Efficient Production of Antioxidants from Rape Pollen via a Chromatographic Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation and Reagents
2.2. Sample Extraction, MPLC Pretreatment and Active Peaks Recognition
2.3. Directed Separation of Antioxidants from the Target Fraction
2.4. Assessment of Activity and Purity of Antioxidants
2.5. Molecular Docking
2.6. Statistical Analysis
3. Results and Discussion
3.1. MPLC Pretreatment and Active Peaks Recognition
3.2. Directed Separation of Active Compound from the Target Fraction
3.3. Purity, Structural Characterization and Activity of the Isolated Compound
3.4. Molecular Docking
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Cao, H.G.; Chen, C.; Chen, X.; Wei, Q.; Zhao, F.Y. Effects of fermentation by Ganoderma lucidum and Saccharomyces cerevisiae on rape pollen morphology and its wall. J. Food. Sci. Technol. 2017, 54, 4026–4034. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, S.; Wang, L.B.; Huang, D.J.; Chen, S.W. Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape (Brassica napus L.) bee pollen. LWT Food. Sci. Technol. 2021, 147, 111502. [Google Scholar] [CrossRef]
- Ares, A.M.; Valverde, S.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Extraction and determination of bioactive compounds from bee pollen. J. Pharmaceut. Biomed. 2018, 147, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.L.; Yang, Y.N.; He, J.; Zhang, Z.W.; Zhang, P.C. Two new furan derivatives from bee-collected rape pollen. J. Asian Nat. Prod. Res. 2011, 13, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Rzepecka-Stojko, A.; Stojko, J.; Jasik, K.; Buszman, E. Anti-atherogenic activity of polyphenol-rich extract from bee pollen. Nutrients 2017, 12, 1369. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.; Chen, S.N.; Liu, X.Y.; Zhao, H.A.; Cao, W. Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in high fat diet induced obese mice. Nutrients 2019, 2, 346. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.L.; Bae, H.J.; Zhang, J.B.; Kwon, Y.B.; Koo, B.; Jung, I.H.; Kim, H.M.; Park, J.H.; Lew, J.H.; Ryu, J.H. The ameliorating effects of bee pollen on scopolamine-induced cognitive impairment in mice. Biol. Pharm. Bull. 2019, 3, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.H.; Wang, X.Y.; He, Y.F.; Wang, H.L.; Suo, Y.R. Identification and quantification of flavonoid aglycones in rape bee pollen from Qinghai-Tibetan Plateau by HPLC-DAD-APCI/MS. J. Food Compos. Anal. 2015, 38, 49–54. [Google Scholar] [CrossRef]
- Fang, H.L.; Zhang, J.; Zhao, Y.W.; Han, N.J.; Wang, W.D.; Li, Y. Antioxidant and anti-aging mechanism of wall broken rape pollen. Sci. Technol. Food Ind. 2022, 43, 378–384. [Google Scholar] [CrossRef]
- Hao, Z. The effect and research progress of rape pollen. Cereal. Oil 2020, 8, 4–6. Available online: https://lsyy.cbpt.cnki.net/WKC2/WebPublication/paperDigest.aspx?paperID=8dc2904d-5c5a-4f17-b76d-5f3d6b709ec0# (accessed on 20 October 2022).
- Yao, Q.P.; Li, J.; Hu, J.; Huang, Y.F. Studies on quality evaluation of rape pollen based on HPLC fingerprint. Zhongguo Shipin Xuebao 2012, 8, 203–209. [Google Scholar] [CrossRef]
- Xu, X.; Sun, L.P.; Dong, J.; Zhang, H.C. Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon dioxide. Innov. Food. Sci. Emerg. 2009, 10, 42–46. [Google Scholar] [CrossRef]
- Aceto, G.; Persico, V.; Pescapé, A. Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 2020, 18, 100129. [Google Scholar] [CrossRef]
- Jadalla, B.M.I.S.; Moser, J.J.; Sharma, R.; Etsassala, N.G.E.R.; Egieyeh, S.A.; Badmus, J.A.; Marnewick, J.L.; Beukes, D.; Cupido, C.N.; Hussein, A.A. In vitro alpha-glucosidase and alpha-amylase inhibitory activities and antioxidant capacity of Helichrysum cymosum and Helichrysum pandurifolium schrank constituents. Separations 2022, 8, 190. [Google Scholar] [CrossRef]
- Viñas, G.; Puig, T.; Porta, R. Oxidative stress in patients with cancer: Two sides of the same coin. Med. Clin. 2012, 4, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zhou, Y.X.; Gao, Q.N.; Ping, D.N.; Wang, Y.L.; Wu, W.; Lin, X.; Fang, Y.J.; Zhang, J.M.; Shao, A.W. The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxid. Med. Cell Longev. 2020, 4, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Salmon, A.B.; Richardson, A.; Pérez, V.I. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free. Radic. Biol. Med. 2010, 5, 642–655. [Google Scholar] [CrossRef] [Green Version]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.; Harakeh, S.; et al. Oxidative stress in human pathology and aging: Molecular mechanisms and perspectives. Cells 2022, 3, 552. [Google Scholar] [CrossRef]
- Tain, Y.L.; Hsu, C.N. Oxidative stress-induced hypertension of developmental origins: Preventive aspects of antioxidant therapy. Antioxidants 2022, 3, 511. [Google Scholar] [CrossRef]
- Hirschenson, J.; Melgar-Bermudez, E.; Mailloux, R.J. The uncoupling proteins: A systematic review on the mechanism used in the prevention of oxidative stress. Antioxidants 2022, 2, 322. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Agraharam, G.; Girigoswami, A.; Girigoswami, K. Myricetin: A multifunctional flavonol in biomedicine. Curr. Pharmacol. Rep. 2022, 8, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Dawa, Y.; Du, Y.R.; Wang, Q.; Chen, C.B.; Zou, D.L.; Qi, D.S.; Ma, J.B.; Dang, J. Targeted isolation of 1, 1-diphenyl-2-picrylhydrazyl inhibitors from Saxifraga atrata using medium-and high-pressure liquid chromatography combined with online high performance liquid chromatography-1,1-diphenyl-2-picrylhydrazyl detection. J. Chromatogr. A 2021, 1635, 461690. [Google Scholar] [CrossRef]
- Liu, C.; Lei, Y.Q.; Dang, J.; Wang, W.D.; Zhang, L.; Mei, L.J.; Liu, Z.G.; Tao, Y.D.; Shao, Y. Preparative isolation of 1, 1-diphenyl-2-picrylhydrazyl inhibitors from Ribes himalense using medium-pressure and two-dimensional reversed-phase/reversed-phase liquid chromatography guided by an online HPLC-1,1-diphenyl-2-picrylhydrazyl assay. J. Sep. Sci. 2021, 7, 1345–1352. [Google Scholar] [CrossRef]
- Dang, J.; Ma, J.B.; Dawa, Y.; Liu, C.; Ji, T.F.; Wang, Q.L. Preparative separation of 1, 1-diphenyl-2-picrylhydrazyl inhibitors originating from Saxifraga sinomontana employing medium-pressure liquid chromatography in combination with reversed-phase liquid chromatography. RSC Adv. 2021, 61, 38739–38749. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Dang, J.; Han, Y.; Liu, C.; Yu, S.; Lv, Y.; Cui, Y.B.; Wang, Z.H.; Li, G. Preparative isolation of maltol glycoside from Dianthus superbus and its anti-inflammatory activity in vitro. RSC Adv. 2022, 8, 5031–5041. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Liang, Q.L.; Ping, H.; Wang, Y.M.; Jun, F.W.; Luo, G.A. Combination of normal-phase medium-pressure liquid chromatography and high-performance counter-current chromatography for preparation of ginsenoside-Ro from panax ginseng with high recovery and efficiency. Sep. Purif. Technol. 2010, 3, 397–402. [Google Scholar] [CrossRef]
- Li, Y.J.; Lin, H.M.; Zhang, J.B.; Deng, X.; Li, J.A. An efficient procedure for preparing high-purity pingyangmycin and boanmycin from Streptomyces verticillus var. pingyangensis fermentation broth via macroporous cation-exchange resin and subsequent reversed-phase preparative chromatography. J. Chromatogr. B 2020, 1136, 121883. [Google Scholar] [CrossRef]
- Feng, Z.F.; Chen, X.F.; Di, D.L. Online extraction and isolation of highly polar chemical constituents from Brassica napus L. pollen by high shear technique coupled with high-performance counter-current chromatography. J. Sep. Sci. 2012, 35, 625–632. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, Z.; Wu, Q.; Fang, Y.; Wang, Q.L.; Li, G.; Dang, J. Preparation and Antioxidant Activities of Phenylethanoids from Dracocephalum heterophyllum. Separations 2022, 5, 111. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Liu, H.; Liu, X.; Gu, K.; Wu, M.; Huang, J. Efficient Production of Antioxidants from Rape Pollen via a Chromatographic Strategy. Separations 2022, 9, 445. https://doi.org/10.3390/separations9120445
Jin L, Liu H, Liu X, Gu K, Wu M, Huang J. Efficient Production of Antioxidants from Rape Pollen via a Chromatographic Strategy. Separations. 2022; 9(12):445. https://doi.org/10.3390/separations9120445
Chicago/Turabian StyleJin, Liugen, Haiqing Liu, Xueliang Liu, Ke Gu, Minchen Wu, and Jianfeng Huang. 2022. "Efficient Production of Antioxidants from Rape Pollen via a Chromatographic Strategy" Separations 9, no. 12: 445. https://doi.org/10.3390/separations9120445
APA StyleJin, L., Liu, H., Liu, X., Gu, K., Wu, M., & Huang, J. (2022). Efficient Production of Antioxidants from Rape Pollen via a Chromatographic Strategy. Separations, 9(12), 445. https://doi.org/10.3390/separations9120445