Isolation of Macrocyclic Trichothecene Mycotoxins from the Lethal Toxic Mushroom Podostroma cornu-damae and Their Cytotoxic Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Structural Characterization of the Macrocyclic Trichothecenes 1–8
2.2. Evaluation of Cytotoxicity of Compounds 1–8 on Cancer and Normal Cell Lines
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Fungus Material
3.3. Extraction and Fractionation
3.4. LC/MS Analysis for Fractions and 3D Plot Visualization
3.5. Isolation of Compounds 1–8
3.6. Cell Culture
3.7. Cell Viability Assay
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yadav, D.; Negi, P.S. Bioactive components of mushrooms: Processing effects and health benefits. Food Res. Int. 2021, 148, 110599. [Google Scholar] [CrossRef] [PubMed]
- Vivek-Ananth, R.; Sahoo, A.K.; Baskaran, S.P.; Samal, A. Scaffold and structural diversity of the secondary metabolite space of medicinal fungi. ACS Omega 2023, 8, 3102–3113. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [PubMed]
- Jo, W.-S.; Hossain, M.A.; Park, S.-C. Toxicological profiles of poisonous, edible, and medicinal mushrooms. Mycobiology 2014, 42, 215–220. [Google Scholar] [CrossRef]
- Govorushko, S.; Rezaee, R.; Dumanov, J.; Tsatsakis, A. Poisoning associated with the use of mushrooms: A review of the global pattern and main characteristics. Food Chem. Toxicol. 2019, 128, 267–279. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Gorniak, L.; Stela, M.; Bijak, M. The existing methods and novel approaches in mycotoxins’ detection. Molecules 2021, 26, 3981. [Google Scholar] [CrossRef]
- Singh, J.; Mehta, A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci. Nutr. 2020, 8, 2183–2204. [Google Scholar] [CrossRef]
- Ahmed, W.H.A.; Gonmori, K.; Suzuki, M.; Watanabe, K.; Suzuki, O. Simultaneous analysis of α-amanitin, β-amanitin, and phalloidin in toxic mushrooms by liquid chromatography coupled to time-of-flight mass spectrometry. Forensic Toxicol. 2010, 28, 69–76. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal mushrooms: Bioactive compounds, use, and clinical trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef]
- Chugh, R.M.; Mittal, P.; Mp, N.; Arora, T.; Bhattacharya, T.; Chopra, H.; Cavalu, S.; Gautam, R.K. Fungal mushrooms: A natural compound with therapeutic applications. Front. Pharmacol. 2022, 13, 925387. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yu, J.S.; Lee, S.R.; Kim, K.H. Non-peptide secondary metabolites from poisonous mushrooms: Overview of chemistry, bioactivity, and biosynthesis. Nat. Prod. Rep. 2022, 39, 512–559. [Google Scholar] [CrossRef]
- Nieminen, P.; Mustonen, A.-M. Toxic potential of traditionally consumed mushroom species—A controversial continuum with many unanswered questions. Toxins 2020, 12, 639. [Google Scholar] [CrossRef]
- Kim, H.N.; Do, H.H.; Seo, J.S.; Kim, H.Y. Two cases of incidental Podostroma cornu-damae poisoning. Clin. Exp. Emerg. Med. 2016, 3, 186. [Google Scholar] [CrossRef]
- Lee, B.S.; So, H.M.; Kim, S.; Kim, J.K.; Kim, J.-C.; Kang, D.-M.; Ahn, M.-J.; Ko, Y.-J.; Kim, K.H. Comparative evaluation of bioactive phytochemicals in Spinacia oleracea cultivated under greenhouse and open field conditions. Arch. Pharm. Res. 2022, 45, 795–805. [Google Scholar] [CrossRef]
- Cho, H.; Kim, K.H.; Han, S.H.; Kim, H.-J.; Cho, I.-H.; Lee, S. Structure determination of heishuixiecaoline A from Valeriana fauriei and its content from different cultivated regions by HPLC/PDA Analysis. Nat. Prod. Sci. 2022, 28, 181–186. [Google Scholar] [CrossRef]
- Yu, J.S.; Jeong, S.Y.; Li, C.; Oh, T.; Kwon, M.; Ahn, J.S.; Ko, S.-K.; Ko, Y.-J.; Cao, S.; Kim, K.H. New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2, 3-dioxygenase 1 (IDO1). Arch. Pharm. Res. 2022, 45, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Lee, B.S.; Yu, J.S.; Kang, H.; Yoo, M.J.; Yi, S.A.; Han, J.-W.; Kim, S.; Kim, J.K.; Kim, J.-C. Identification of anti-adipogenic withanolides from the roots of Indian ginseng (Withania somnifera). J. Ginseng Res. 2022, 46, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.E.; Park, K.H.; Hong, J.H.; Kim, S.H.; Park, K.M.; Kim, K.H. Anti-osteoporosis effects of triterpenoids from the fruit of sea buckthorn (Hippophae rhamnoides) through the promotion of osteoblast differentiation in mesenchymal stem cells, C3H10T1/2. Arch. Pharm. Res. 2023, 46, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Seok, S.; Ryoo, R.; Choi, S.U.; Kim, K.H. Macrocyclic trichothecene mycotoxins from a deadly poisonous mushroom, Podostroma cornu-damae. J. Nat. Prod. 2018, 82, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Saikawa, Y.; Okamoto, H.; Inui, T.; Makabe, M.; Okuno, T.; Suda, T.; Hashimoto, K.; Nakata, M. Toxic principles of a poisonous mushroom Podostroma cornu-damae. Tetrahedron 2001, 57, 8277–8281. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Cheng, Z.; Proksch, P.; Lin, W. Cytotoxic trichothecene-type sesquiterpenes from the sponge-derived fungus Stachybotrys chartarum with tyrosine kinase inhibition. RSC Adv. 2017, 7, 7259–7267. [Google Scholar] [CrossRef]
- Mondol, M.A.M.; Surovy, M.Z.; Islam, M.T.; Schüffler, A.; Laatsch, H. Macrocyclic trichothecenes from Myrothecium roridum strain M10 with motility inhibitory and zoosporicidal activities against Phytophthora nicotianae. J. Agric. Food Chem. 2015, 63, 8777–8786. [Google Scholar] [CrossRef] [PubMed]
- Piao, M.-Z.; Shen, L.; Wang, F.-W. A new trichothecene from Myrothecium roridum QDFE005, a symbiotic fungus isolated from Mactra chinensis. J. Asian Nat. Prod. Res. 2013, 15, 1284–1289. [Google Scholar] [CrossRef]
- Deng, R.; Wang, S.-M.; Yin, T.; Ye, T.-H.; Shen, G.-B.; Li, L.; Zhao, J.-Y.; Sang, Y.-X.; Duan, X.-G.; Wei, Y.-Q. Dimethyl Sulfoxide Suppresses Mouse 4T1 Breast Cancer Growth by Modulating Tumor-Associated Macrophage Differentiation. J. Breast Cancer 2014, 17, 25–32. [Google Scholar] [CrossRef]
- Lee, B.S.; Jung, S.M.; Ryoo, R.; Choi, S.U.; An, S.; Kim, K.H. I-Hydroxy-Phe-Phe, a new dipeptide, and cytotoxic macrocyclic trichothecenes from the lethal toxic mushroom Podostroma cornu-damae. Org. Biomol. Chem. 2023, 21, 8521–8527. [Google Scholar] [CrossRef]
- Razavi-Azarkhiavi, K.; Iranshahy, M.; Sahebkar, A.; Shirani, K.; Karimi, G. The protective role of phenolic compounds against doxorubicin-induced cardiotoxicity: A comprehensive review. Nutr. Cancer 2016, 68, 892–917. [Google Scholar] [CrossRef] [PubMed]
- Sherbenou, D.W.; Druker, B.J. Applying the discovery of the Philadelphia chromosome. J. Clin. Investig. 2007, 117, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Defossez, G.; Mathoulin-Pelissier, S.; Ingrand, I.; Gasquet, I.; Sifer-Riviere, L.; Ingrand, P.; Salamon, R.; Migeot, V.; The REPERES Research Network. Satisfaction with care among patients with non-metastatic breast cancer: Development and first steps of validation of the REPERES-60 questionnaire. BMC Cancer 2007, 7, 129. [Google Scholar] [CrossRef]
- Goldhirsch, A.; Colleoni, M.; Domenighetti, G.; Gelber, R. Systemic treatments for women with breast cancer: Outcome with relation to screening for the disease. Ann. Oncol. 2003, 14, 1212–1214. [Google Scholar] [CrossRef]
- Gollahon, L.S.; Jeong, Y.; Finckbone, V.; Lee, K.; Park, J.-S. The Natural Product NI-07, is effective against breast cancer cells while showing no cytotoxicity to normal cells. Open Breast Cancer J. 2011, 3, 31–44. [Google Scholar] [CrossRef]
- Elisia, I.; Popovich, D.G.; Hu, C.; Kitts, D.D. Evaluation of viability assays for anthocyanins in cultured cells. Phytochem. Anal. 2008, 19, 479–486. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.S.; Lee, Y.Y.; Lee, S.R.; Jang, Y.S.; Ryoo, R.; Park, W.; Kim, S.-N.; Lee, S.; Park, C.G.; Kim, K.H. Isolation of Macrocyclic Trichothecene Mycotoxins from the Lethal Toxic Mushroom Podostroma cornu-damae and Their Cytotoxic Activities. Separations 2024, 11, 65. https://doi.org/10.3390/separations11030065
Lee BS, Lee YY, Lee SR, Jang YS, Ryoo R, Park W, Kim S-N, Lee S, Park CG, Kim KH. Isolation of Macrocyclic Trichothecene Mycotoxins from the Lethal Toxic Mushroom Podostroma cornu-damae and Their Cytotoxic Activities. Separations. 2024; 11(3):65. https://doi.org/10.3390/separations11030065
Chicago/Turabian StyleLee, Bum Soo, Yun Young Lee, Seoung Rak Lee, Yoon Seo Jang, Rhim Ryoo, Wooram Park, Se-Na Kim, Soah Lee, Chun Gwon Park, and Ki Hyun Kim. 2024. "Isolation of Macrocyclic Trichothecene Mycotoxins from the Lethal Toxic Mushroom Podostroma cornu-damae and Their Cytotoxic Activities" Separations 11, no. 3: 65. https://doi.org/10.3390/separations11030065
APA StyleLee, B. S., Lee, Y. Y., Lee, S. R., Jang, Y. S., Ryoo, R., Park, W., Kim, S. -N., Lee, S., Park, C. G., & Kim, K. H. (2024). Isolation of Macrocyclic Trichothecene Mycotoxins from the Lethal Toxic Mushroom Podostroma cornu-damae and Their Cytotoxic Activities. Separations, 11(3), 65. https://doi.org/10.3390/separations11030065