Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices
Abstract
:1. Introduction
2. Conductivity Gradient
2.1. Field-Amplified Sample Stacking/Field-Amplified Sample Injection (FASS/FASI)
2.2. Isotachophoresis (ITP)
2.3. Conductivity Gradient Focusing
3. Counterflow Electric Field Gradient
3.1. Electric Field Gradient Focusing/Dynamic Field Gradient Focusing (EFGF/DFGF)
3.2. Gradient Elution Moving Boundary Electrophoresis (GEMBE)
3.3. Electrophoretic Exclusion (EE)
4. Temperature Gradient Focusing (TGF)
5. Concentration Polarization/Ion Concentration Polarization (ICP) and Bipolar Electrodes (BPE)
5.1. Concentration Polarization/Ion Concentration Polarization (ICP)
5.2. Bipolar Electrodes (BPE)
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Strohmeier, O.; Keller, M.; Schwemmer, F.; Zehnle, S.; Mark, D.; von Stetten, F.; Zengerle, R.; Paust, N. Centrifugal microfluidic platforms: Advanced unit operations and applications. Chem. Soc. Rev. 2015, 44, 6187–6229. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis 2007, 28, 254–281. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C.; Thabano, J.R.; Dawod, M.; Kazarian, A.A.; Quirino, J.P.; Guijt, R.M. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006–2008). Electrophoresis 2009, 30, 230–248. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C.; Dawod, M.; Quirino, J.P. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis 2011, 32, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C.; Shallan, A.I.; Rabanes, H.R.; Gstoettenmayr, D.; Keyon, A.S.A.; Gaspar, A.; Dawod, M.; Quirino, J.P. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2010–2012). Electrophoresis 2013, 34, 29–54. [Google Scholar] [CrossRef] [PubMed]
- Breadmore, M.C.; Tubaon, R.M.; Shallan, A.I.; Phung, S.C.; Keyon, A.S.A.; Gstoettenmayr, D.; Prapatpong, P.; Alhusban, A.A.; Ranjbar, L.; See, H.H.; et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014). Electrophoresis 2015, 36, 36–61. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Deng, Y.; Vedantam, P.; Tzeng, T.-R.; Xuan, X. Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets. J. Magn. Magn. Mater. 2013, 346, 118–123. [Google Scholar] [CrossRef]
- Han, X.; Feng, Y.; Cao, Q.; Li, L. Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics. Microfluid. Nanofluid. 2014, 18, 1209–1220. [Google Scholar] [CrossRef]
- Laurell, T.; Petersson, F.; Nilsson, A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem. Soc. Rev. 2007, 36, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Destgeer, G.; Lee, K.H.; Jung, J.H.; Alazzam, A.; Sung, H.J. Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 2013, 13, 4210–4216. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Mao, Z.; Peng, Z.; Zhou, L.; Chen, Y.; Huang, P.H.; Huang, T.J. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. 2015, 112, 4970–4975. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Yoon, S.Y.; Sung, H.J.; Kim, S.S. Cross-type optical particle separation in a microchannel. Anal. Chem. 2008, 80, 2628–2630. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Lee, K.H.; Lee, K.S.; Ha, B.H.; Oh, Y.S.; Sung, H.J. Optical separation of droplets on a microfluidic platform. Microfluid. Nanofluid. 2013, 16, 635–644. [Google Scholar] [CrossRef]
- Gongora, J.S.T.; Fratalocchi, A. Optical force on diseased blood cells: Towards the optical sorting of biological matter. Opt. Lasers Eng. 2016, 76, 40–44. [Google Scholar] [CrossRef]
- Yang, H.; Chien, R.L. Sample stacking in laboratory-on-a-chip devices. J. Chromatogr. A 2001, 924, 155–163. [Google Scholar] [CrossRef]
- Bharadwaj, R.; Santiago, J.G. Dynamics of field-amplified sample stacking. J. Fluid Mech. 2005, 543, 57. [Google Scholar] [CrossRef]
- Mala, Z.; Gebauer, P.; Bocek, P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2011, 32, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lü, W.; Chen, X.; Teng, M. Review of recent developments of on-line sample stacking techniques and their application in capillary electrophoresis. Cent. Eur. J. Chem. 2012, 10, 611–638. [Google Scholar] [CrossRef]
- Slampova, A.; Mala, Z.; Pantuckova, P.; Gebauer, P.; Bocek, P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2013, 34, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Lian, D.S.; Zhao, S.J.; Li, J.; Li, B.L. Progress in stacking techniques based on field amplification of capillary electrophoresis. Anal. Bioanal. Chem. 2014, 406, 6129–6150. [Google Scholar] [CrossRef] [PubMed]
- Mala, Z.; Slampova, A.; Krivankova, L.; Gebauer, P.; Bocek, P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2015, 36, 15–35. [Google Scholar] [CrossRef] [PubMed]
- Thormann, W. Principles of isotachophoresis and dynamics of the isotachophoretic separation of two components. Sep. Sci. Technol. 2006, 19, 455–467. [Google Scholar] [CrossRef]
- Gebauer, P.; Mala, Z.; Bocek, P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2011, 32, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Rogacs, A.; Qu, Y.; Santiago, J.G. Bacterial RNA extraction and purification from whole human blood using isotachophoresis. Anal. Chem. 2012, 84, 5858–5863. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, J.; Ma, J.; Chen, L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012, 33, 2933–2952. [Google Scholar] [CrossRef] [PubMed]
- Mala, Z.; Gebauer, P.; Bocek, P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2013, 34, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, P.; Bottenus, D.; Breadmore, M.C.; Guijt, R.M.; Ivory, C.F.; Foret, F.; Macka, M. Microfluidic isotachophoresis: A review. Electrophoresis 2013, 34, 1493–1509. [Google Scholar] [CrossRef] [PubMed]
- Strychalski, E.A.; Konek, C.; Butts, E.L.; Vallone, P.M.; Henry, A.C.; Ross, D. DNA purification from crude samples for human identification using gradient elution isotachophoresis. Electrophoresis 2013, 34, 2522–2530. [Google Scholar] [CrossRef] [PubMed]
- Rogacs, A.; Marshall, L.A.; Santiago, J.G. Purification of nucleic acids using isotachophoresis. J. chromatogr. A 2014, 1335, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Mala, Z.; Gebauer, P.; Bocek, P. Recent progress in analytical capillary isotachophoresis. Electrophoresis 2015, 36, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Petersson, F.; Aberg, L.; Sward-Nilsson, A.M.; Laurell, T. Free flow acoustophoresis microfluidic-based mode of particle and cell separation. Anal. Chem. 2007, 79, 5117–5123. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, R.T.; Bowser, M.T. Micro free-flow electrophoresis: Theory and applications. Anal. Bioanal. Chem. 2009, 394, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Becker, M.; Mansouri, A.; Beilein, C.; Janasek, D. Temperature gradient focusing in miniaturized free-flow electrophoresis devices. Electrophoresis 2009, 30, 4206–4212. [Google Scholar] [CrossRef] [PubMed]
- Wildgruber, R.; Weber, G.; Wise, P.; Grimm, D.; Bauer, J. Free-flow electrophoresis in proteome sample preparation. Proteomics 2014, 14, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Benz, C.; Boomhoff, M.; Appun, J.; Schneider, C.; Belder, D. Chip-based free-flow electrophoresis with integrated nanospray mass-spectrometry. Angew. Chem. 2015, 54, 2766–2770. [Google Scholar] [CrossRef] [PubMed]
- Koegler, W.S.; Ivory, C.F. Field gradient focusing a novel method for protein separation. Biotechnol. Prog. 1996, 12, 822–836. [Google Scholar] [CrossRef]
- Wang, Q.; Tolley, H.D.; LeFebre, D.A.; Lee, M.L. Analytical equilibrium gradient methods. Anal. Bioanal. Chem. 2002, 373, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.T.; Woolley, A.T. Electric field gradient focusing. J. Sep. Sci. 2005, 28, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Ivory, C.F. Several new electrofocusing techniques. Electrophoresis 2007, 28, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Shackman, J.G.; Ross, D. Counter-flow gradient electrofocusing. Electrophoresis 2007, 28, 556–571. [Google Scholar] [CrossRef] [PubMed]
- Meighan, M.M.; Staton, S.J.; Hayes, M.A. Bioanalytical separations using electric field gradient techniques. Electrophoresis 2009, 30, 852–865. [Google Scholar] [CrossRef] [PubMed]
- Vyas, C.A.; Flanigan, P.M.; Shackman, J.G. Gradient counterflow electrophoresis methods for bioanalysis. Bioanalysis 2010, 2, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Bharadwaj, R.; Santiago, J.G. Thousandfold signal increase using field-amplified sample stacking for on-chip electrophoresis. Electrophoresis 2003, 24, 3476–3483. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Han, C.; Xu, Z.; Liu, J.; Wang, Y. Sensitivity enhancement by field-amplified sample injection in interfacing microchip electrophoresis with inductively coupled plasma mass spectrometry for bromine speciation in bread. Food Anal. Methods 2014, 7, 2153–2162. [Google Scholar] [CrossRef]
- Giri, B.; Dutta, D. Improvement in the sensitivity of microfluidic ELISA through field amplified stacking of the enzyme reaction product. Anal. Chim. Acta 2014, 810, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Sueyoshi, K.; Kitagawa, F.; Otsuka, K. Effect of a low-conductivity zone on field-amplified sample stacking in microchip micellar electrokinetic chromatography. Anal. Sci. 2013, 29, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Won, S.Y.; Chandra, P.; Hee, T.S.; Shim, Y.B. Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry. Biosen. Bioelectron. 2013, 39, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Jung, B.; Bharadwaj, R.; Santiago, J.G. On-chip millionfold sample stacking using transient isotachophoresis. Anal. Chem. 2006, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Prest, J.E.; Baldock, S.J.; Fielden, P.R.; Goddard, N.J.; Goodacre, R.; O’Connor, R.; Brown, B.J.T. Miniaturised free flow isotachophoresis of bacteria using an injection moulded separation device. J. Chromatogr. B 2012, 903, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Murata, K.; Arai, A.; Hirokawa, T. Band-broadening suppressed effect in long turned geometry channel and high-sensitive analysis of DNA sample by using floating electrokinetic supercharging on a microchip. Biomicrofluidics 2010, 4, 14108. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Yeung, W.S.; Fung, Y.S. 2-D t-ITP/CZE determination of clinical urinary proteins using a microfluidic-chip capillary electrophoresis device. Electrophoresis 2011, 32, 3406–3414. [Google Scholar] [CrossRef] [PubMed]
- Bottenus, D.; Jubery, T.Z.; Dutta, P.; Ivory, C.F. 10,000-fold concentration increase in proteins in a cascade microchip using anionic ITP by a 3-D numerical simulation with experimental results. Electrophoresis 2011, 32, 550–562. [Google Scholar] [CrossRef] [PubMed]
- Bottenus, D.; Jubery, T.Z.; Ouyang, Y.; Dong, W.-J.; Dutta, P.; Ivory, C.F. 10,000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis. Lab Chip 2011, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Jacroux, T.; Bottenus, D.; Rieck, B.; Ivory, C.F.; Dong, W.J. Cationic isotachophoresis separation of the biomarker cardiac troponin I from a high-abundance contaminant, serum albumin. Electrophoresis 2014, 35, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Shintaku, H.; Nishikii, H.; Marshall, L.A.; Kotera, H.; Santiago, J.G. On-chip separation and analysis of RNA and DNA from single cells. Anal. Chem. 2014, 86, 1953–1957. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, K.; Shintaku, H.; Santiago, J.G. Isotachophoresis for fractionation and recovery of cytoplasmic RNA and nucleus from single cells. Electrophoresis 2015, 36, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Shintaku, H.; Palko, J.W.; Sanders, G.M.; Santiago, J.G. Increasing hybridization rate and sensitivity of bead-based assays using isotachophoresis. Angew. Chem. 2014, 53, 13813–13816. [Google Scholar] [CrossRef] [PubMed]
- Han, C.M.; Katilius, E.; Santiago, J.G. Increasing hybridization rate and sensitivity of DNA microarrays using isotachophoresis. Lab Chip 2014, 14, 2958–2967. [Google Scholar] [CrossRef] [PubMed]
- Marshall, L.A.; Rogacs, A.; Meinhart, C.D.; Santiago, J.G. An injection molded microchip for nucleic acid purification from 25 microliter samples using isotachophoresis. J. Chromatogr. A 2014, 1331, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Bahga, S.S.; Chambers, R.D.; Santiago, J.G. Coupled isotachophoretic preconcentration and electrophoretic separation using bidirectional isotachophoresis. Anal. Chem. 2011, 83, 6154–6162. [Google Scholar] [CrossRef] [PubMed]
- Bahga, S.S.; Santiago, J.G. Concentration cascade of leading electrolyte using bidirectional isotachophoresis. Electrophoresis 2012, 33, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Marshall, L.A.; Santiago, J.G. Simultaneous purification and fractionation of nucleic acids and proteins from complex samples using bidirectional isotachophoresis. Anal. Chem. 2014, 86, 7264–7268. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, T.; Bercovici, M. 1000-fold sample focusing on paper-based microfluidic devices. Lab Chip 2014, 14, 4465–4474. [Google Scholar] [CrossRef] [PubMed]
- Moghadam, B.Y.; Connelly, K.T.; Posner, J.D. Isotachophoretic preconcenetration on paper-based microfluidic devices. Anal. Chem. 2014, 86, 5829–5837. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, P.; Breadmore, M.C.; Guijt, R.M.; Foret, F.; Bek, F.; Macka, M. Isotachophoresis on a chip with indirect fluorescence detection as a field deployable system for analysis of carboxylic acids. Electrophoresis 2012, 33, 3166–3172. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, P.; Breadmore, M.C.; Guijt, R.M.; Grym, J.; Foret, F.; Bek, F.; Macka, M. Separation of carboxylic acids in human serum by isotachophoresis using a commercial field-deployable analytical platform combined with in-house glass microfluidic chips. Anal. Chim. Acta 2012, 755, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Smejkal, P.; Breadmore, M.C.; Guijt, R.M.; Foret, F.; Bek, F.; Macka, M. Analytical isotachophoresis of lactate in human serum using dry film photoresist microfluidic chips compatible with a commercially available field-deployable instrument platform. Anal. Chim. Acta 2013, 803, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, R.D.; Ivory, C.F. Protein focusing in a conductivity gradient. Biotechnol. Prog. 1998, 14, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Inglis, D.W.; Goldys, E.M.; Calander, N.P. Simultaneous concentration and separation of proteins in a nanochannel. Angew. Chem. 2011, 50, 7546–7550. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Inglis, D.W.; Jeong, H.; Dunstan, D.E.; Davidson, M.R.; Goldys, E.M.; Harvie, D.J. Stationary chemical gradients for concentration gradient-based separation and focusing in nanofluidic channels. Langmuir ACS J. Surfaces Coll. 2014, 30, 5337–5348. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Harvie, D.J.; Davidson, M.R.; Jeong, H.; Goldys, E.M.; Inglis, D.W. Concentration gradient focusing and separation in a silica nanofluidic channel with a non-uniform electroosmotic flow. Lab Chip 2014, 14, 3539–3549. [Google Scholar] [CrossRef] [PubMed]
- Koegler, W.S.; Ivory, C.F. Focusing proteins in an electric field gradient. J. Chromatogr. A 1996, 726, 229–236. [Google Scholar] [CrossRef]
- Burke, J.M.; Ivory, C.F. Characterization of voltage degradation in dynamic field gradient focusing. Electrophoresis 2008, 29, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Tracy, N.I.; Huang, Z.; Ivory, C.F. Design and construction of a preparative-scale dynamic field gradient focusing apparatus. Biotechnol. Prog. 2008, 24, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Tracy, N.I.; Ivory, C.F. Protein separation using preparative-scale dynamic field gradient focusing. Electrophoresis 2008, 29, 2820–2827. [Google Scholar] [CrossRef] [PubMed]
- Humble, P.H.; Kelly, R.T.; Woolley, A.T.; Tolley, H.D.; Lee, M.L. Electric field gradient focusing of proteins based on shaped ionically conductive acrylic polymer. Anal. Chem. 2004, 76, 5641–5648. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, X.; Farnsworth, P.B.; Lee, M.L. Fabrication of conductive membrane in a polymeric electric field gradient focusing microdevice. Anal. Chem. 2006, 78, 4654–4662. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Farnsworth, P.B.; Woolley, A.T.; Tolley, H.D.; Warnick, K.F.; Lee, M.L. Poly(ethylene glycol)-functionalized devices for electric field gradient focusing. Anal. Chem. 2008, 80, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Farnsworth, P.B.; Tolley, H.D.; Warnick, K.F.; Woolley, A.T.; Lee, M.L. Performance optimization in electric field gradient focusing. J. Chromatogr. A 2009, 1216, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, D.; Woolley, A.T.; Farnsworth, P.B.; Tolley, H.D.; Warnick, K.F.; Lee, M.L. Bilinear electric field gradient focusing. J. Chromatogr. A 2009, 1216, 6532–6538. [Google Scholar] [CrossRef] [PubMed]
- Trickett, C.A.; Henderson, R.D.; Guijt, R.M.; Breadmore, M.C. Electric field gradient focusing using a variable width polyaniline electrode. Electrophoresis 2012, 33, 3254–3258. [Google Scholar] [CrossRef] [PubMed]
- Shameli, S.M.; Glawdel, T.; Ren, C.L. Model of separation performance of bilinear gradients in scanning format counter-flow gradient electrofocusing techniques. Electrophoresis 2015, 36, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.M.; Ivory, C.F. Influence of the semi-permeable membrane on the performance of dynamic field gradient focusing. Electrophoresis 2010, 31, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Burke, J.M.; Smith, C.D.; Ivory, C.F. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules. Electrophoresis 2010, 31, 902–909. [Google Scholar] [CrossRef] [PubMed]
- Shackman, J.G.; Munson, M.S.; Ross, D. Gradient elution moving boundary electrophoresis for high-throughput multiplexed microfluidic devices. Anal. Chem. 2007, 79, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Strychalski, E.A.; Henry, A.C.; Ross, D. Microfluidic analysis of complex samples with minimal sample preparation using gradient elution moving boundary electrophoresis. Anal. Chem. 2009, 81, 10201–10207. [Google Scholar] [CrossRef] [PubMed]
- Strychalski, E.A.; Henry, A.C.; Ross, D. Expanding the capabilities of microfluidic gradient elution moving boundary electrophoresis for complex samples. Anal. Chem. 2011, 83, 6316–6322. [Google Scholar] [CrossRef] [PubMed]
- Sikorsky, A.A.; Fourkas, J.T.; Ross, D. Gradient elution moving boundary electrophoresis with field-amplified continuous sample injection. Anal. Chem. 2014, 86, 3625–3632. [Google Scholar] [CrossRef] [PubMed]
- Polson, N.A.; Savin, D.P.; Hayes, M.A. Electrophoretic focusing preconcentration technique using a continuous buffer system for capillary electrophoresis. J. Microcolumn Sep. 2000, 12, 98–106. [Google Scholar] [CrossRef]
- Meighan, M.M.; Keebaugh, M.W.; Quihuis, A.M.; Kenyon, S.M.; Hayes, M.A. Electrophoretic exclusion for the selective transport of small molecules. Electrophoresis 2009, 30, 3786–3792. [Google Scholar] [CrossRef] [PubMed]
- Meighan, M.M.; Vasquez, J.; Dziubcynski, L.; Hews, S.; Hayes, M.A. Investigation of electrophoretic exclusion method for the concentration and differentiation of proteins. Anal. Chem. 2011, 83, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, S.M.; Weiss, N.G.; Hayes, M.A. Using electrophoretic exclusion to manipulate small molecules and particles on a microdevice. Electrophoresis 2012, 33, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, S.M.; Keebaugh, M.W.; Hayes, M.A. Development of the resolution theory for electrophoretic exclusion. Electrophoresis 2014, 35, 2551–2559. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Hayes, M.A. Simulation and experiment of asymmetric electrode placement for electrophoretic exclusion in a microdevice. Electrophoresis 2016. in revision. [Google Scholar]
- Balss, K.M.; Vreeland, W.N.; Phinney, K.W.; Ross, D. Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing. Anal. Chem. 2004, 76, 7243–7249. [Google Scholar] [CrossRef] [PubMed]
- Hoebel, S.J.; Balss, K.M.; Jones, B.J.; Malliaris, C.D.; Munson, M.S.; Vreeland, W.N.; Ross, D. Scanning temperature gradient focusing. Anal. Chem. 2006, 78, 7186–7190. [Google Scholar] [CrossRef] [PubMed]
- Shackman, J.G.; Munson, M.S.; Ross, D. Temperature gradient focusing for microchannel separations. Anal. Bioanal. Chem. 2007, 387, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.M.; Sommer, G.J.; Burns, M.A.; Hasselbrink, E.F. Low-power concentration and separation using temperature gradient focusing via Joule heating. Anal. Chem. 2006, 78, 8028–8035. [Google Scholar] [CrossRef] [PubMed]
- Sommer, G.J.; Kim, S.M.; Littrell, R.J.; Hasselbrink, E.F. Theoretical and numerical analysis of temperature gradient focusing via Joule heating. Lab Chip 2007, 7, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Yang, C.; Tang, G. Concentration enhancement of sample solutes in a sudden expansion microchannel with Joule heating. Int. J. Heat Mass Transf. 2010, 53, 2722–2731. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, W.; Yang, C. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating. Lab Chip 2011, 11, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.; Wang, W.; Yang, C. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel. Anal. Chim. Acta 2015, 858, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Franzke, J.; Manz, A.; Janasek, D. Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip. Electrophoresis 2007, 28, 4606–4611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.D.; Zhou, J.; Xu, Z.R.; Song, J.; Dai, J.; Fang, J.; Fang, Z.L. DNA mutation detection with chip-based temperature gradient capillary electrophoresis using a slantwise radiative heating system. Lab Chip 2007, 7, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Bahrami, M.; Sinton, D. Optothermal sample preconcentration and manipulation with temperature gradient focusing. Microfluid. Nanofluid. 2011, 12, 221–228. [Google Scholar] [CrossRef]
- Gao, M.; Gui, L.; Liu, J. Study of liquid-metal based heating method for temperature gradient focusing purpose. J. Heat Transf. 2013, 135, 091402. [Google Scholar] [CrossRef]
- Shameli, S.M.; Glawdel, T.; Fernand, V.E.; Ren, C.L. Micellar affinity gradient focusing in a microfluidic chip with integrated bilinear temperature gradients. Electrophoresis 2012, 33, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Shameli, S.M.; Glawdel, T.; Liu, Z.; Ren, C.L. Bilinear temperature gradient focusing in a hybrid PDMS/glass microfluidic chip integrated with planar heaters for generating temperature gradients. Anal. Chem. 2012, 84, 2968–2973. [Google Scholar] [CrossRef] [PubMed]
- Holtzel, A.; Tallarek, U. Ionic conductance of nanopores in microscale analysis systems: Where microfluidics meets nanofluidics. J. Sep. Sci. 2007, 30, 1398–1419. [Google Scholar] [CrossRef] [PubMed]
- Kuo, T.C.; Cannon, D.M.; Shannon, M.A.; Bohn, P.W.; Sweedler, J.V. Hybrid three-dimensional nanofluidic, microfluidic devices using molecular gates. Sens. Actuators A 2003, 102, 223–233. [Google Scholar] [CrossRef]
- Kuo, T.C.; Cannon, D.M.; Chen, Y.; Tulock, J.J.; Shannon, M.A.; Sweedler, J.V.; Bohn, P.W. Gateable nanofluidic interconnects for multilayered microfluidic separation systems. Anal. Chem. 2003, 75, 1861–1867. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Ko, S.H.; Kang, K.H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol. 2010, 5, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Kwak, R.; Kim, S.J.; Han, J. Continuous-flow biomolecule and cell concentrator by ion concentration polarization. Anal. Chem. 2011, 83, 7348–7355. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Lee, H.; Kang, K.H.; Lim, G. Ion concentration polarization-based continuous separation device using electrical repulsion in the depletion region. Sci. Rep. 2013, 3, 3483. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, B.D.; Gong, M.M.; Zhang, P.; Sinton, D. Out-of-plane ion concentration polarization for scalable water desalination. Lab Chip 2014, 14, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.H.; Song, Y.A.; Kim, S.J.; Kim, M.; Han, J.; Kang, K.H. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization. Lab Chip 2012, 12, 4472–4482. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jia, M.; Kim, T. Ion concentration polarization in a single and open microchannel induced by a surface-patterned perm-selective film. Analyst 2013, 138, 1370–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, M.; Kim, T. Multiphysics simulation of ion concentration polarization induced by nanoporous membranes in dual channel devices. Anal. Chem. 2014, 86, 7360–7367. [Google Scholar] [CrossRef] [PubMed]
- Scarff, B.; Escobedo, C.; Sinton, D. Radial sample preconcentration. Lab Chip 2011, 11, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.J.; Pu, H.H.; Wang, H.L. Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions. Biomicrofluidics 2015, 9, 014122. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Renaud, L.; Audry, M.C.; Kleimann, P. Electrokinetic biomolecule preconcentration using xurography-based micro-nano-micro fluidic devices. Anal. Chem. 2015, 87, 8695–8701. [Google Scholar] [CrossRef] [PubMed]
- Dhopeshwarkar, R.; Hlushkou, D.; Nguyen, M.; Tallarek, U.; Crooks, R.M. Electrokinetics in microfluidic channels containing a floating electrode. J. Am. Chem. Soc. 2008, 130, 10480–10481. [Google Scholar] [CrossRef] [PubMed]
- Hlushkou, D.; Perdue, R.K.; Dhopeshwarkar, R.; Crooks, R.M.; Tallarek, U. Electric field gradient focusing in microchannels with embedded bipolar electrode. Lab Chip 2009, 9, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Laws, D.R.; Hlushkou, D.; Perdue, R.K.; Tallarek, U.; Crooks, R.M. Bipolar electrode focusing simultaneous: Concentration enrichment and separation in a microfluidic channel containing a bipolar electrode. Anal. Chem. 2009, 81, 8923–8929. [Google Scholar] [CrossRef] [PubMed]
- Perdue, R.K.; Laws, D.R.; Hlushkou, D.; Tallarek, U.; Crooks, R.M. Bipolar electrode focusing the effect of current and electric field on concentration enrichment. Anal. Chem. 2009, 81, 10149–10155. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.K.; Sheridan, E.; Hlushkou, D.; Tallarek, U.; Crooks, R.M. Bipolar electrode focusing: Tuning the electric field gradient. Lab Chip 2011, 11, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, E.; Hlushkou, D.; Knust, K.N.; Tallarek, U.; Crooks, R.M. Enrichment of cations via bipolar electrode focusing. Anal. Chem. 2012, 84, 7393–7399. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, E.; Knust, K.N.; Crooks, R.M. Bipolar electrode depletion: Membraneless filtration of charged species using an electrogenerated electric field gradient. Analyst 2011, 136, 4134–4137. [Google Scholar] [CrossRef] [PubMed]
- Anand, R.K.; Sheridan, E.; Knust, K.N.; Crooks, R.M. Bipolar electrode focusing: Faradaic ion concentration polarization. Anal. Chem. 2011, 83, 2351–2358. [Google Scholar] [CrossRef] [PubMed]
- Knust, K.N.; Sheridan, E.; Anand, R.K.; Crooks, R.M. Dual-channel bipolar electrode focusing: Simultaneous separation and enrichment of both anions and cations. Lab Chip 2012, 12, 4107–4114. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Wang, Y.; Garson, C.; Pant, K. Concurrent DNA preconcentration and separation in bipolar electrode-based microfluidic device. Anal. Methods Adv. Methods Appl. 2015, 7, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
Techniques | FASS | ITP |
---|---|---|
Mobility requirement | Background electrolyte (BGE), sample (S), usually μBGE ≥ 10 μS | Leading electrolyte (LE), terminating electrolyte (TE), sample (S), μTE < μS < μLE |
Governing equations | , Ci is the concentration of ionic species i, Di is the molar diffusivity of species i, νi is the electromigration mobility, zi is the valence number, F is Faraday’s constant, u is the fluid velocity, and E is electric field; solution is approximately electrically neutral (except EDL); modified Stokes equation; a slip surface [16]. | , Ci is the molar concentration of ion i, νi is the electrophoretic mobility, E is the electric field, and Di is the diffusion coefficient, , (µ is viscosity, ζ0 is zeta potential, and δ is the length of stacked sample zone); EOF suppressed; diffusion dominates [48]. |
Concentration enhancement | Based on the ratio of electric field in the sample and the BGE regions , up to 1100-fold [43]. | Derived from Kohlrausch regulating function (KRF) Z, ω, C are charge, mobility, concentration respectively, up to 100,000 -fold [48]. |
Coupled techniques | Mass spectroscopy [44], amperometry [47], ELISA [45], MEKC [46]… | GEITP [28], FFITP [49], EKS [50], CZE [51]… |
Techniques | EFGF-Ivory [36,72] | EFGF-Lee [76,77,78,79,80] | GEMBE [85,86,87,88] | EE [90,91,92,94] |
---|---|---|---|---|
Forces | Electrophoretic force, constant convective force | Electrophoretic force, constant bulk fluid flow | Bulk flow swept from high to low, electrophoretic migration constant | Hydrodynamic flow, electrophoretic velocity |
Sample injection | A sample loop | Electrokinetic injection or pumped | Continuous introduction | Pipetting small volume or syringe pump |
Pressure control | A back-pressure regulator | A syringe pump | A precision pressure controller | A rotatable board or syringe pump |
Electric field gradient establishment | A shaped chamber | A horn-shaped chamber | Distal electrode and standard CE capillary | Electrode and sudden expansion channel-reservoir interface |
EOF control | Not mentioned | Suppressed with poly(vinyl alcohol) coating the capillary wall | Coating DDAB on capillary surface | Suppressed with low pH buffer or polyimide |
Detection method | UV detector | Laser-induced fluorescence detection | Fluorescence microscope, current, C4D | Fluorescence microscope |
Concentration degree | 2~3-fold in ~7 h | Up to 14,000-fold in 60 min (bilinear) | 110× with a conductivity ratio of 8.21 | 1200 times in 60 s (bench-top), estimated more than 10-fold in 30 s (microdevice) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, F.; Hayes, M.A. Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices. Separations 2016, 3, 12. https://doi.org/10.3390/separations3020012
Zhu F, Hayes MA. Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices. Separations. 2016; 3(2):12. https://doi.org/10.3390/separations3020012
Chicago/Turabian StyleZhu, Fanyi, and Mark A. Hayes. 2016. "Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices" Separations 3, no. 2: 12. https://doi.org/10.3390/separations3020012
APA StyleZhu, F., & Hayes, M. A. (2016). Exploring Gradients in Electrophoretic Separation and Preconcentration on Miniaturized Devices. Separations, 3(2), 12. https://doi.org/10.3390/separations3020012