Treatment of Water and Wastewater: Challenges and Solutions
1. Introduction
2. Treatment Challenges of Water and Wastewater
Acknowledgments
Conflicts of Interest
References
- Matsui, K.; Kageyama, Y. Water pollution evaluation through fuzzy c-means clustering and neural networks using ALOS AVNIR-2 data and water depth of Lake Hosenko, Japan. Ecol. Inform. 2022, 70, 101761. [Google Scholar] [CrossRef]
- Fletcher, J.; Willby, N.; Oliver, D.M.; Quilliam, R.S. Resource recovery and freshwater ecosystem restoration—Prospecting for phytoremediation potential in wild macrophyte stands. Resour. Environ. Sustain. 2022, 7, 100050. [Google Scholar] [CrossRef]
- Yasmin, F.; Sakib, T.U.; Emon, S.Z.; Bari, L.; Sultana, G.N.N. The physicochemical and microbiological quality assessment of Maddhapara hard rock-mine discharged water in Dinajpur, Bangladesh. Resour. Environ. Sustain. 2022, 8, 100061. [Google Scholar] [CrossRef]
- Issakhov, A.; Alimbek, A.; Abylkassymova, A. Numerical modeling of water pollution by products of chemical reactions from the activities of industrial facilities at variable and constant temperatures of the environment. J. Contam. Hydrol. 2023, 252, 104116. [Google Scholar] [CrossRef]
- Johnson, H.; South, N.; Walters, R. The commodification and exploitation of fresh water: Property, human rights and green criminology. Int. J. Law Crime Justice 2016, 44, 146–162. [Google Scholar] [CrossRef]
- Amin, M.T.; Alazba, A.A.; Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 825910. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Mojiri, A.; Kazeroon, R.A.; Gholami, A. Cross-Linked Magnetic Chitosan/Activated Biochar for Removal of Emerging Micropollutants from Water: Optimization by the Artificial Neural Network. Water 2019, 11, 551. [Google Scholar] [CrossRef] [Green Version]
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef]
- Farch, S.; Yahoum, M.M.; Toumi, S.; Tahraoui, H.; Lefnaoui, S.; Kebir, M.; Zamouche, M.; Amrane, A.; Zhang, J.; Hadadi, A.; et al. Application of Walnut Shell Biowaste as an Inexpensive Adsorbent for Methylene Blue Dye: Isotherms, Kinetics, Thermodynamics, and Modeling. Separations 2023, 10, 60. [Google Scholar] [CrossRef]
- Mortada, W.I.; Mohamed, R.A.; Monem, A.A.A.; Awad, M.M.; Hassan, A.F. Effective and Low-Cost Adsorption Procedure for Removing Chemical Oxygen Demand from Wastewater Using Chemically Activated Carbon Derived from Rice Husk. Separations 2023, 10, 43. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, J.; Duan, A.; Wang, B.; Xie, S.; Yuan, L. Facile Preparation of Phenyboronic-Acid-Functionalized Fe3O4 Magnetic Nanoparticles for the Selective Adsorption of Ortho-Dihydroxy-Containing Compounds. Separations 2022, 10, 4. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, B.; Petropoulos, E.; Duan, J.; Yang, L.; Xue, L. The Potential of Biochar as N Carrier to Recover N from Wastewater for Reuse in Planting Soil: Adsorption Capacity and Bioavailability Analysis. Separations 2022, 9, 337. [Google Scholar] [CrossRef]
- Blázquez, G.; Martín-Lara, M.Á.; Iáñez-Rodríguez, I.; Morales, I.; Pérez, A.; Calero, M. Cobalt Biosorption in Fixed-Bed Column Using Greenhouse Crop Residue as Natural Sorbent. Separations 2022, 9, 316. [Google Scholar] [CrossRef]
- El Batouti, M.; Alharby, N.F.; Elewa, M.M. Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. Separations 2021, 9, 1. [Google Scholar] [CrossRef]
- Jafarinejad, S.; Esfahani, M.R. A Review on the Nanofiltration Process for Treating Wastewaters from the Petroleum Industry. Separations 2021, 8, 206. [Google Scholar] [CrossRef]
- Zouboulis, A.; Peleka, E.; Ntolia, A. Treatment of Tannery Wastewater with Vibratory Shear-Enhanced Processing Membrane Filtration. Separations 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sun, F.; Zeng, H.; Su, X.; Zhou, G.; Liu, H.; Xing, D. Modified Polyethersulfone Ultrafiltration Membrane for Enhanced Antifouling Capacity and Dye Catalytic Degradation Efficiency. Separations 2022, 9, 92. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Zhang, J.; Shan, D.; Wu, Y.; Bai, L.; Wang, B. Treatment of industrial dye wastewater and pharmaceutical residue wastewater by advanced oxidation processes and its combination with nanocatalysts: A review. J. Water Process Eng. 2021, 42, 102122. [Google Scholar] [CrossRef]
- Murcia, J.J.; Hernández-Laverde, M.; Rojas, H.; Muñoz, E.; Navío, J.A.; Hidalgo, M.C. Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries. J. Photochem. Photobiol. A Chem. 2018, 358, 256–264. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Fabbri, D.; Degirmencioglu, I.; Calza, P.; Magnacca, G.; Stathopoulos, V.N.; Bacaksiz, E. Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO2 and an Evaluation of Their Photocatalytic Removal of Carbamazepine. Separations 2020, 7, 71. [Google Scholar] [CrossRef]
- BethelAnucha, C.; Altin, I.; Bacaksiz, E.; Degirmencioglu, I.; Kucukomeroglu, T.; Yılmaz, S.; Stathopoulos, V.N. Immobilized TiO2/ZnO Sensitized Copper (II) Phthalocyanine Heterostructure for the Degradation of Ibuprofen under UV Irradiation. Separations 2021, 8, 24. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Wang, C.; Sun, Y.; Han, H.; Kang, J.; Dong, Y.; Wang, L. Surface Acidification of BiOI/TiO2 Composite Enhanced Efficient Photocatalytic Degradation of Benzene. Separations 2022, 9, 315. [Google Scholar] [CrossRef]
- Stalter, D.; Magdeburg, A.; Weil, M.; Knacker, T.; Oehlmann, J. Toxication or detoxication? In vivo toxicity assessment of ozonation as advanced wastewater treatment with the rainbow trout. Water Res. 2010, 44, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Martínez, L.A.; Barrera-Díaz, C.; Solís-Morelos, C.; Natividad, R. Synergy of electrochemical and ozonation processes in industrial wastewater treatment. Chem. Eng. J. 2010, 165, 71–77. [Google Scholar] [CrossRef]
- Yan, B.; Li, Q.; Chen, X.; Deng, H.; Feng, W.; Lu, H. Application of O3/PMS Advanced Oxidation Technology in the Treatment of Organic Pollutants in Highly Concentrated Organic Wastewater: A Review. Separations 2022, 9, 444. [Google Scholar] [CrossRef]
- Ochir, D.; Lee, Y.; Shin, J.; Kim, S.; Kwak, J.; Chon, K. Oxidative Treatments of Pesticides in Rainwater Runoff by HOCl, O3, and O3/H2O2: Effects of pH, Humic Acids and Inorganic Matters. Separations 2021, 8, 101. [Google Scholar] [CrossRef]
- Mojiri, A.; Ozaki, N.; Zhou, J.L.; Kazeroon, R.A.; Zahed, M.A.; Rezania, S.; Vakili, M.; Gavanji, S.; Farraji, H. Integrated Electro-Ozonation and Fixed-Bed Column for the Simultaneous Removal of Emerging Contaminants and Heavy Metals from Aqueous Solutions. Separations 2022, 9, 276. [Google Scholar] [CrossRef]
- Bhatia, D.; Sharma, N.R.; Singh, J.; Kanwar, R.S. Biological methods for textile dye removal from wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1836–1876. [Google Scholar] [CrossRef]
- Gkotsis, P.; Peleka, E.; Zouboulis, A. The Use of Natural Minerals in a Pilot-Scale MBR for Membrane Fouling Mitigation. Separations 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Timková, I.; Sedláková-Kaduková, J.; Pristaš, P. Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations 2018, 5, 54. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mojiri, A. Treatment of Water and Wastewater: Challenges and Solutions. Separations 2023, 10, 385. https://doi.org/10.3390/separations10070385
Mojiri A. Treatment of Water and Wastewater: Challenges and Solutions. Separations. 2023; 10(7):385. https://doi.org/10.3390/separations10070385
Chicago/Turabian StyleMojiri, Amin. 2023. "Treatment of Water and Wastewater: Challenges and Solutions" Separations 10, no. 7: 385. https://doi.org/10.3390/separations10070385
APA StyleMojiri, A. (2023). Treatment of Water and Wastewater: Challenges and Solutions. Separations, 10(7), 385. https://doi.org/10.3390/separations10070385