Carbon Dioxide Chemical Absorption Using Diamines with Different Types of Active Centers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Absorption Studies
2.3. Regeneration Studies
3. Results
- (i)
- An increase in the rigidity of the gas–liquid interface is produced by an increase in viscosity [21], but also the presence of molecules of amine are higher in the gas–liquid interface due to the accumulation observed with surface tension data. Thus, local viscosity can be higher than in the liquid bulk, which enhances the rigidity of interface.
- (ii)
- A higher viscosity in the liquid solvent causes other undesirable effects in bubbling reactors. It generally increases the size of bubbles produced in the sparger. Additionally, it enhances bubble coalescence and reduces breakage. Both effects cause a reduction in the value of the gas–liquid interfacial area [22,23] and then, a decrease in the mass transfer rate.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Keener, T.C. A review: Desorption of CO2 from rich solutions in chemical absorption processes. Int. J. Greenh. Gas Control. 2016, 51, 290–304. [Google Scholar] [CrossRef]
- Oyenekan, B.A.; Rochelle, G.T. Alternative stripper configurations for CO2 capture by aqueous amines. AIChE J. 2007, 53, 3144–3154. [Google Scholar] [CrossRef]
- Nwaoha, C.; Saiwan, C.; Supap, T.; Idema, R.; Tontiwachwuthikul, P.; Rongwong, W.; Al-Marri, M.J.; Benamor, A. Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). Int. J. Greenh. Gas Control. 2016, 53, 292–304. [Google Scholar] [CrossRef]
- Bougie, F.; Iliuta, M.C. Analysis of regeneration of sterically hindered alkanolamines aqueous solutions with and without activator. Chem. Eng. Sci. 2010, 65, 4746–4750. [Google Scholar] [CrossRef]
- Pei, Z.; Yao, S.; Jianwen, W.; Wei, Z.; Qing, Y. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption. J. Environ. Sci. 2008, 20, 39–44. [Google Scholar]
- Ozturk, M.C.; Yuksel-Orhan, O.; Alper, E. Kinetics of carbon dioxide binding by 1,1,3,3-tetramethylguanidine in 1-hexanol. Int. J. Greenh. Gas Control. 2014, 26, 76–82. [Google Scholar] [CrossRef]
- Heldebrant, D.J.; Yonker, C.R.; Jessop, P.G.; Phan, L. CO2-binding organic liquids (CO2BOLs) for post-combustion CO2 capture. Energy Procedia 2009, 1, 1187–1195. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Huang, K.; Xia, S.; Chen, Y.L.; Wu, Y.T.; Hu, X.B. Low-viscous fluorine-substituted phenolic ionic liquids with high performance for capture of CO2. Chem. Eng. J. 2015, 274, 30–33. [Google Scholar] [CrossRef]
- Lu, J.G.; Lu, Z.Y.; Chen, Y.; Wang, J.T.; Gao, L.; Gao, X.; Tang, Y.Q.; Liu, D.G. CO2 absorption into aqueous blends of ionic liquid and amine in a membrane contactor. Sep. Purif. Technol. 2015, 150, 278–285. [Google Scholar] [CrossRef]
- Gao, T.; Selinger, J.L.; Rochelle, G.T. Demonstration of 99% CO2 removal from coal flue gas by amine scrubbing. Int. J. Greenh. Gas Control. 2019, 83, 236–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Sachde, D.; Chen, E.; Rochelle, G. Modeling of absorber pilot plant performance for CO2 capture with aqueous piperazine. Int. J. Greenh. Gas Control. 2017, 64, 300–313. [Google Scholar] [CrossRef]
- El Hadri, N.; Quang, D.V.; Goetheer, E.L.V.; Abu Zahra, M.R.M. Aqueous amine solution characterization for post-combustion CO2 capture process. Appl. Energy 2017, 185, 1433–1449. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Muñiz-Mouro, A.; Navaza, J.M.; Rumbo, A. Diamine versus amines blend for CO2 chemical absorption. AIChE J. 2021, 67, e17071. [Google Scholar] [CrossRef]
- Horng, S.Y.; Li, M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + triethanolamine. Ind. Eng. Chem. Res. 2002, 41, 257–266. [Google Scholar] [CrossRef]
- Liao, C.H.; Li, M.H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine. Chem. Eng. Sci. 2002, 57, 4569–4582. [Google Scholar] [CrossRef]
- Salvi, A.P.; Vaidya, P.D.; Kenig, E.Y. Kinetics of carbon dioxide removal by ethylenediamine and diethylenetriamine in aqueous solutions. Can. J. Chem. Eng. 2014, 92, 2021–2028. [Google Scholar] [CrossRef]
- Vaidya, P.D.; Kenig, E.Y. CO2-alkanolamine reaction kinetics: A review of recent studies. Chem. Eng. Technol. 2007, 30, 1467–1474. [Google Scholar] [CrossRef]
- García-Abuín, A.; Gómez-Díaz, D.; Muñiz-Mouro, A.; Navaza, J.M.; Rumbo, A. CO2 capture by pyrrolidine: Reaction mechanism and mass transfer. AIChE J. 2014, 60, 1098–1106. [Google Scholar] [CrossRef]
- García-Abuín, A.; Gómez-Díaz, D.; López, A.B.; Navaza, J.M.; Rumbo, A. NMR characterization of carbon dioxide chemical absorption with monoethanolamine, diethanolamine, and triethanolamine. Ind. Eng. Chem. Res. 2013, 52, 13432–13438. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M. Density, speed of sound, viscosity, and surface tension of tetramethylethylenediamine aqueous solutions from T = 293.15 to 323.15 K. J. Chem. Eng. Data 2020, 65, 1565–1570. [Google Scholar] [CrossRef]
- Li, J.; You, C.; Chen, L.; Ye, Y.; Qi, Z.; Sundmacher, K. Dynamics of CO2 absorption and desorption processes in alkanolamine with cosolvent polyethylene glycol. Ind. Eng. Chem. Res. 2012, 51, 12081–12088. [Google Scholar] [CrossRef]
- McCann, N.; Phan, D.; Wang, X.; Conway, W.; Burns, R.; Attalla, M.; Puxty, G.; Maeder, M. Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution. J. Phys. Chem. A 2009, 113, 5022–5029. [Google Scholar] [CrossRef] [PubMed]
- Muraleedharan, R.; Mondal, A.; Mandal, B. Absorption of carbon dioxide into aqueous blends of 2-amino-2-hydroxymethyl-1,3- propanediol and monoethanolamine. Sep. Purif. Technol. 2012, 94, 92–96. [Google Scholar] [CrossRef]
- Tong, D.; Trusler, J.P.M.; Maitland, G.C.; Gibbins, J.; Fennell, P.S. Solubility of carbon dioxide in aqueous solution of monoethanolamine or 2-amino-2methyl-1-propanol: Experimental measurements and modelling. Int. J. Greenh. Gas Control. 2012, 6, 37–47. [Google Scholar] [CrossRef]
- Chilekar, V.P.; Van der Schaaf, J.; Kuster, B.F.M.; Tinge, J.T.; Schouten, J.C. Influence of elevated pressure and particle lyophobicity on hydrodynamics and gas-liquid mass transfer in slurry bubble columns. AIChE J. 2010, 56, 584–596. [Google Scholar] [CrossRef]
- Orvalho, S.; Ruzicka, M.C.; Drahos, J. Bubble column with electrolytes: Gas holdup and flow regimes. Ind. Eng. Chem. Res. 2009, 48, 8237–8243. [Google Scholar] [CrossRef]
- López, A.B.; La Rubia, M.D.; Navaza, J.M.; Pacheco, R.; Gómez-Díaz, D. 1-amine-2-propanol + triethanolamine aqueous blends for carbon dioxide absorption in a bubble reactor. Energy Fuels 2015, 29, 5237–5244. [Google Scholar] [CrossRef]
- Mac Dowell, N.; Shah, N. Identification of the cost-optimal degree of CO2 capture: An optimisation study using dynamic process models. Int. J. Greenh. Gas Control. 2013, 13, 44–58. [Google Scholar] [CrossRef]
- Panda, D.; Kumar, E.A.; Singh, S.K. Amine modification of binder-containing zeolite 4A bodies for post-combustion CO2 capture. Ind. Eng. Chem. Res. 2019, 58, 5301–5313. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, M.; Pan, Y.; Yan, S.; Luo, Z. Amine-based absorbents selection for CO2 membrane vacuum regeneration technology by combined absorption-desorption analysis. Chem. Eng. Sci. 2013, 93, 238–249. [Google Scholar] [CrossRef]
- Muchan, P.; Narku-Tetteh, J.; Saiwan, C.; Idem, R.; Supap, T. Effect of number of amine groups in aqueous polyamine solution on carbon dioxide (CO2) capture activities. Sep. Purif. Technol. 2017, 184, 128–134. [Google Scholar] [CrossRef]
- Villarroel, J.A.; Palma-Cando, A.; Viloria, A.; Ricaurte, M. Kinetic and thermodynamic analysis of high-pressure CO2 capture using ethylenediamine: Experimental study and modeling. Energies 2021, 14, 6822. [Google Scholar] [CrossRef]
- Aghela, B.; Sahraiea, S.; Heidaryan, E. Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor. Sep. Purif. Technol. 2020, 237, 116390. [Google Scholar] [CrossRef]
- Yu, B.; Yu, H.; Yang, Q.; Li, K.; Ji, L.; Zhang, R.; Megharaj, M.; Chen, Z. Postcombustion capture of CO2 by diamines containing one primary and one tertiary amino group: Reaction rate and mechanism. Energy Fuels 2019, 33, 7500–7508. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Gomes, N.; Teixeira, J.A.; Belo, I. Oxygen mass transfer to emulsions in a bubble column contactor. Chem. Eng. J. 2009, 152, 354–360. [Google Scholar] [CrossRef] [Green Version]
- Cerri, M.O.; Baldacin, J.C.; Cruz, A.J.G.; Hokka, C.O.; Badino, A.C. Prediction of mean bubble size in pneumatic reactors. Biochem. Eng. J. 2010, 53, 12–17. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M.; Rodríguez, P.; Vega, R. CO2 absorption and regeneration using amines with different degrees of steric hindrance. Chem. Eng. Technol. 2017, 40, 1767–1773. [Google Scholar] [CrossRef]
- Singh, P.; Versteeg, G.F. Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents. Process Saf. Environ. Prot. 2008, 86, 347–359. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Liang, Z.; Liao, H.; Idem, R.O. Thermal degradation of aqueous DEEA solution at stripper conditions for post-combustion CO2 capture. Chem. Eng. Sci. 2015, 135, 330–342. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Díaz, D.; Navaza, J.M.; Rumbo, A. Carbon Dioxide Chemical Absorption Using Diamines with Different Types of Active Centers. Separations 2022, 9, 343. https://doi.org/10.3390/separations9110343
Gómez-Díaz D, Navaza JM, Rumbo A. Carbon Dioxide Chemical Absorption Using Diamines with Different Types of Active Centers. Separations. 2022; 9(11):343. https://doi.org/10.3390/separations9110343
Chicago/Turabian StyleGómez-Díaz, Diego, José Manuel Navaza, and Antonio Rumbo. 2022. "Carbon Dioxide Chemical Absorption Using Diamines with Different Types of Active Centers" Separations 9, no. 11: 343. https://doi.org/10.3390/separations9110343
APA StyleGómez-Díaz, D., Navaza, J. M., & Rumbo, A. (2022). Carbon Dioxide Chemical Absorption Using Diamines with Different Types of Active Centers. Separations, 9(11), 343. https://doi.org/10.3390/separations9110343