Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body
Abstract
:1. Introduction
2. An Integral Representation and a Double Inequality for
3. An Asymptotic Formula for
4. Monotonicity and Inequalities of
- if and , then
- for and , the function is strictly increasing if and only if .
- the limit is valid;
- for fixed , the function is strictly increasing with respect to x if and only if ;
- the function satisfies the Pául type inequality
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhao, J.-F.; Xie, P.; Jiang, J. Geometric probability for pairs of hyperplanes intersecting with a convex body. Math. Appl. (Wuhan) 2016, 29, 233–238. (In Chinese) [Google Scholar]
- Guo, B.-N.; Qi, F. On the increasing monotonicity of a sequence originating from computation of the probability of intersecting between a plane couple and a convex body. Turkish J. Anal. Number Theory 2015, 3, 21–23. [Google Scholar] [CrossRef]
- Bustoz, J.; Ismail, M.E.H. On gamma function inequalities. Math. Comp. 1986, 47, 659–667. [Google Scholar] [CrossRef]
- Qi, F.; Guo, B.-N. Wendel’s and Gautschi’s inequalities: Refinements, extensions, and a class of logarithmically completely monotonic functions. Appl. Math. Comput. 2008, 205, 281–290. [Google Scholar] [CrossRef]
- Qi, F.; Mortici, C.; Guo, B.-N. Some properties of a sequence arising from computation of the intersecting probability between a plane couple and a convex body. ResearchGate Res. 2015. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1993. [Google Scholar]
- Schilling, R.L.; Song, R.; Vondraček, Z. Bernstein Functions—Theory and Applications, 2nd ed.; De Gruyter Studies in Mathematics; Walter de Gruyter: Berlin, Germany, 2012; Volume 37. [Google Scholar]
- Widder, D.V. The Laplace Transform; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Slavić, D.V. On inequalities for Γ(x+1)/Γ(x+1/2). Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1975, 498–541, 17–20. [Google Scholar]
- Copson, E.T. Asymptotic Expansions; Cambridge University Press: Cambridge, UK, 2004; Volume 55. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010.
- Furman, E.; Zitikis, R. A monotonicity property of the composition of regularized and inverted-regularized gamma functions with applications. J. Math. Anal. Appl. 2008, 348, 971–976. [Google Scholar] [CrossRef]
- Furman, E.; Zitikis, R. Monotonicity of ratios involving incomplete gamma functions with actuarial applications. J. Inequal. Pure Appl. Math. 2008, 9, 1–6. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, F.; Mahmoud, M. Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body. Math. Comput. Appl. 2016, 21, 27. https://doi.org/10.3390/mca21030027
Qi F, Mahmoud M. Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body. Mathematical and Computational Applications. 2016; 21(3):27. https://doi.org/10.3390/mca21030027
Chicago/Turabian StyleQi, Feng, and Mansour Mahmoud. 2016. "Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body" Mathematical and Computational Applications 21, no. 3: 27. https://doi.org/10.3390/mca21030027
APA StyleQi, F., & Mahmoud, M. (2016). Some Properties of a Function Originating from Geometric Probability for Pairs of Hyperplanes Intersecting with a Convex Body. Mathematical and Computational Applications, 21(3), 27. https://doi.org/10.3390/mca21030027