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Abstract: The purpose of this work is to introduce a new kind of finite difference formulation inspired
from Fourier analysis, for reaction-diffusion equations. Compared to classical schemes, the proposed
scheme is much more accurate and has interesting stability properties. Convergence properties and
stability of the scheme are discussed. Numerical examples are provided to show better performance
of the method, compared with other existing methods in the literature.
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1. Introduction

The movement of many individuals such as basic particles in physics or molecules can change
under the effect of two important processes: chemical reactions in which the substances are transformed
into each other, and diffusion mechanism which causes the substances to spread over a media.
Such a process is governed by the following reaction-diffusion system

∂q
∂t

= D∇2q + R(q) x ∈ Ω ⊂ Rn (1)

where D is a matrix of diffusion coefficients, R is a vector valued function whose elements are the
densities of the substances and represents reaction process. We are concerned with simulating the
dynamics of single or many substances numerically in one dimension.

The analytical and numerical treatments of (1) attract the attention of many researchers
with diverse backgrounds. Numerical analysis of several finite differences (FD) schemes for
reaction-diffusion systems is given in the research monograph [1]. Apart from the classical approach,
Ramirez et al. [2] derived nonstandard FD schemes for steady state reaction-diffusion equations
based on Green’s integral formulation of the exact solution. In this work, we will derive so-called
exponentially fitted finite difference schemes that can be obtained by only changing denominators in
discrete derivative formulas.

2. Exponentially Fitted Finite Difference Formulation

Finite difference discretizations of ODEs and PDEs are widely used by the practitioners due
to their easy analysis and implementation issues. However, many drawbacks, such as violation of
positivity requirements and strict conditions on step sizes are encountered in the applications. To
overcome these difficulties, some variants of FD schemes are developed. The very well known
modification to FD schemes is nonstandard finite differences (NSFD) proposed by Mickens [3].
The rules of NSFD are based on complicated denominators and nonlocal representation of nonlinear
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terms in the equation. The other version of FD is exponentially fitted (EF) methods. In the last
few decades, EF methods have become so popular that hundreds of papers have been published
in theoretical and application-oriented journals. EF methods for differential equations date back to
Gautschi [4], who proposed a method to integrate exactly appropriate trigonometric functions, just as
classical methods integrate exactly algebraic polynomials. Paternoster [5] presents the overview of
recent literature of EF methods. As for mathematical chemistry and physics, Anastassi and Simos [6]
proposed EF methods for the numerical integration of the Schrödinger equation and related initial
value problems with oscillating solution. The similarities and differences between NSFD and EF
methods are discussed by Erdogan [7] and Gurski [8]. Other versions of EF methods are employed
to solve singular perturbation problems which are numerically challenging. A historical review of
these types of methods is given in [9]. Recent studies such as [10,11] present mathematical analysis
and computational aspects of EF methods for singular perturbation problems.

EF methods include a fitting parameter, the so-called frequency that affects the convergence and
stability properties of the method. For ordinary differential equations, the problem of how to choose
fitting parameters are discussed in [12,13]. However, the usage EF method in the full discretization
of PDE’s has not been well studied. In the recent work of the author [14], an exponentially fitted
method is designed for solving advection type of initial boundary value problems by employing time
and space frequencies in finite difference formulas. This approach does not only yield more accurate
numerical results but also preserves the qualitative behavior of the equation under consideration.

In the construction of EF schemes, we will need the following EF based finite difference derivative
formulas [15]

y′(xi) ≈
yi+1 − yi

eωh−1
ω

y′(xi) ≈
yi − yi−1

1−e−ωh

ω

y′′(xi) ≈
yi+1 − 2yi + yi−1

2(1−cos(kh))
k2

(2)

that are exact for the reference sets {1, eωx} and {1, eIkx, e−Ikx} respectively for the first and second
derivatives. In the next chapters, these derivative approximations are inserted into the differential
equation, and strategies for parameter selections are discussed.

2.1. Pure Diffusion

For the sake of clarity, we start with considering the diffusion equation

∂u
∂t

= c
∂2u
∂x2 , −π < x < π (3)

with initial condition u(x, 0) = u0(x) and periodic boundary conditions. The separation of variables
method for (3) gives

T
cT′

=
X′′

X
= −k2 (4)

assuming the solution is of the form u(x, t) = T(t)X(x). It is clear that the time and spatial components
of the solution are eωt and Asin(kx) + Bcos(kx). The relation between time and spatial components

ω = −ck2 (5)

is called dispersion relation [16]. However, classical finite difference methods never take this issue into
account explicitly. Our contribution is to consider the dispersion relation through the construction of
finite difference schemes. Fortunately, exponentially fitted methods and nonstandard finite differences
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provide us with a very useful tool: denominators in terms of non-polynomial functions [17,18].
We propose forward time derivative and the second space derivative in (2) to obtain an explicit EF
scheme. The resulting scheme becomes

uj+1
i − uj

i

eω
j
i ∆t−1
ω

j
i

= c
uj

i+1 − 2uj
i + uj

i−1

2(1−cos(kj
i∆x))

kj
i
2

(6)

The assignments of ω and k and the relation between these parameters are of great importance.
Ehrhardt and Mickens [18] obtained a similar scheme by sub-equation method. However, their motivation
and procedure to determine ω and k were quite different. The main contribution of the present work
is to describe a parameter selection strategy based on dispersion relation and local error formula.
The local error of the scheme (6) is given by

τ
j
i =

1
2

∆t((utt)
j
i −ω

j
i (ut)

j
i)−

c∆x2

12
((uxxxx)

j
i + kj

i
2
(uxx)

j
i) + O

(
∆t2, ∆x4) (7)

where the derivatives (ut)
j
i , (ux)

j
i etc. are computed at the point (xi, tj).

The selections

kj
i
2
= −

(uxxxx)
j
i

(uxx)
j
i

, ω
j
i =

(utt)
j
i

(ut)
j
i

(8)

that vanish the first two terms in the local error formula and increase the time and space order.
Furthermore, one can realize that these selections reveal the dispersion relation (5) by considering

ω
j
i =

(utt)
j
i

(ut)
j
i

=
c2(uxxxx)

j
i

c(uxx)
j
i

= −ckj
i
2

(9)

In the implementation of (6), the classical finite difference approximations of uxxxx and uxx might
be employed as follows for computing k numerically,

kj
i
2
=

1
∆x2

uj
i+2 − 4uj

i+1 + 6uj
i − 4uj

i−1 + uj
i−2

uj
i+1 − 2uj

i + uj
i−1

ω
j
i = −c(kj

i)
2 (10)

These approximations do not vanish the local error terms exactly. Nevertheless, this approach
reduces the local error significantly. It is clear that k is updated at each (xi, tj).

k becomes constant within the time evolution and exact solution is obtained as long as initial
profile is composed of only one Fourier component. However, in case of multi-frequency initial profile,
k will not be constant any longer. It is also possible to take average values of parameters over time and
space indices.

2.1.1. Stability of the Method

Both classical explicit finite difference scheme and EF scheme for the diffusion equation can be
written as

uj+1
i = uj

i + λ(uj
i+1 − 2uj

i + uj
i−1) (11)

where λ = λFD = c ∆t
∆x2 and λ = λEF = c

e
ω

j
i ∆t−1

ω
j
i

2(1−cos(kj
i ∆x))

kj
i
2

stand for the CFL numbers for classical FD

and EF schemes.
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After the dispersion relation ω
j
i = −ckj

i
2

is substituted into λEF, the limit

lim
kj

i→0
λEF = λFD (12)

which tells us that classical FD formulation is employed in the implementation in case very small k
values should be noticed.

Applying the well known stability arguments for time dependent PDEs [1,16], the stability
requirement is found to be λEF ≤ 1/2. After cumbersome algebra, it is verified that this
requirement is satisfied when λFD ≤ 1

2 under the assumption k ∈ [− π
∆x , π

∆x ], which prevents aliasing.
In other words, stability of the method depends not only on step sizes but also on the parameters of
the method. In order to overcome this drawback, we take kj

i = ω
j
i = 0 (corresponding to classical

FD) if computed values in (10) are very small or large in magnitude. Indeed, this precaution does not
reduce the accuracy due to the fact that unwanted large and/or small values of parameters are caused
by almost zero gradients that can be accurately resolved with classical FD formulas.

2.2. Reaction-Diffusion

In the presence of reaction term, the same derivative approximations are used to obtain the scheme

uj+1
i − uj

i

eω
j
i ∆t−1
ω

j
i

= c
uj

i+1 − 2uj
i + uj

i−1

2(1−cos(kj
i∆x))

kj
i
2

+ f (uj
i) (13)

that corresponds to the original PDE
∂u
∂t

= c
∂2u
∂x2 + f (u) (14)

However, the dispersion relation (5) does not hold any longer. Considering (8), one computes k
and ω as

kj
i
2

= −
(uxxxx)

j
i

(uxx)
j
i

ω
j
i =

(utt)
j
i

(ut)
j
i

=
(cuxxxx)

j
i + ( f (u)xx)

j
i

(cuxx)
j
i + f (uj

i)
+ f ′(uj

i) (15)

For a coupled reaction-diffusion system, it is suggestive to use different space and time parameters
for each of substances. Consider the system

∂

∂t

(
u
v

)
= D

∂2

∂x2

(
u
v

)
+

(
f (u, v)
g(u, v)

)
(16)

with appropriate boundary and initial condition where D is 2 × 2 diffusion matrix. An explicit EF
scheme for the coupled system can be written as

uj+1
i − uj

i

eω
j
i ∆t−1
ω

j
i

vj+1
i − vj

i

eω̄
j
i ∆t−1
ω̄

j
i


= D



uj
i+1 − 2uj

i + uj
i−1

2(1−cos(kj
i∆x))

kj
i
2

vj
i+1 − 2vj

i + vj
i−1

2(1−cos(k̄j
i∆x))

k̄j
i
2


+

(
f (uj

i , vj
i)

g(uj
i , vj

i)

)
(17)
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Apart from employing constant parameters in some special cases, local truncation errors for each
line suggest that the selections

(kj
i)

2
= −

(uxxxx)
j
i

(uxx)
j
i

ω
j
i =

(utt)
j
i

(ut)
j
i

(k̄j
i)

2
= −

(vxxxx)
j
i

(vxx)
j
i

ω̄
j
i =

(vtt)
j
i

(vt)
j
i

(18)

can decrease the error significantly. It is very usual to have stiffness in coupled reaction-diffusion
systems. Explicit EF also fails in the case of stiffness. Therefore, an implicit version of EF finite
differences should be used to deal with stiffness. By employing backward time difference in (2), one
obtains an implicit version of (17). Local error based parameter selection strategy gives

(kj
i)

2
= −

(uxxxx)
j−1
i

(uxx)
j−1
i

ω
j
i =
−(utt)

j−1
i + 2

(
D1,1(uxxt)

j−1
i + D1,2(vxxt)

j−1
i + ( f (u, v)t)

j−1
i

)
(ut)

j−1
i

(k̄j
i)

2
= −

(vxxxx)
j−1
i

(vxx)
j−1
i

ω̄
j
i =
−(vtt)

j−1
i + 2

(
D2,1(uxxt)

j−1
i + D2,2(vxxt)

j−1
i + (g(u, v)t)

j−1
i

)
(vt)

j−1
i

(19)

Let us point out that parameter computations are performed explicitly although the proposed
method is fully implicit.

3. Numerical Examples

3.1. Diffusion Equation

Consider the diffusion equation with periodic boundary conditions on −π < x < π

∂u
∂t

=
∂2u
∂x2 (20)

The initial condition u(x, 0) = sin(x) leads to the exact solution u(x, t) = e−tsin(x). In Table 1,
the EF method with the settings k = 1 and ω = −1, which will be denoted by EFconstant, gives
an exact solution up to machine accuracy. However, EF method performed by frequency search
algorithm explained in the previous section could not catch the exact solution due to fluctuations in kj

i .
Nevertheless, it is superior to the classical explicit finite difference scheme

Table 1. Errors in max norm at final time t = 1 for example 1.

Space Step Size ∆x = 2π
24 ∆x = 2π

24 ∆x = 2π
24 ∆x = 2π

32 ∆x = 2π
40

Time Step Size ∆t = 0.025 ∆t = 0.02 ∆t = 0.0125 ∆t = 0.0125 ∆t = 0.0125

EFconstant 9.43 × 10−16 9.43 × 10−16 2.22 × 10−16 4.44 × 10−16 3.88 × 10−16

EF 1.43 × 10−5 8.99 × 10−6 1.09 × 10−6 3.59 × 10−6 3.17 × 10−6

Classical FD 2.52 × 10−3 1.59 × 10−3 1.95 × 10−4 1.12 × 10−3 1.55 × 10−3

3.2. Nonlinear Diffusion

The proposed method is applied to nonlinear diffusion directly. Consider the problem

∂u
∂t

=
∂2

∂x2

(
u2

2

)
(21)
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subject to initial condition

u(x, 0) =
1

10
x2 (22)

with exact solution u(x, t) =
x2

10− 6t
[19]. The discretization of second derivative will be same as the

linear case

∂xx
u2

2
(xi, t) ≈

u2

2 (xi+1, t)− 2 u2

2 (xi, t) + u2

2 (xi−1, t)
2(1−cos(kh))

k2

(23)

The parameters k and ω are determined in terms of derivatives of u2

2 not u itself. In Table 2,
comparison of errors produced by EF and classical explicit finite difference methods is given. EF needs
very moderate step sizes to get higher accuracy.

Table 2. Errors in max norm at final time t = 1 for example 2.

Space Step Size ∆x = 1
6 ∆x = 1

6 ∆x = 1
12 ∆x = 1

12

Time Step Size ∆t = 0.01 ∆t = 0.0025 ∆t = 0.0025 ∆t = 0.00125

EF 2.8 × 10−4 2.8 × 10−4 7.0 × 10−5 7.0 × 10−5

Classical explicit FD 4.5 × 10−3 7.08 × 10−4 1.1 × 10−3 5.0 × 10−4

3.3. Fisher Equation

In this example, we will see that the proposed EF approach is not limited to linear equations with
single dominant frequency. Consider the Fisher equation

∂u
∂t

= c
∂2u
∂x2 + au− bu2 (24)

with exact solution

u(x, t) = −1
4

a
b

[
sech2

(
−
√

a
24c

x +
5a
12

t
)
− 2tanh

(
−
√

a
24c

x +
5a
12

t
)
− 2
]

(25)

EF solution is computed by Equations (15) and (13). Table 3 presents numerical solutions at t = 4
and x ∈ [−30, 30] with ∆x = 1, ∆t = 0.1 and for a = 1/24 , b = c = 1 . The wavelet method [20],
which is a kind of spectral method, and B spline technique [21], that yields five points implicit stencil,
are used for numerical comparison. Numerical time evolution of the initial profile by EF method is given in
Figure 1.

Table 3. Comparison of the methods for example 3.

x Wavelet B-Spline Present Exact Errors Errors of
Method Solution of B-Spline Present Method

−20 0.498678 0.499412 0.49941337 0.499413331 1.35 × 10−6 3.48 × 10−8

−16 0.498525 0.498146 0.49814210 0.498142011 4.01 × 10−6 9.32 × 10−8

−12 0.494757 0.494149 0.49414023 0.494140001 8.86 × 10−6 2.31 × 10−7

−8 0.481776 0.481763 0.48175680 0.481755704 7.28 × 10−6 1.09 × 10−6

−4 0.445508 0.445372 0.44540611 0.445397724 2.53 × 10−5 8.38 × 10−6

2 0.279025 0.280082 0.27998956 0.279941256 1.41 × 10−4 4.83 × 10−5

6 0.11698 0.117196 0.11699390 0.116963394 2.33 × 10−4 3.05 × 10−5

10 0.025927 0.025881 0.02598319 0.025974116 9.30 × 10−5 9.07 × 10−6

14 0.003695 0.003559 0.00362421 0.003622347 6.29 × 10−5 1.86 × 10−6

18 0.000409 0.000395 0.00040592 0.000405692 1.12 × 10−5 2.24 × 10−7
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Figure 1. Numerical exponentially fitted (EF) solution of Fisher equation.

3.4. Coupled Nonlinear System

Consider the equation

ut =uxx + u(1− u− 4
3

v)

vt =vxx −
1
3

uv

with initial conditions u(x, 0) = ekx

(1+e
k
2 x)2

, v(x, 0) = 1

(1+e
k
2 x)

. Its exact travelling wave solution [22] is

given by

u(x, t) =
ek(x+ct)

(1 + e
k
2 (x+ct))2

v(x, t) =
1

(1 + e
k
2 (x+ct))

(26)

where k =
√

6
3 and c =

√
6

6 . This problem is used to test some semi analytical approximation methods
such as Adomian Decomposition Method [23].

A numerical experiment is performed for x ∈ [−30, 30] and t ∈ [0, 10]. Explicit EF and classical
FD schemes (central difference in space, forward difference in time) are employed. In Figure 2, the
order plots are given. In Figure 2a, ∆x = 0.25 is fixed and several time steps within the stability region
are considered. In Figure 2b, ∆t = 0.001 is fixed and numerical experiments are performed for different
∆x values. Figures indicate that the proposed parameter selection algorithm could not make leading
order terms vanish in local error. This is because the exact solution does not consist of trigonometric
space functions. However, the parameter selection strategy reduces the local errors considerably at
each (xi, tj). The classical FD scheme can catch the accuracy that is obtained by EF only for very small
∆t and ∆x values.



Math. Comput. Appl. 2016, 21, 32 8 of 10

10
−2

10
−4

10
−3

∆ t

M
ax

 e
rro

rs

 

 
EF
FD

10
0

10
−4

10
−3

∆ x

M
ax

 E
rro

r 

 

 
EF
FD

Figure 2. (a) log log plot of ∆t values vs. max norm of errors at final time t = 10 for fixed ∆x; (b) log
log plot of ∆x values vs. max norm of errors at final time t = 10 for fixed ∆t.

3.5. Stiff Coupled System

Consider the initial- boundary value problem

ut =uxx + (2π2 − 1)u− 2π2v

vt =uxx + vxx − v, 0 < x < 1, 0 < t ≤ T

with initial conditions u(x, 0) = sin2(πx), v(x, 0) = cos2(πx) and homogenous Neumann conditions.
Its exact solution is u(x, t) = e−tsin2(πx) and v(x, t) = e−tcos2(πx). This example is used to test some
implicit solvers such as those proposed in [24,25]. In this example, Implicit EF method with parameter
selections in Equation (19) is compared with other implicit solvers. Table 4 presents errors in max
norm for a fixed time step and various ∆x values. Although B spline method is based on five point
stencil and employs Crank-Nicolson for time discretization, it falls behind Implicit EF.

Table 4. Errors for u(x, 1) and v(x, 1) in max norm at final time t = 1 with ∆t = 0.001 for example 5.

Space Step Size ∆x = 1
100 ∆x = 1

300 ∆x = 1
500

Implicit EF 7.39 × 10−6 6.37 × 10−6 4.35 × 10−6

Implicit FD 1.79 × 10−3 3.62 × 10−4 2.48 × 10−4

Implicit B-spline [24] 5.06 × 10−3 5.61 × 10−3 2.15 × 10−5
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4. Conclusions

A simple modification of a classical explicit finite difference scheme, which is based on change
of denominators, is described and convergence properties of the proposed scheme are discussed.
This algorithmic approach has improved the accuracy without considerable computational work.
A reader who is familiar with spectral methods [26] can realize that we are trying to include only
dominant frequency into the finite difference formulation. The success of the proposed method
for diffusion equations relies on the smoothing effect of the diffusion operator that damps high
frequencies rapidly.

In a similar manner, all kinds of classical FD schemes can be converted to EF schemes by choosing
a suitable reference set. A further study can be performed on the parameter selection strategies,
possibly with the instruments of Fourier analysis.
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