Comparison of Adsorbents for Cesium and Strontium in Different Solutions
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of AMP
2.3. Preparation of PB
2.4. Preparation of CBT
2.5. Modification of CPT
2.6. Preparation of CST
2.7. Adsorption in Mixed Solution
2.8. Adsorption in Artificial Seawater
2.9. Adsorption in Salt Lake Brine
2.10. Characterization
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Adsorption in Mixed Solution
3.3. Adsorption in Artificial Seawater
3.4. Adsorption in Salt Lake Brine
3.5. Adsorption Mechanism
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, J.; Han, X.; Yang, S.; Kuang, L.; Hua, D. A strategy for effective cesium adsorption from aqueous solution by polypentacyanoferrate-grafted polypropylene fabric under gamma-ray irradiation. J. Taiwan Inst. Chem. Eng. 2018, 89, 162–168. [Google Scholar] [CrossRef]
- Qian, J.; Cai, S.; Yang, S.; Hua, D. A thermo-sensitive polymer network crosslinked by Prussian blue nanocrystals for cesium adsorption from aqueous solution with large capacity. J. Mater. Chem. A 2017, 5, 22380–22388. [Google Scholar] [CrossRef]
- Jia, Z.; Cheng, X.; Guo, Y.; Tu, L. In-situ preparation of iron (III) hexacyanoferrate nano-layer on polyacrylonitrile membranes for cesium adsorption from aqueous solutions. Chem. Eng. J. 2017, 325, 513–520. [Google Scholar] [CrossRef]
- Zhiqian, J.; Shuang, H.; Xiaoxue, C.; Xiaoyu, L.; Lanying, T. Fabrication of Prussian blue/polydopamine layers on polyacrylonitrile membranes for efficient adsorption of cesium. Desalination Water Treat. 2019, 163, 125–132. [Google Scholar]
- Jia, Z.; Sun, G. Preparation of prussian blue nanoparticles with single precursor. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 326–329. [Google Scholar] [CrossRef]
- Jia, Z. Synthesis of Prussian Blue nanocrystals with metal complexes as precursors: Quantitative calculations of species distribution and its effects on particles size. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 144–148. [Google Scholar] [CrossRef]
- Jang, J.; Lee, D.S. Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresour. Technol. 2016, 218, 294–300. [Google Scholar] [CrossRef]
- Aulia, A.H.; Kuk, C. Selective adsorption of cesium from an aqueous solution by a montmorillonite-Prussian blue hybrid. Chem. Eng. J. 2018, 349, 595–602. [Google Scholar]
- Yin, J.; Yang, S.; He, W.; Zhao, T.; Hua, D. Biogene-derived Aerogels for Simultaneously Selective Adsorption of Uranium(VI) and Strontium(II) by Co-imprinting Method. Sep. Purif. Technol. 2021, 271, 118849–118858. [Google Scholar] [CrossRef]
- Ilhan, S.; Kahruman, C.; Yusufoglu, I. Characterization of the thermal decomposition products of ammonium phosphomolybdate hydrate. J. Anal. Appl. Pyrolysis 2007, 78, 363–370. [Google Scholar] [CrossRef]
- Wei, J.; Tao, W.C.; Hao, C.B.; Xian, S.B.; Jl, B.; Wz, A.; Hl, A.; Sheng, D. Room temperature synthesis of high-entropy Prussian blue analogues. Nano Energy 2021, 79, 105464–105471. [Google Scholar]
- Metwally, S.S.; Attallah, M.F. Impact of surface modification of chabazite on the sorption of iodine and molybdenum radioisotopes from liquid phase. J. Mol. Liq. 2019, 290, 111237. [Google Scholar] [CrossRef]
- Prajitno, M.Y.; Tangparitkul, S.; Zhang, H.; Harbottle, D.; Hunter, T.N. The effect of cationic surfactants on improving natural clinoptilolite for the flotation of cesium. J. Hazard. Mater. 2020, 402, 123567. [Google Scholar] [CrossRef] [PubMed]
- Kholdeeva, O.A.; Trukhan, N.N. Mesoporous titanium silicates as catalysts for the liquid-phase selective oxidation of organic compounds. Russ. Chem. Rev. 2006, 75, 411–432. [Google Scholar] [CrossRef]
- Hijikata, T.; Uozumi, K.; Tsukada, T.; Koyama, T.; Ishikawa, K.; Ono, S.; Suzuki, S.; Denton, M.; Raymont, J. Early construction and operation of the highly contaminated water treatment system in Fukushima Daiichi Nuclear Power Station (II)—Dynamic characteristics of KURION media for Cs removal in simulated contaminated water. J. Nucl. Sci. Technol. 2014, 51, 894–905. [Google Scholar] [CrossRef]
- Yamagishi, I.; Nagaishi, R.; Kato, C.; Morita, K.; Denton, M. Characterization and storage of radioactive zeolite waste. J. Nucl. Sci. Technol. 2014, 51, 1044–1053. [Google Scholar] [CrossRef]
- Antonello, A.; Benedetti, C.; Pérez-Pla, F.F.; Kokkinopoulou, M.; Kirchhoff, K.; Fischer, V.; Landfester, K.; Gross, S.; Munoz-Espi, R. Colloidally confined crystallization of highly efficient ammonium phosphomolybdate catalysts. ACS Appl. Mater. Interfaces 2018, 10, 23174–23186. [Google Scholar] [CrossRef]
- Farah, A.M.; Shooto, N.D.; Thema, F.T.; Modise, J.S.; Dikio, E.D. Fabrication of prussian blue/multi-walled carbon nanotubes modified glassy carbon electrode for electrochemical detection of hydrogen peroxide. Int. J. Electrochem. Sci. 2012, 7, 4302–4313. [Google Scholar]
- Prakash, A.M.; Unnikrishnan, S. Synthesis of SAPO-34: High silicon incorporation in the presence of morpholine as template. J. Chem. Soc. Faraday Trans. 1994, 90, 2291–2296. [Google Scholar] [CrossRef]
- Wang, R.; Luo, Z.; Tan, Q.; Wang, R.; Xiao, Z. Sol-gel hydrothermal synthesis of nano crystalline silicotitanate and its strontium and cesium adsorption. Environ. Sci. Pollut. Res. 2020, 27, 4404–4413. [Google Scholar] [CrossRef]
- Lim, D.J.; Marks, N.A.; Rowles, M.R. Universal Scherrer equation for graphene fragments. Carbon 2020, 162, 475–480. [Google Scholar] [CrossRef]
- Franus, W.; Wdowin, M.; Franus, M. Synthesis and characterization of zeolites prepared from industrial fly ash. Environ. Monit. Assess. 2014, 186, 5721–5729. [Google Scholar] [CrossRef]
- Solbr, S.; Allison, N.; Waite, S.; Mikhalovsky, S.V.; Bortun, A.I.; Bortun, L.N.; Clearfield, A. Cesium and Strontium Ion Exchangeon the Framework Titanium SilicateM2Ti2O3SiO4nH2O (M = H, Na). Environ. Sci. Technol. 2001, 35, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Scheidhauer, J.; Messainguiral, L. Separation and measurement of cesium 137 and Barium 137 in Radioactuve effluents. Chim. Anal. Merged Method. Phys. Anal. Analusis 1964, 46. [Google Scholar]
- Smit, J.; Jacobs, J.J.; Robb, W. Cation exchange properties of the ammonium heteropolyacid salts. J. Inorg. Nucl. Chem. 1959, 12, 95–103. [Google Scholar] [CrossRef]
- Wi, H.; Kim, H.; Oh, D.; Bae, S.; Hwang, Y. Surface modification of poly(vinyl alcohol) sponge by acrylic acid to immobilize Prussian blue for selective adsorption of aqueous cesium. Chemosphere 2019, 226, 173–182. [Google Scholar] [CrossRef]
- Philip, C.V.; Kim, S.H.; Philip, M.; Anthony, R.G. The Effect of Hydrogen Peroxide on a CST Under Cesium Ion Exchange Conditions. Sep. Sci. Technol. 2003, 38, 3009–3029. [Google Scholar] [CrossRef]
- Ma, G.; Zheng, Y.; Zhou, Y.; Gao, L.; Liu, B.; Yu, X.; Zhang, L. Ammonium molybdophosphate functionalized copolymer micelles for efficient Cs+ adsorption. J. Polym. Res. 2021, 28, 465. [Google Scholar] [CrossRef]
- Chen, G.-R.; Chang, Y.-R.; Liu, X.; Kawamoto, T.; Tanaka, H.; Kitajima, A.; Parajuli, D.; Takasaki, M.; Yoshino, K.; Chen, M.-L.; et al. Prussian blue (PB) granules for cesium (Cs) removal from drinking water. Sep. Purif. Technol. 2015, 143, 146–151. [Google Scholar] [CrossRef]
- Yang, H.-M.; Park, C.W.; Kim, I.; Yoon, I.-H.; Sihn, Y. Sulfur-modified chabazite as a low-cost ion exchanger for the highly selective and simultaneous removal of cesium and strontium. Appl. Surf. Sci. 2020, 536, 147776–147786. [Google Scholar] [CrossRef]
- Lihareva, N.; Petrov, O.; Dimowa, L.; Tzvetanova, Y.; Piroeva, I.; Ublekov, F.; Nikolov, A. Ion exchange of Cs+ and Sr2+ by natural clinoptilolite from bi-cationic solutions and XRD control of their structural positioning. J. Radioanal. Nucl. Chem. 2020, 323, 1093–1102. [Google Scholar] [CrossRef]
- Ding, D.; Li, K.; Fang, D.; Ye, X.; Hu, Y.; Tan, X.; Liu, H.; Wu, Z. Novel Biomass-Derived Adsorbents Grafted Sodium Titanium Silicate with High Adsorption Capacity for Rb+ and Cs+ in the Brine. ChemistrySelect 2019, 4, 13630–13637. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Alternatives for High-Level Waste Salt Processing at the Savannah River Site; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
Ion | Ionic Hydration Radius/Å | Electron Charge/Z | Potential/(Z/r) |
---|---|---|---|
Li+ | 3.82 | 1 | 0.262 |
Na+ | 3.58 | 1 | 0.279 |
K+ | 3.31 | 1 | 0.302 |
Rb+ | 3.29 | 1 | 0.304 |
Cs+ | 3.29 | 1 | 0.304 |
Ca2+ | 4.12 | 2 | 0.485 |
Mg2+ | 4.28 | 2 | 0.467 |
Sr2+ | 4.12 | 2 | 0.485 |
Adsorbent | Solution Composition | Adsorption Performance for Cs+ | Ref. |
---|---|---|---|
AMP AMP | CsCl (1 mg L−1) Salt lake brine | Qe 8.49 mg g−1 Qe 0.0064 mg g−1 | [28] This work |
PB PB on PAN membrane PB | CsCl (900 mg L−1) Alkaline metal mixed solution (1 mmol L−1) | Qe 42.46 mg g−1 Qe 94.9 mg g−1 | [29] [3] |
Salt lake brine | Qe 0.011 mg g−1 | This work | |
Chabazite | CsCl (86 mg L−1) | Qe 370 mg g−1 | [30] |
Chabazite | Mixed solution (1 mmol L−1) | Qe 50.51 mg g−1 | This work |
Clinoptilolite | CsCl (649 mg L−1) | Qe 122.7 mg g−1 | [31] |
Modified Clinoptilolite | Mixed solution (1 mmol L−1) | Qe 42.97 mg g−1 | This work |
CST CST | CsCl (330 mg L−1) Mixed solution (1 mmol L−1) | Qe 194 mg g−1 Qe 13.41 mg g−1 | [32] This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, S.; Jiang, L.; Jia, Z.; Yang, Y.; Hou, L. Comparison of Adsorbents for Cesium and Strontium in Different Solutions. Separations 2023, 10, 266. https://doi.org/10.3390/separations10040266
Fan S, Jiang L, Jia Z, Yang Y, Hou L. Comparison of Adsorbents for Cesium and Strontium in Different Solutions. Separations. 2023; 10(4):266. https://doi.org/10.3390/separations10040266
Chicago/Turabian StyleFan, Shengnan, Lu Jiang, Zhiqian Jia, Yu Yang, and Li’an Hou. 2023. "Comparison of Adsorbents for Cesium and Strontium in Different Solutions" Separations 10, no. 4: 266. https://doi.org/10.3390/separations10040266
APA StyleFan, S., Jiang, L., Jia, Z., Yang, Y., & Hou, L. (2023). Comparison of Adsorbents for Cesium and Strontium in Different Solutions. Separations, 10(4), 266. https://doi.org/10.3390/separations10040266