 × | 3.62 × | 2.48 × |
Implicit B-spline [24] | 5.06 × | 5.61 × | 2.15 × |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erdoğan, U.; Akarbulut, K.; Tan, N.Ö. Exponentially Fitted Finite Difference Schemes for Reaction-Diffusion Equations. Math. Comput. Appl. 2016, 21, 32. https://doi.org/10.3390/mca21030032
Erdoğan U, Akarbulut K, Tan NÖ. Exponentially Fitted Finite Difference Schemes for Reaction-Diffusion Equations. Mathematical and Computational Applications. 2016; 21(3):32. https://doi.org/10.3390/mca21030032
Chicago/Turabian StyleErdoğan, Utku, Kenan Akarbulut, and Neşet Özkan Tan. 2016. "Exponentially Fitted Finite Difference Schemes for Reaction-Diffusion Equations" Mathematical and Computational Applications 21, no. 3: 32. https://doi.org/10.3390/mca21030032
APA StyleErdoğan, U., Akarbulut, K., & Tan, N. Ö. (2016). Exponentially Fitted Finite Difference Schemes for Reaction-Diffusion Equations. Mathematical and Computational Applications, 21(3), 32. https://doi.org/10.3390/mca21030032