Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body
Abstract
:1. Introduction
2. An Integral Representation and a Double Inequality for
3. An Asymptotic Formula for
4. Monotonicity and Inequalities of
- if and , then
- for and , the function is strictly increasing if and only if .
- the limit is valid;
- for fixed , the function is strictly increasing with respect to x if and only if ;
- the function satisfies the Pául type inequalityin particular, when and in (9), the strictly logarithmic concavity of the sequence follows, that is,
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, J.-F.; Xie, P.; Jiang, J. Geometric probability for pairs of hyperplanes intersecting with a convex body. Math. Appl. (Wuhan) 2016, 29, 233–238. (In Chinese) [Google Scholar]
- Guo, B.-N.; Qi, F. On the increasing monotonicity of a sequence originating from computation of the probability of intersecting between a plane couple and a convex body. Turkish J. Anal. Number Theory 2015, 3, 21–23. [Google Scholar] [CrossRef]
- Bustoz, J.; Ismail, M.E.H. On gamma function inequalities. Math. Comp. 1986, 47, 659–667. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Wendel’s and Gautschi’s inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions. Appl. Math. Comput. 2008, 205, 281–290. [Google Scholar] [CrossRef]
- Qi, F.; Mortici, C.; Guo, B.-N. Some properties of a sequence arising from computation of the intersecting probability between a plane couple and a convex body. ResearchGate Res. 2015. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1993. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions—Theory and Applications, 2nd ed.; De Gruyter Studies in Mathematics; Walter de Gruyter: Berlin, Germany, 2012; Volume 37. [Google Scholar]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Slavić, D.V. On inequalities for Γ(x+1)/Γ(x+1/2). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1975, 498–541, 17–20. [Google Scholar]
- Copson, E.T. Asymptotic Expansions; Cambridge University Press: Cambridge, UK, 2004; Volume 55. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010.
- Furman, E.; Zitikis, R. A monotonicity property of the composition of regularized and inverted-regularized gamma functions with applications. J. Math. Anal. Appl. 2008, 348, 971–976. [Google Scholar] [CrossRef]
- Furman, E.; Zitikis, R. Monotonicity of ratios involving incomplete gamma functions with actuarial applications. J. Inequal. Pure Appl. Math. 2008, 9, 1–6. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Mahmoud, M. Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body. Math. Comput. Appl. 2016, 21, 27. https://doi.org/10.3390/mca21030027
Qi F, Mahmoud M. Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body. Mathematical and Computational Applications. 2016; 21(3):27. https://doi.org/10.3390/mca21030027
Chicago/Turabian StyleQi, Feng, and Mansour Mahmoud. 2016. "Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body" Mathematical and Computational Applications 21, no. 3: 27. https://doi.org/10.3390/mca21030027
APA StyleQi, F., & Mahmoud, M. (2016). Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body. Mathematical and Computational Applications, 21(3), 27. https://doi.org/10.3390/mca21030027

