Merits and Demerits of Carbon Dioxide in Separation Processes
1. Introduction
2. Summary of Published Articles
3. Conclusions
Funding
Conflicts of Interest
References
- Gang, X.; Le, C. Great Energy Carbon Dioxide; Wuhan University Press: Wuhan, China, 2015; pp. 1–138. [Google Scholar]
- Muhammad, S.; Khalil, A.H.P.S.; Abd Hamid, S.; Danish, M.; Marwan, M.; Yunardi, Y.; Abdullah, C.K.; Faisal, M.; Yahya, E.B. Characterization of Bioactive Compounds from Patchouli Extracted via Supercritical Carbon Dioxide (SC-CO2) Extraction. Molecules 2022, 27, 6025. [Google Scholar] [CrossRef]
- Khan, M.S.; Abid, M.; Ali, H.M.; Amber, K.P.; Bashir, M.A.; Javed, S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl. Therm. Eng. 2019, 148, 295–306. [Google Scholar] [CrossRef]
- Veronico Sanchez, F.J.; Elizalde Solis, O.; Zamilpa, A.; Garcia Morales, R.; Perez Garcia, M.D.; Jimenez Ferrer, J.E.; Tortoriello, J. Extraction of Galphimines from Galphimia glauca with Supercritical Carbon Dioxide. Molecules 2020, 25, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Sun, E.; Li, M.; Liu, H.; Zhu, B. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant. Energy 2018, 157, 227–246. [Google Scholar] [CrossRef]
- Xie, G.; Xu, X.; Lei, X.; Li, Z.; Li, Y.; Sunden, B. Heat transfer behaviors of some supercritical fluids: A review. Chin. J. Aeronaut. 2022, 35, 290–306. [Google Scholar] [CrossRef]
- Ruiu, A.; Bauer-Siebenlist, B.; Senila, M.; Jaenisch, T.; Foix, D.; Seaudeau-Pirouley, K.; Lacroix-Desmazes, P. Promising polymer-assisted extraction of palladium from supported catalysts in supercritical carbon dioxide. J. CO2 Util. 2020, 41, 101232. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Tech. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- White, M.T.; Bianchi, G.; Chai, L.; Tassou, S.A.; Sayma, A.I. Review of supercritical CO2 technologies and systems for power generation. Appl. Therm. Eng. 2021, 185, 116447. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Machine learning bioactive compound solubilities in supercritical carbon dioxide. Chem. Phys. 2021, 550, 111299. [Google Scholar] [CrossRef]
- Uquiche, E.; Sanchez, B.; Marillan, C.; Quevedo, R. Simultaneous extraction of lipids and minor lipids from microalga (Nannochloropsis gaditana) and rapeseed (Brassica napus) using supercritical carbon dioxide. J. Supercrit. Fluid. 2022, 190, 105753. [Google Scholar] [CrossRef]
- Lee, S.; Nkurunziza, D.; Kim, S.; Surendhiran, D.; Singh, A.A.; Chun, B. Supercritical carbon dioxide extraction of squalene rich cod liver oil: Optimization, characterization and functional properties. J. Supercrit. Fluid. 2022, 188, 105693. [Google Scholar] [CrossRef]
- Le Moullec, Y. Conceptual study of a high efficiency coal-fired power plant with CO2 capture using a supercritical CO2 Brayton cycle. Energy 2013, 49, 32–46. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Atif, M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy 2015, 82, 61–71. [Google Scholar] [CrossRef]
- Sizov, V.E.; Zefirov, V.V.; Gallyamov, M.O.; Muzafarov, A.M. Organosilicone Compounds in Supercritical Carbon Dioxide. Polymers 2022, 14, 2367. [Google Scholar] [CrossRef] [PubMed]
- Cunico, L.P.; Sun, M.; Rui, Y.; Ghirmai, S.; Enekvist, M.; Lundegard, S.; Sandahl, M.; Turner, C. Enhanced distribution kinetics in liquid-liquid extraction by CO2-expanded solvents. J. Supercrit. Fluid. 2020, 163, 104874. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodriguez-Galan, M.; Vega, F.; Alonso-Farinas, B.; Vilches Arenas, L.F.; Navarrete, B. Carbon capture and utilization technologies: A literature review and recent advances. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1403–1433. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, Z. Carbon Capture, Utilization and Storage (CCUS). Appl. Energy 2019, 235, 1289–1299. [Google Scholar] [CrossRef]
- Mohammad, M.; Isaifan, R.J.; Weldu, Y.W.; Rahman, M.A.; Al-Ghamdi, S.G. Progress on carbon dioxide capture, storage and utilisation. Int. J. Global Warm. 2020, 20, 124–144. [Google Scholar] [CrossRef]
- Park, A.A. Towards sustainable energy: Carbon capture, utilization, and storage. Abstr. Pap. Am. Chem. Soc. 2012, 244. [Google Scholar]
- Wilberforce, T.; Olabi, A.G.; Sayed, E.T.; Elsaid, K.; Abdelkareem, M.A. Progress in carbon capture technologies. Sci. Total Environ. 2021, 761, 143203. [Google Scholar] [CrossRef]
- Wilberforce, T.; Baroutaji, A.; Soudan, B.; Al-Alami, A.H.; Olabi, A.G. Outlook of carbon capture technology and challenges. Sci. Total Environ. 2019, 657, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Aminu, M.D.; Nabavi, S.A.; Rochelle, C.A.; Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy 2017, 208, 1389–1419. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.Y.C.; Caramanna, G.; Maroto-Valer, M.M. An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 2014, 39, 426–443. [Google Scholar] [CrossRef] [Green Version]
- Snaebjornsdottir, S.O.; Sigfusson, B.; Marieni, C.; Goldberg, D.; Gislason, S.R.; Oelkers, E.H. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 2020, 1, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Petrol. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, C. On geoengineering and the CO2 Problem. Clim. Chang. 1977, 1, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Jun, Z.; Guiju, L. Carbon dioxide storage technology and research status. Energy Environ. 2007, 2, 33–35. [Google Scholar]
- Liu, Q.; Liu, W.; Hu, J.; Wang, L.; Gao, J.; Liang, B.; Yue, H.; Zhang, G.; Luo, D.; Li, C. Energy-efficient mineral carbonation of blast furnace slag with high value-added products. J. Clean. Prod. 2018, 197, 242–252. [Google Scholar] [CrossRef]
- Chu, G.; Li, C.; Liu, W.; Zhang, G.; Yue, H.; Liang, B.; Wang, Y.; Luo, D. Facile and cost-efficient indirect carbonation of blast furnace slag with multiple high value-added products through a completely wet process. Energy 2019, 166, 1314–1322. [Google Scholar] [CrossRef]
- Hu, J.; Liu, W.; Wang, L.; Liu, Q.; Chen, F.; Yue, H.; Liang, B.; Lu, L.; Wang, Y.; Zhang, G.; et al. Indirect mineral carbonation of blast furnace slag with (NH4)2SO4 as a recyclable extractant. J. Energy Chem. 2017, 26, 927–935. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.; Hu, J.; Liu, Q.; Yue, H.; Liang, B.; Zhang, G.; Luo, D.; Xie, H.; Li, C. Indirect mineral carbonation of titanium-bearing blast furnace slag coupled with recovery of TiO2 and Al2O3. Chin. J. Chem. Eng. 2018, 26, 583–592. [Google Scholar] [CrossRef]
- Orthoefer, F.T. Rice bran oil: Healthy lipid source. Food Technol. 1996, 50, 62–64. [Google Scholar]
- Pinto, T.I.; Coelho, J.A.; Pires, B.I.; Neng, N.R.; Nogueira, J.M.; Bordado, J.C.; Sardinha, J.P. Supercritical Carbon Dioxide Extraction, Antioxidant Activity, and Fatty Acid Composition of Bran Oil from Rice Varieties Cultivated in Portugal. Separations 2021, 8, 115. [Google Scholar] [CrossRef]
- Qamar, S.; Torres, Y.J.M.; Parekh, H.S.; Falconer, J.R. Effects of Ethanol on the Supercritical Carbon Dioxide Extraction of Cannabinoids from Near Equimolar (THC and CBD Balanced) Cannabis Flower. Separations 2021, 8, 154. [Google Scholar] [CrossRef]
- Shahid, M.; Shahid-ul-Islam; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Sakai, H.; Ono, K.; Tokunaga, S.; Sharmin, T.; Aida, T.M.; Mishima, K. Extraction of Natural Pigments from Gardenia Jasminoides J.Ellis Fruit Pulp Using CO2-Expanded Liquids and Direct Sonication. Separations 2021, 8, 1. [Google Scholar] [CrossRef]
- Zhou, C.; Fan, X.; Duan, C.; Zhao, Y. A method to improve fluidization quality in gas–solid fluidized bed for fine coal beneficiation. Particuology 2019, 43, 181–192. [Google Scholar] [CrossRef]
- Lv, B.; Fu, Y.; Luo, Z.; Zhang, B.; Qin, X.; Zhu, X. Moisture transfer of wet coal and its effect on fluidization behavior in a gas-solid separation bed. Powder Technol. 2019, 352, 126–135. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, C.; Chen, Z.; Zhao, Y. Effect of coal particle swarm properties on the fluidization characteristics and coal beneficiation in a dense-phase gas-solid fluidized bed. Particuology 2017, 35, 108–118. [Google Scholar] [CrossRef]
- Fan, X.; Zhou, C. Estimation of Bed Expansion and Separation Density of Gas–Solid Separation Fluidized Beds Using a Micron-Sized-Particle-Dense Medium. Separations 2021, 8, 242. [Google Scholar] [CrossRef]
- Xue, W. The Early Precambrian Magmatism and Crustal Growth in the Southern Margin of the North China Craton. Ph.D. Thesis, University of Chinese Academy of Sciences, Guangzhou, China, 2017. [Google Scholar]
- Kravchenko, A.; Gerasimov, B.; Loskutov, E.; Okrugin, A.; Galenchikova, L.; Beryozkin, V. Statistical Models of the Distribution of Chemical Elements in Precambrian Rocks of the Siberian Craton. Separations 2021, 8, 23. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G. Merits and Demerits of Carbon Dioxide in Separation Processes. Separations 2022, 9, 419. https://doi.org/10.3390/separations9120419
Zhang G. Merits and Demerits of Carbon Dioxide in Separation Processes. Separations. 2022; 9(12):419. https://doi.org/10.3390/separations9120419
Chicago/Turabian StyleZhang, Guoquan. 2022. "Merits and Demerits of Carbon Dioxide in Separation Processes" Separations 9, no. 12: 419. https://doi.org/10.3390/separations9120419
APA StyleZhang, G. (2022). Merits and Demerits of Carbon Dioxide in Separation Processes. Separations, 9(12), 419. https://doi.org/10.3390/separations9120419