Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation
Abstract
:1. Introduction
- -
- Investigate the effects of the phenological stage, climatic conditions of growth, and season of harvesting on both essential oil yields and variability of the chemical compositions, with updated literature data up to 2022.
- -
- Evaluate the antibacterial effect against four pathogenic bacteria, aiming to support the potential uses of A. herba-alba essential oil as an alternative and safe antimicrobial agent in food and health.
- -
- Determine the antifungal activity toward four types of wood rot fungi, known by their implication in the decay and biodegradation of wood biopolymeric chains and historical and cultural wooden monument structures, as well as the coloring change of rotten wood. The evaluation concerns antifungal activity toward three types of mold, selected on the basis of their involvement in the food alteration phenomenon (food rot), that could generate food infectious diseases to humans and animals. The main goal of this section of study is to support the application of A. herba-alba essential oil as an alternative ecofriendly and natural antifungal agent enabling the prevention and preservation of wood against decays, as well as the protection of food against alteration and infection in order to reduce food safety problems.
2. Materials and Methods
2.1. Plant Material
- March is the active vegetation period of the plant where there are developing leaves (usually spring);
- June is the period of appearance of young flower buds, accompanied by the presence of leaf density;
- September is the stage of flowering and fruiting of the plant (generally autumn), considered as the date of maturity of the plant, and the flowers mainly develop towards the end of Summer.
2.2. Essential Oil Extraction
2.3. Essential Oil Analysis: GC-FID and GC-MS
2.3.1. GC-FID Analysis
2.3.2. GC-MS Analysis
2.4. Bacterial and Fungal Strains
2.5. Determination of Minimum Inhibitory Concentration
3. Results and Discussion
3.1. Statistical Analysis
3.2. Essential Oil Yield
3.3. Essential Oil Chemical Composition
3.4. Minimal Inhibitory Concentrations (MIC)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elazzouzi, H.; Khabbal, Y.; Bouachrine, M.; Zair, T.; Alaoui El Belghiti, M. Chemical composition and in vitro antibacterial activity of Artemisia ifranensis essential oil Growing Wild in Middle Moroccan Atlas. J. Essent. Oil Res. 2018, 30, 142–151. [Google Scholar] [CrossRef]
- Kundan Singh, B.; Anupam, S. The Genus Artemisia: A Comprehensive Review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar]
- Nedjimi, B.; Zemmiri, H. Salinity Effects on Germination of Artemisia herba–alba Asso: Important Pastoral Shrub from North African Rangelands. Rangeland Ecol. Manag. 2019, 72, 189–194. [Google Scholar] [CrossRef]
- El-Amin Said, M.; Vanloot, P.; Bombarda, I.; Naubron, J.-V.; El Montassir, D.; Aamouche, A.; Jean, M.; Vanthuyne, N.; Dupuy, N.; Roussel, C. Analysis of the major chiral compounds of Artemisia herba-alba essential oils (EOs) using reconstructed vibrational circular dichroism (VCD) spectra: En route to a VCD chiral signature of EOs. Anal. Chim. Acta 2016, 903, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Nedjimi, B.; Beladel, B. Assessment of some chemical elements in wild Shih (Artemisia herba-alba Asso) using INAA technique. J. Appl. Res. Med. Ar. Plants 2015, 2, 203–205. [Google Scholar] [CrossRef]
- Sadeghimahalli, F.; Khaleghzadeh-Ahangar, H.; Baluchnejadmojarad, T. Role of Prostaglandins in the Vasodilator Effect of the Aqueous Extract from Artemisia annua Plant in Streptozotocin-induced Diabetic Rats. Annual Res. Rev. Biol. 2019, 31, 1–10. [Google Scholar] [CrossRef]
- Pandey, A.K.; Pooja, S. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils. Medicines 2017, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Dib, I.; Mihamou, A.; Berrabah, M.; Mekhfi, H.; Aziz, M.; Legssyer, A.; Bnouham, M.; Ziyyat, A. Identification of Artemisia campestris L. subsp. glutinosa (Besser) Batt. From Oriental Morocco based on its morphological traits and essential oil profile. J. Mater. Envir. Sci. 2017, 8, 180–187. [Google Scholar]
- Carbonara, T.; Pascale, R.; Argentieri, M.P.; Papadia, P.; Fanizzi, F.P.; Villanova, L.; Avato, P. Phytochemical analysis of a herbal tea from Artemisia annua L. J. Pharm. Biomed. Anal. 2012, 62, 79–86. [Google Scholar] [CrossRef]
- Al Thbiani, A.; Alshehri Mohammed, A.; Chellasamy, P.; Kadarkarai, M.; Subrata, T.; Jazem, A.M.; Mo’awia Mukhtar, H.; Maggi, F.; Sut, S.; Dall’Acqua, S.; et al. The desert wormwood (Artemisia herba-alba)—From Arabian folk medicine to a source of green and effective nano-insecticides against mosquito vectors. J. Photochem. Photobiol. B 2018, 180, 225–234. [Google Scholar]
- Abu-Darwish, M.S.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz Maria, T.; Efferth, T.; Salgueiro, L. Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory doses. J. Ethnopharmacol. 2015, 174, 153–160. [Google Scholar] [CrossRef]
- Mighri, H.; Hajlaoui, H.; Akrout, A.; Najjaa, H.; Neffati, M. Antimicrobial and antioxidant activities of Artemisia herba-alba essential oil cultivated in Tunisian arid zone. Comptes Rendus Chim. 2010, 13, 380–386. [Google Scholar] [CrossRef]
- Younsi, F.; Trimech, R.; Boulila, A.; Ezzine, O.; Dhahri, S.; Boussaid, M.; Messaoud, C. Essential oil and phenolic compounds of Artemisia herba-alba (Asso.): Composition, antioxidant, antiacetylcholinesterase and antibacterial activities. Int. J. Food Prop. 2016, 19, 1425–1438. [Google Scholar] [CrossRef]
- Mehani, M.; Segni, L.; Terzi, V.; Morcia, C.; Ghizzoni, R.; Goudgil, B.; Benchikh, S. Antifungal Activity of Artemisia herba-alba on Various Fusarium. Phytotherapie 2018, 16, 87–90. [Google Scholar] [CrossRef]
- Mohamed, A.E.H.; El-Sayed, M.A.; Hegazy, M.E.; Helaly, S.E.; Esmail, A.M.; Mohamed, N.S. Chemical Constituents and Biological Activities of Artemisia herba-alba. Rec. Nat. Prod. 2010, 4, 1–25. [Google Scholar]
- Chun-Yu, J.; Shi-Xing, Z.; Zokir, T.; Yu, M.; Guang-Zhao, J.; Cai-Xia, H.; Chi, Z.; Hua, S. Chemical composition and phytotoxic activity of the essential oil of Artemisia sieversiana growing in Xinjiang, China. Nat. Prod. Res. 2022, 36, 2434–2439. [Google Scholar] [CrossRef]
- Jaradat, N.; Qneibi, M.; Hawash, M.; Al-Maharik, N.; Qadi, M.; Abualhasan, M.N.; Ayesh, O.; Bsharat, J.; Khadir, M.; Hamayel, S.; et al. Assessing Artemisia arborescens essential oil compositions, antimicrobial, cytotoxic, anti-inflammatory, and neuroprotective effects gathered from two geographic locations in Palestine. Ind. Crops Prod. 2022, 176, 114360. [Google Scholar] [CrossRef]
- Jaouadi, I.; Tansu Koparal, A.; Beklem Bostancıoğlu, R.; Tej Yakoubi, M.; El Gazzah, M. The anti-angiogenicactivity of Artemisia herba-alba essential oil and its relation with the harvest period. Aust. J. Crop Sci. 2014, 8, 1395–1401. [Google Scholar]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical Compositions and Insecticidal Activity of Essential Oils of Three Plants Artemisia Sp: Artemisia herba-alba, Artemisia absinthium et Artemisia pontica (Morocco). Electronic J. Envir. Agr. Food Chem. 2009, 8, 1202–1211. [Google Scholar]
- Khlifi, D.; Sghaier, R.M.; Amouri, S.; Laouini, D.; Hamdi, M.; Bouajila, J. Composition and anti-oxidant, anti-cancer and anti-inflammatory activities of Artemisia herba-alba, Ruta chalpensis L. and Peganum harmala L. Food Chem. Toxicol. 2013, 55, 202–208. [Google Scholar] [CrossRef]
- Gorzalczany, S.; Moscatelli, V.; Ferraro, G. Artemisia copa aqueous extract as vasorelaxant and hypotensive agent. J. Ethnopharmacol. 2013, 148, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Daradka, H.M.; Alshibly NM, Y. Effect of Artemisia alba L. extract against ethinylestradiol induced genotoxic damage in cultured human lymphocyte. Afr. J. Biotechnol. 2012, 11, 15246–15250. [Google Scholar]
- Hanan, R.H.M.; Amer, M.; Ahmad, S.A.E.F. Evaluating the Effect of Oral Administration of Artemisia herba alba Extract Compared to Artesunate on the Mortality Rate of Ehrlich Solid Carcinoma Bearing Mice. Int. J. Sci. Res. 2017, 7, 2319–7064. [Google Scholar]
- Younsi, F.; Rahali, N.; Mehdi, S.; Boussaid, M.; Messaoud, C. Relationship between chemotypic and genetic diversity of natural populations of Artemisia herba-alba Asso growing wild in Tunisia. Phytochemistry 2018, 148, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Taleghani, A.; Emami Seyed, A.; Tayarani-Najaran, Z. Artemisia a promising plant for the treatment of cancer. Bioorgan. Med. Chem. 2020, 28, 115180. [Google Scholar] [CrossRef]
- Al-Shuneigat, J.; Al-Sarayreh, S.; Al-Qudah, M.; Al-Tarawneh, I.; Al–Saraireh, Y.; Al-Qtaitat, A. GC-MS Analysis and Antibacterial Activity of the Essential Oil Isolated from Wild Artemisia herba-alba Grown in South Jordan. Br. J. Med. Med. Res. 2015, 5, 297–302. [Google Scholar] [CrossRef]
- Pattnaik, S.; Subramanyam, V.R.; Bapaji, M.; Kole, C.R. Antibacterial and antifungal Activity of Aromatic Constituents of Essential Oils. Microbios 1997, 89, 39–46. [Google Scholar]
- Bakkali, F.; Aveerbeck, S.; Aveerbeck, D.; Idaomar, M. Biological effects of essential oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Lopes-Lutz, D.S.; Alviano, D.S.; Alviano, C.S.; Kolodziejczyk, P.P. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oils. Phytochemistry 2008, 69, 1732–1738. [Google Scholar] [CrossRef]
- Pelkonen, O.; Abass, K.; Wiesner, J. Thujone and thujone-containing herbal medicinal and botanical products: Toxicological assessment. Regul. Toxicol. Pharmacol. 2013, 65, 100–107. [Google Scholar] [CrossRef]
- Raut, J.S.; Shinde, R.B.; Chauhan NM Karuppayil, S.M. Terpernoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by candida albicans. Biofouling 2013, 29, 87–96. [Google Scholar] [CrossRef]
- Kordali, S.; Kotan, R.; Mavi, A.; Kilic, H.; Yildirim, J. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dranunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, Artemisia dranunculus, Artemisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Chem. 2005, 53, 9452–9458. [Google Scholar]
- Jun, S.; Wen-Juan, C.; Yi-Ming, W.; Qing-Fei, L.; Guo-An, L. Synergistic Effect and Mechanism of Cineole and Terpineol on In-Vitro Transdermal Delivery of Huperzine A from Microemulsions. Iran. J. Pharm. Res. 2013, 12, 271–280. [Google Scholar]
- Amine, S.; Bouhrim, M.; Mechchate, H.; Ailli, A.; Radi, M.; Sahpaz, S.; Amalich, S.; Mahjoubi, M.; Zair, T. Influence of Abiotic Factors on the Phytochemical Profile of Two Species of Artemisia: A. herba alba Asso and A. mesatlantica Maire. Int. J. Plant Biol. 2022, 13, 55–70. [Google Scholar] [CrossRef]
- Circella, G.; Franz, C.; Novak, J.; Resch, H. Influence of day length and leaf insertion on the composition of marjoram oil. Flav. Fragr. J. 1995, 10, 371–374. [Google Scholar] [CrossRef]
- Marsoul, A.; Ijjaali, M.; Bennani, B.; Boukir, A. Determination of polyphenol contents in Papaver rhoeas L. flowers extracts (soxhlet, maceration), antioxidant and antibacterial evaluation. Mater. Today Proc. 2020, 31, S183–S189. [Google Scholar] [CrossRef]
- Wo’zniak, M. Antifungal Agents in Wood Protection—A Review. Molecules 2022, 27, 6392. [Google Scholar] [CrossRef]
- Ait-Ouazzou, A.; Lorán, S.; Arakrak, A.; Laglaoui, A.; Rota, C.; Herrera, A.; Pagán, R.; Conchello, P. Evaluation of the chemical composition and antimicrobial activity of Mentha pulegium, Juniperus phoenicea, and Cyperus longus essential oils from Morocco. Food Res. Int. 2012, 45, 313–319. [Google Scholar] [CrossRef]
- Solorzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotech. 2012, 23, 136–141. [Google Scholar] [CrossRef]
- Cox, S.; Mann, C.; Markham, J.; Bell, H.C.; Gustafson, J.; Warmington, J.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Zouari, S.; Zouari, N.; Fakhfakh, N.; Bougatef, A.; Ayadi, M.; Neffati, M. Chemical composition and biological activities of a new essential oil chemotype of Tunisian Artemisia herba alba Asso. J. Med. Plant Res. 2010, 4, 871–880. [Google Scholar]
- Marais, B.N.; Brischke, C.; Militz, H. Wood Durability in Terrestrial and Aquatic Environments—A Review of Biotic and Abiotic Influence Factors. Wood Mater. Sci. Eng. 2020, 17, 82–105. [Google Scholar] [CrossRef]
- Darshan, M.; Rudakiya Akshaya, G. Assessment of white rot fungus mediated hardwood degradation by FTIR spectroscopy and multivariate analysis. J. Microbiol. Meth. 2019, 157, 123–130. [Google Scholar] [CrossRef]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeter. Biodegr. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Fazio, A.T.; Papinutti, L.; Gómez, B.; Parera, S.D.; Rodríguez Romero, A.; Siracusano, G. Fungal deterioration of a Jesuit South American polychrome wood sculpture. Int. Biodeter. Biodegr. 2010, 64, 694–701. [Google Scholar] [CrossRef]
- Müller, U.; Rätzsch, M.; Schwanninger, M.; Steiner, M.; Zöbl, H. Yellowing and IR-changes of spruce wood as result of UV-irradiation. J. Photochem. Photobiol. B 2003, 69, 97–105. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeter. Biodegr. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Po-on Tang, H. Recent development in analysis of persistent organic pollutant under the Stockholm Convention. Trend. Anal. Chem. 2013, 45, 48–66. [Google Scholar] [CrossRef]
- Bouramdane, Y.; Fellak, S.; El Mansouri, F.; Boukir, A. Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation 2022, 8, 698. [Google Scholar] [CrossRef]
- Boukir, A.; Fellak, S.; Doumenq, P. Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-ray diffraction (XRD). Heliyon 2019, 5, e02477. [Google Scholar] [CrossRef] [Green Version]
- Boukir, A.; Mehyaoui, I.; Fellak, S.; Asia, L.; Doumenq, P. The effect of the natural degradation process on the cellulose structure of Moroccan hardwood fiber: A survey on spectroscopy and structural properties. Mediterr. J. Chem. 2019, 8, 179–190. [Google Scholar] [CrossRef]
- Rico-Munoz, E.; Samson, R.A.; Houbraken, J. Mould spoilage of foods and beverages: Using the right methodology. Food Microbiol. 2019, 81, 51–62. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical Composition and in vitro Antibacterial Activity of the Essential Oil of Cedrus Atlantica. Int. J. Agr. Biol. 2010, 12, 381–385. [Google Scholar]
- Derwich, E.; Benziane, Z.; Boukir, A. Antibacterial Activity and Chemical Composition of the Essential Oil from Flowers of Nerium Oleander. Electronic J. Envir. Agr. Food Chem. 2010, 9, 1074–1084. [Google Scholar]
- Adams Robert, P. Identification of Essential Oil Components by Gas chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Remmal, A.; Tantaoui-Elaraki, A.; Bouchikhi, T.; Rhayour, K.; Ettayebi, M. Improved Method for the Determination of Microbial Activity of Essential Oils in Agar Medium. J. Essent. Oil Res. 1993, 5, 179–184. [Google Scholar] [CrossRef]
- Dahmani-Hamzaoui, N.; Baaliouamer, A. Chemical Composition of Algerian Artemisia herba-alba Essential Oils Isolated by Microwave and Hydrodistillation. J. Essent. Oil Res. 2010, 22, 514–517. [Google Scholar] [CrossRef]
- Lakehal, S.; Chaouia, C.; Benrebia, F.Z. Chemical composition and antibacterial activity of the essential oil of Artemisia herba–alba asso from Djelfa. Rev. Agrobiol. 2017, 7, 491–501. [Google Scholar]
- Bouzidi, N.; Mederbal, K.; Raho Ghalem, B. Antioxidant Activity of Essential Oil of Artemisia herba alba. J. Appl. Envir. Biol. Sci. 2016, 6, 59–65. [Google Scholar]
- Delimi, A.; Taibi, F.; Bouchelaghem, S.; Boumendjel, M.; Hennouni-Siakhène, N.; Chefrour, A. Chemical composition and insecticidal activity of essential oil of Artemisia herba alba (Asteraceae) against Ephestia kuehniella (Lepidoptera: Pyralidae). Int. J. Biosc. 2017, 10, 130–137. [Google Scholar]
- Amri, I.; De Martino, L.; Marandino, A.; Lamia, H.; Mohsen, H.; Scandolera, E.; De Feo, V.; Mancini, E. Chemical Composition and Biological Activities of the Essential Oil from Artemisia herba-alba Growing Wild in Tunisia. Nat. Prod. Commun. 2013, 8, 407–410. [Google Scholar] [CrossRef] [Green Version]
- Vernin, G.; Parkanyi, C. GC/MS analysis of Artemisia herba-alba Asso. From Algeria, Non polar and polar extracts. Riv. Ital. EPPOS 2001, 32, 3–16. [Google Scholar]
- Bachrouch, O.; Ferjani, N.; Haouel, S.; Ben Jemâa Jouda, M. Major compounds and insecticidal activities of two Tunisian Artemisia essential oils toward two major coleopteran pests. Ind. Crops Prod. 2015, 65, 127–133. [Google Scholar] [CrossRef]
- Selmi, S.; Rtibi, K.; Grami, D.; Hajri, A.; Hosni, K.; Marzouki, L.; Sebai, H. Antioxidant properties of Artemisia herba-alba and Eucalyptus camaldulensis essentials oils on malathion-induced reproductive damage in rat. RSC Adv. 2016, 6, 110661–110673. [Google Scholar] [CrossRef]
- Bellili, S.; Dhifi, W.; Ben Khsif Al-Garni, A.; Flaminie, G.; Mnif, W. Essential oil composition and variability of Artemisia herba-alba Asso. growing in Tunisia: Comparison and chemometric investigation of different plant organs. J. Appl. Pharm. Sci. 2016, 6, 038–042. [Google Scholar] [CrossRef] [Green Version]
- Hudaib, M.M.; Aburjai Talal, A. Composition of the Essential Oil from Artemisia Herba-Alba Grown in Jordan. J. Essent. Oil Res. 2006, 18, 301–304. [Google Scholar] [CrossRef]
- Salido, S.; Valenzuela, L.R.; Altarejos, J.; Nogueras, M.; Sánchez, A.; Cano, E. Composition and infraspecific variability of Artemisia herba-alba from southern Spain. Biochem. Syst. Ecol. 2004, 32, 265–277. [Google Scholar] [CrossRef] [Green Version]
- El-Seedi, H.R.; Azeem, M.; Khalil, N.S.; Sakr, H.H.; Khalifa, S.A.M.; Awang, K.; Saeed, A.; Farag, M.A.; AlAjmi, M.F.; Alsson, K.P.; et al. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2017, 73, 139–157. [Google Scholar] [CrossRef] [Green Version]
- Ouyahya, A.; Negre, R.; Viano, J.; Lozano, Y.F.; Gaydou, E.M. Essential oils from Moroccan Artemisia negrei, A. mesatlantica and A. herba alba. Leb. Technol. 1990, 23, 528–530. [Google Scholar]
- Zámboriné Németh, É.; Thi Nguyen, H. Thujone, a widely debated volatile compound: What do we know about it? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Lichtenthaler Hartmut, K. The 1-deoxy-D-xylulose-5-phosphatepathway of isoprenoid biosynthesis in plants. Plant Physiol. Plant Mol. Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef]
- Schilmiller, A.L.; Schauvinhold, I.; Larson, M.; Xu, R.; Charbonneau, A.L.; Schmidt, A.; Wilkersona, C.; Last Robert, L.; Pichersky, E. Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc. Nat. Acad. Sci. USA 2009, 106, 10865–10870. [Google Scholar] [CrossRef] [Green Version]
- Al-Wahaibi Naser, L.H.; Mahmood, A.; Khan, M.; Alkhathlan, H.Z. Comparative Study on the Essential Oils of Artemisia judaica and Artemisia herba-alba from Saudi Arabia. Arab. J. Chem. 2020, 13, 2053–2065. [Google Scholar] [CrossRef]
- Zouaoui, N.; Chenchouni, H.; Bouguerra, A.; Massouras, T.; Barkat, M. Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. Off. J. Soc. Nutr. Food Sci. 2020, 18, 19–28. [Google Scholar] [CrossRef]
- Bertella, A.; Benlahcen, K.; Abouamama, S.; Pinto Diana, C.G.A.; Maamar, K.; Kihal, M.; Silva Artur, M.S. Artemisia herba-alba Asso. essential oil antibacterial activity and acute toxicity. Ind. Crops Prod. 2018, 116, 137–143. [Google Scholar] [CrossRef]
- Titouhi, F.; Amri, M.; Messaoud, C.; Haouel, S.; Yousfi, S.; Cherif, A.; Mediouni Ben Jemâa, J. Protective effects of three Artemisia essential oils Against Callosobruchus maculatus and Bruchus rufimanus (Coleoptera: Chrysomelidae) and the extended side-effects on their natural enemies. J. Stored Prod. Res. 2017, 72, 11–20. [Google Scholar] [CrossRef]
- Amor, G.; Caputo, L.; La Storia, A.; De Feo, V.; Mauriello, G.; Fechtali, T. Chemical Composition and Antimicrobial Activity of Artemisia herba-alba and Origanum majorana Essential Oils from Morocco. Molecules 2019, 24, 4021. [Google Scholar] [CrossRef] [Green Version]
- Messaoudi Moussi, I.; Nayme, K.; Timinouni, M.; Jamaleddine, J.; Filali, H.; Hakkou, F. Synergistic antibacterial effects of Moroccan Artemisia herba alba, Lavandula angustifolia and Rosmarinus officinalis essential oils. Synergy 2020, 10, 100057. [Google Scholar] [CrossRef]
- Belhattab, R.; Amor, L.; Barroso Jose’, G.; Pedro Luis, G.; Figueiredo, A.C. Essential oil from Artemisia herba-alba Asso. Grown wild in Algeria: Variability assessment and comparison with an updated literature survey. Arab. J. Chem. 2014, 7, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Janaćković, P.; Novaković, J.; Soković, M.; Vujisić, L.; Giweli, A.A.; Stevanović, Z.D.; Marin, P.D. Composition and antimicrobial activity of essential oils of Artemisia judaica, A. herba-alba and A. arborescens from Libya. Arch. Biol. Sci. 2015, 67, 455–466. [Google Scholar] [CrossRef]
- Eljazi Jazia, S.; Zarroug, Y.; Aouini, J.; Salem, N.; Bachrouch, O.; Boushih, E.; Jallouli, S.; Ben Jemâa, J.M.; Limam, F. Insecticidal activity of Artemisia herba alba and efects on wheat four quality in storage. J. Plant Dis. Protect. 2020, 127, 323–333. [Google Scholar] [CrossRef]
- Haouari, M.; Ferchichi, A. Essential Oil Composition of Artemisia herba-alba from Southern Tunisia. Molecules 2009, 14, 1585–1594. [Google Scholar]
- Ali, M.; Haider Abbasi, B.; Ahmad, N.; Khan, H.; Shad Ali, G. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia—current trends. Crit. Rev. Biotechnol. 2017, 37, 833–851. [Google Scholar] [CrossRef]
- Boudjelal, A.; Henchiri, C.; Sari, M.; Sarri, D.; Hende, N.; Benkhaled, A.; Ruberto, G. Herbalists and wild medicinal plants in M’Sila (North Algeria): An ethnopharmacology survey. J. Ethnopharmacol. 2013, 148, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Zi-Min, C.; Jian-Qing, P.; Yi, C.; Ling, T.; Yan-Yan, Z.; Ling-Yun, F.; Qing-De, L.; Xiang-Chun, S. 1,8-Cineole: A review of source, biological activities, and application. J. Asian Nat. Prod. Res. 2021, 23, 938–954. [Google Scholar] [CrossRef]
- Jeong-Dan, C.; Eun-Kyung, J.; Bong-Seop, K.; Kyung-Yeol, L. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J. Microbiol. Biotechnol. 2007, 17, 2061–2065. [Google Scholar]
- Riahi, L.; Chograni, H.; Elferchichi, M.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Variation in Tunisian wormwood essential oil profiles and phénolic contents between leaves and flowers and their effects on antioxidant activities. Ind. Crops Prod. 2013, 46, 290–296. [Google Scholar] [CrossRef]
- Karabegovic, I.; Nikolova, M.; Velikovic, D.; Saša, S.; Vlada, V.; Miodrag, L. Comparison of Antioxidant and Antimicrobial Activities of ethanolic Extracts of the Artemisia sp. Recovered by Different Extraction Techniques. Chinese, J. Chem. Eng. 2011, 19, 504–511. [Google Scholar] [CrossRef]
- Thi Nguyen, H.; Radácsi, P.; Rajhárt, P.; Zámboriné Németh, É. Variability of thujone content in essential oil due to plant development and organs from Artemisia absinthium L. and Salvia officinalis L. J. Appl. Bot. Food Qual. 2019, 92, 100–105. [Google Scholar]
- Al Jahid, A.; Essabaq, S.; Elamrani, A.; Blaghen, M.; Jamal Eddine, J. Chemical Composition, Antimicrobial and Antioxidant Activities of the Essential Oil and the Hydro-alcoholic Extract of Artemisia campestris L. Leaves from Southeastern Morocco. J. Biological. Active Prod. Nature 2016, 6, 393–405. [Google Scholar] [CrossRef]
- Al Jahid, A.; Elamrani, A.; Azzahra Lahlou, F.; Hmimid, F.; Bourhim, N.; Blaghen, M.; Jamal Eddine, J. Chemical Composition and Antibacterial Activity of the Essential Oil Isolated from the Seeds of Moroccan Artemisia campestris L. J. Essent. Oil Bear. Plants 2017, 20, 375–384. [Google Scholar] [CrossRef]
- Bianca, I.; Anca, M.; Andreia, C. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis. J. Anal. Methods Chem. 2015, 12, 1–21. [Google Scholar]
- Ghareeb, H.S.; Issa, M. Antimicrobial Activity of Artemisia herba-alba Extract against Pathogenic Fungi of Pigeon Droppings. J. Plant Pathol. 2018, 9, 567–571. [Google Scholar] [CrossRef]
- Touil, S.; Benrebiha, F.Z.; Hadj Sadok, T. Identification and quantification of phenolic compounds of Artemisia herba-alba at three harvest time by HPLC–ESI–Q-TOF–MS. Int. J. Food Prop. 2019, 22, 843–852. [Google Scholar]
N° | Kovats Indices | Components | (%) of Components | ||
---|---|---|---|---|---|
March | June | September | |||
1 | 926 | tricyclene | ---- | 0.13 | 0.10 |
2 | 929 | artemisia triene | 0.75 | 0.73 | 1.73 |
3 | 931 | α-thujene | ---- | 0.06 | 0.16 |
4 | 943 | α-pinene | 2.28 | 4.08 | 1.56 |
5 | 953 | camphene | 0.09 | 0.14 | 0.16 |
6 | 968 | sabinene | 1.60 | 0.59 | 3.05 |
7 | 972 | β-pinene | 0.10 | 0.26 | 0.18 |
8 | 974 | cis-pinane | ---- | 0.19 | 0.08 |
9 | 986 | myrcene | 0.53 | 0.11 | 0.91 |
10 | 1005 | α-phellandrene | ---- | ---- | 0.08 |
11 | 1012 | α-terpinene | 0.09 | 0.13 | 0.18 |
12 | 1022 | ortho-cymene | 0.33 | 0.51 | 0.34 |
13 | 1031 | limonene | 0.19 | 0.11 | 0.17 |
14 | 1033 | 1,8-cineole | 1.54 | 11.71 | 11.77 |
15 | 1050 | E- β-ocimene | 0.15 | 0.51 | 0.30 |
16 | 1062 | γ-terpinene | 0.11 | 0.08 | 0.06 |
17 | 1062 | artemisia ketone | 0.31 | 0.82 | 0.12 |
18 | 1095 | α-pinene oxide | 0.19 | --- | 0.13 |
19 | 1098 | sabinene trans hydrate | ---- | 0.26 | 0.65 |
20 | 1101 | α-thujone | 4.77 | 3.06 | 5.37 |
21 | 1112 | β-thujone | 23.24 | 12.85 | 15.36 |
22 | 1118 | trans-pinan-2-ol | 0.45 | 0.29 | 0.28 |
23 | 1123 | chrysanthenone | 2.41 | 1.00 | 13.98 |
24 | 1134 | terpinol | 2.13 | 1.33 | 0.94 |
25 | 1140 | camphor | 9.76 | 14.31 | 5.8 |
26 | 1156 | β-pinene oxide | 0.17 | 0.12 | 0.08 |
27 | 1158 | trans β-dihydro terpineol | 7.77 | 7.18 | 6.85 |
28 | 1163 | trans β-terpineol | 1.54 | 1.72 | 0.47 |
29 | 1177 | terpinen-4-ol | 0.52 | 0.53 | 0.55 |
30 | 1181 | thuj-3-en-10-al | 0.11 | 0.06 | 0.09 |
31 | 1183 | p-cymen-8-ol | ---- | 0.11 | 0.04 |
32 | 1189 | α-terpineol | 0.22 | 0.33 | 0.13 |
33 | 1205 | trans piperitol | 0.20 | 0.29 | 0.07 |
34 | 1206 | p-cymen-9-ol | ---- | 0.10 | 0.22 |
35 | 1235 | trans chrysanthenyl acetate | 0.15 | 0.10 | 0.10 |
36 | 1252 | piperitone | 0.19 | 0.26 | 0.16 |
37 | 1258 | cis chrysanthenyl acetate | 30.02 | 26.73 | 27.63 |
38 | 1271 | neo-3- thujyl acetate | ---- | --- | 0.13 |
39 | 1281 | α-terpinen-7-al | 0.18 | 0.32 | --- |
40 | 1287 | γ-terpinen-7-al | 1.28 | 0.92 | 0.68 |
41 | 1347 | α-terpinyl acetate | ---- | 0.28 | 0.44 |
42 | 1391 | β-elemene | 0.31 | 0.13 | 0.16 |
43 | 1418 | E-caryophyllene | ---- | 0.10 | --- |
44 | 1467 | 9-epi E–caryophyllene | 0.63 | 0.60 | 0.45 |
45 | 1477 | ô-muurolene | ---- | 0.15 | --- |
46 | 1480 | germacrene D | 1.12 | 1.87 | 0.50 |
47 | 1499 | α-muurolene | 0.16 | 0.47 | --- |
48 | 1524 | ô-cadinene | ---- | 0.15 | --- |
49 | 1574 | germacrene D-4-ol | ---- | 0.21 | --- |
50 | 1586 | davanone | 3.87 | 1.54 | 1.4 |
Hydrocarbon monoterpenes (%) | 6.17 | 7.89 | 9.72 | ||
Oxygenated monoterpenes (%) | 84.66 | 84.43 | 80.92 | ||
Total (%) | 96.96 | 97.53 | 93.02 | ||
Sesquiterpenes | 6.09 | 5.17 | 2.51 | ||
Aliphatic hydrocarbons | 8.44 | 11.23 | 10.17 | ||
Ketones | 44.55 | 33.84 | 42.19 | ||
Esters | 30.17 | 27.11 | 28.3 | ||
Alcohols | 12.94 | 12.15 | 9.64 | ||
Ethers | 1.90 | 11.83 | 11.98 | ||
Aldehydes | 1.57 | 1.30 | 0.77 |
Compounds | Type of Analysis | Type of Sample | Mean (%) | Std. Error | Std. Deviation | 95% Confidence Interval | ANOVA Test | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | Sig. | ||||||
tricyclene | GC-MS | AHEO | 0.076 | 0.039 | 0.068 | −0.092 | 0.245 | 0.002 |
artemisia triene | GC-MS | AHEO | 1.070 | 0.330 | 0.571 | −0.350 | 2.490 | 0.000 |
α-thujene | GC-MS | AHEO | 0.073 | 0.046 | 0.080 | −0.127 | 0.274 | 0.001 |
α-pinene | GC-MS | AHEO | 2.640 | 0.749 | 1.298 | −0.584 | 5.864 | 0.000 |
camphene | GC-MS | AHEO | 0.130 | 0.020 | 0.036 | 0.040 | 0.219 | 0.001 |
sabinene | GC-MS | AHEO | 1.746 | 0.713 | 1.236 | −1.325 | 4.818 | 0.004 |
β-pinene | GC-MS | AHEO | 0.180 | 0.046 | 0.080 | −0.018 | 0.378 | 0.001 |
cis-pinane | GC-MS | AHEO | 0.090 | 0.055 | 0.095 | −0.147 | 0.327 | 0.011 |
myrcene | GC-MS | AHEO | 0.516 | 0.231 | 0.400 | −0.477 | 1.510 | 0.002 |
α-phellandrene | GC-MS | AHEO | 0.026 | 0.026 | 0.046 | −0.088 | 0.141 | 0.001 |
α-terpinene | GC-MS | AHEO | 0.133 | 0.026 | 0.045 | 0.021 | 0.245 | 0.001 |
ortho-cymene | GC-MS | AHEO | 0.393 | 0.058 | 0.101 | 0.142 | 0.644 | 0.002 |
limonene | GC-MS | AHEO | 0.156 | 0.024 | 0.041 | 0.053 | 0.260 | 0.001 |
1.8-cineole | GC-MS | AHEO | 8.340 | 3.400 | 5.889 | −6.289 | 22.969 | 0.000 |
E- β-ocimene | GC-MS | AHEO | 0.320 | 0.104 | 0.180 | −0.129 | 0.769 | 0.000 |
γ-terpinene | GC-MS | AHEO | 0.083 | 0.014 | 0.025 | 0.020 | 0.145 | 0.001 |
artemisia ketone | GC-MS | AHEO | 0.416 | 0.208 | 0.361 | −0.482 | 1.315 | 0.002 |
α-pinene oxide | GC-MS | AHEO | 0.106 | 0.056 | 0.097 | −0.134 | 0.347 | 0.002 |
sabinene trans hydrate | GC-MS | AHEO | 0.303 | 0.188 | 0.327 | −0.509 | 1.116 | 0.000 |
α-thujone | GC-MS | AHEO | 4.400 | 0.692 | 1.198 | 1.422 | 7.377 | 0.001 |
β-thujone | GC-MS | AHEO | 17.150 | 3.130 | 5.421 | 3.682 | 30.617 | 0.001 |
trans-pinan-2-ol | GC-MS | AHEO | 0.340 | 0.055 | 0.095 | 0.103 | 0.577 | 0.002 |
chrysanthenone | GC-MS | AHEO | 5.796 | 4.111 | 7.121 | −11.895 | 23.488 | 0.000 |
terpinol | GC-MS | AHEO | 1.466 | 0.350 | 0.606 | −0.040 | 2.973 | 0.001 |
camphor | GC-MS | AHEO | 9.956 | 2.458 | 4.258 | −0.621 | 20.535 | 0.000 |
β-pinene oxide | GC-MS | AHEO | 0.123 | 0.026 | 0.045 | 0.011 | 0.235 | 0.001 |
trans β-dihydro terpineol | GC-MS | AHEO | 7.266 | 0.269 | 0.466 | 6.108 | 8.424 | 0.003 |
trans β-terpineol | GC-MS | AHEO | 1.243 | 0.390 | 0.675 | −0.435 | 2.922 | 0.001 |
terpinen-4-ol | GC-MS | AHEO | 0.533 | 0.008 | 0.015 | 0.495 | 0.571 | 0.021 |
thuj-3-en-10-al | GC-MS | AHEO | 0.086 | 0.014 | 0.025 | 0.024 | 0.149 | 0.002 |
p-cymen-8-ol | GC-MS | AHEO | 0.050 | 0.032 | 0.055 | −0.088 | 0.188 | 0.001 |
trans piperitol | GC-MS | AHEO | 0.186 | 0.063 | 0.110 | −0.088 | 0.461 | 0.002 |
p-cymen-9-ol | GC-MS | AHEO | 0.106 | 0.063 | 0.110 | −0.167 | 0.380 | 0.000 |
trans chrysanthenyl acetate | GC-MS | AHEO | 0.116 | 0.016 | 0.028 | 0.045 | 0.188 | 0.001 |
piperitone | GC-MS | AHEO | 0.203 | 0.029 | 0.051 | 0.075 | 0.330 | 0.000 |
cis chrysanthenyl acetate | GC-MS | AHEO | 28.126 | 0.981 | 1.700 | 23.902 | 32.350 | 0.001 |
neo-3- thujyl acetate | GC-MS | AHEO | 0.043 | 0.043 | 0.075 | −0.143 | 0.229 | 0.004 |
α-terpinen-7-al | GC-MS | AHEO | 0.166 | 0.092 | 0.160 | -0.231 | 0.565 | 0.001 |
γ-terpinen-7-al | GC-MS | AHEO | 0.960 | 0.174 | 0.301 | 0.209 | 1.710 | 0.000 |
α-terpinyl acetate | GC-MS | AHEO | 0.240 | 0.128 | 0.222 | −0.313 | 0.793 | 0.001 |
β-elemene | GC-MS | AHEO | 0.200 | 0.055 | 0.096 | −0.039 | 0.439 | 0.002 |
E-caryophyllene | GC-MS | AHEO | 0.03 | 0.033 | 0.057 | −0.11 | 0.17 | 0.002 |
9-epi E–caryophyllene | GC-MS | AHEO | 0.560 | 0.055 | 0.096 | 0.320 | 0.799 | 0.000 |
ô-muurolene | GC-MS | AHEO | 0.050 | 0.050 | 0.086 | −0.165 | 0.265 | 0.001 |
germacrene D | GC-MS | AHEO | 1.163 | 0.396 | 0.686 | −0.540 | 2.867 | 0.001 |
α-muurolene | GC-MS | AHEO | 0.210 | 0.137 | 0.238 | −0.383 | 0.803 | 0.002 |
ô-cadinene | GC-MS | AHEO | 0.050 | 0.050 | 0.086 | −0.165 | 0.265 | 0.000 |
germacrene D-4-ol | GC-MS | AHEO | 0.070 | 0.070 | 0.121 | −0.231 | 0.371 | 0.001 |
davanone | GC-MS | AHEO | 2.270 | 0.801 | 1.387 | −1.176 | 5.716 | 0.000 |
Monoterpene hydrocarbons (%) | GC-MS | AHEO | 7.926 | 1.024 | 1.775 | 3.516 | 12.336 | 0.001 |
Oxygenated monoterpenes (%) | GC-MS | AHEO | 83.336 | 1.210 | 2.096 | 78.129 | 88.543 | 0.000 |
Total (%) | GC-MS | AHEO | 95.836 | 1.417 | 2.455 | 89.735 | 101.937 | 0.001 |
Sesquiterpenes | GC-MS | AHEO | 4.590 | 1.073 | 1.859 | −0.028 | 9.208 | 0.004 |
Aliphatic hydrocarbons | GC-MS | AHEO | 9.946 | 0.813 | 1.408 | 6.448 | 13.445 | 0.001 |
Ketones | GC-MS | AHEO | 40.193 | 3.248 | 5.627 | 26.214 | 54.172 | 0.011 |
Esters | GC-MS | AHEO | 28.526 | 0.890 | 1.542 | 24.694 | 32.358 | 0.002 |
Alcohols | GC-MS | AHEO | 11.576 | 0.994 | 1.723 | 7.296 | 15.857 | 0.001 |
Ethers | GC-MS | AHEO | 8.570 | 3.335 | 5.776 | −5.780 | 22.920 | 0.001 |
Aldehydes | GC-MS | AHEO | 1.213 | 0.234 | 0.406 | 0.202 | 2.224 | 0.002 |
Geographic Region | Main Compound (%) and Yield | References |
---|---|---|
Morocco | ||
Middle-East: | Cis chrysanthenyl acetate (26.7–30%), β-thujone (12.9–23.2%), camphor (5.8–14.3%), chrysanthenone (2.4–14%), 1,8-cineole (1.5–11.8%), trans β-dihydro terpineol (6.9–7.8%), α-thujone (3.1–5.4%), davanone (1.4–3.9%), α-pinene (2.3–4%), sabinene (1.6–3%), germacrene D (0.5–1.9%). Yield: 0.49–1.74%. | [this work] |
Middle-Atlas | ||
South-West: Essaouira | β-thujone (24.3%), camphor (22.2%), α-thujone (14.6%), 1,8-cineole (10.3%), camphene (7.8%), cis carvyl acetate (2.8%), borneol (2.6%). Yield: 0.99%. | [78] |
Middle-West: | α-thujone (25.5%), β-thujone (17.7%), vanilyl alcohol (11.5%), nor-davanone (7.8%), cis threo-davanafuran (5.8%), isobornyl n-butyrate (4.9%), camphor (4.9%), cis chrysanthenyl acetate (4.7%), trans arbusculone (4.5%). Yield: 0.86%. | [77] |
Azzemmour | ||
Sarghina and Oulad Ali Youssef, | Trans thujone (33.78%), camphor (18–46%), vetevinic acid (14.91%), dava ether (14.64%). Yield: 0.84–2.19%. | [34] |
South-East: | Thujone (48.3%), sabinyl acetate (13%), β-thujone (9%), 1,8-cineole (2.2%), chrysanthenyl acetate (2.1%), chrysanthenone (1.2). Yield: 0.59%. | [19] |
Ziz | ||
Algeria | α-thujone (24.6%), β-thujone (13.73%), verbenone (8.3%), sabinol (7.5%), carvone (5.1%), 1,8-cineole (4.8%). Yield: not given. | [74] |
Djemorah | ||
Bouilef | Chrysanthenone (50.5%), filifolone (12.7%), α-thujone (10%), β-thujone (8.2%), p-cymene (8.2%), camphene (2.4%), camphor (2.3). Yield: 0.6%. | [75] |
South Region | α-thujone (23-28%), camphor (17–28%), chrysanthenone (4–19%). Yield: 0.2–0.9%. | [79] |
Tunisia | β-thujone (27.8%), camphor (22.7%), chrysanthenone (18%), α-thujone (13.6%). Yield: 2.16%. | [81] |
Si Bouzid (Jelma) | ||
Zaghouan | α-thujone (35.2%), norbornan-2-one (25.7%), chrysanthenone (7.7%), 1,8-cineole (5.8%), 2.2-dimethyl-3-methlen enorborane (5.5%), germacrene D (3.1%), borneol (3%). Yield: 1.48%. | [76] |
Kirchaou. | Thujones (11.5%), camphor (13%), sabinyl acetate (12%), ger-macrene D (4%), (E)-ethylcinnamate (2.8%). | [82] |
Subarid to Saharan | ||
Libya | Chrysanthenone (20.8%), chrysanthenyl acetate (17.6%), α-thujone (13.6%), sabinyl acetate (13%), β-thujone (9%), 1,8-cineole (2.2%), trans pinocarveol (1%). Yield: 0.180%. | [80] |
Zintan | ||
Jordan | β-thujone (25.1%), α-thujone (22.9%), 1,8-cineole (20%), verbenone (8.3%), sabinol (7.5%), carvone (5.1%), camphor (10.5%), terpinen-4-ol (2.8%). Yield: 3%. | [11] |
Buseirah | ||
Southern Amman | α- and β-thujones (27.7%), santolina alcohol (13%), artemisia ketone (12.4%), trans-sabinyl acetate (5.4%), caryophyllene ace-tate (5.7%). Yield: 1.3%. | [66] |
Saudi Arabia | Piperitone (44.6%), (E)-ethylcinnamate (14.7%), (Z)-ethylcinnamate (4.6%), thymol (3.4%), myrtenyl acetate (3.3%), spathulenol (3.3%), isophorone (1.9%). Yield: 0.051%. | [73] |
Egypt | Piperitone (26.5%), ethyl cinnamate (9.5%), camphor (7.7%), hexadecanoic acid (6.9%). Yield: 0.14%. | [68] |
Concentration % (v/v) | 1 | 0.4 | 0.2 | 0.1 | 0.05 | 0.03 | 0.02 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest Period | M | J | S | M | J | S | M | J | S | M | J | S | M | J | S | M | J | S | M | J | S | |
Bacteria | ||||||||||||||||||||||
E. coli | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | |
B. subtilis | − | − | − | − | − | − | − | − | − | − | − | − | + | + | − | + | + | − | + | + | + | |
S. aureus | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | |
M. luteus | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + |
Concentration % (v/v) | 1 | 0.4 | 0.2 | 0.1 | 0.05 | 0.03 | 0.02 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest Period | M | J | S | M | J | S | M | J | S | M | J | S | M | J | S | M | J | S | M | J | S |
Molds | |||||||||||||||||||||
A. niger | − | − | − | − | − | − | − | − | − | + | − | − | + | − | + | + | − | + | + | + | + |
P. digitatum | − | − | − | − | − | − | + | − | − | + | + | − | + | + | − | + | + | − | + | + | + |
P. expansum | − | − | − | − | − | − | − | + | + | − | + | + | + | + | + | + | + | + | + | + | + |
Wood rot fungi | |||||||||||||||||||||
G. trabeum | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | − | + | + | + | + |
C. puteana | − | − | − | − | − | − | − | − | − | + | − | + | + | + | + | + | + | + | + | + | + |
C. versicolor | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + |
P. placenta | − | − | − | − | − | − | − | − | − | − | − | − | + | + | + | + | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houti, H.; Ghanmi, M.; Satrani, B.; Mansouri, F.E.; Cacciola, F.; Sadiki, M.; Boukir, A. Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation. Separations 2023, 10, 59. https://doi.org/10.3390/separations10010059
Houti H, Ghanmi M, Satrani B, Mansouri FE, Cacciola F, Sadiki M, Boukir A. Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation. Separations. 2023; 10(1):59. https://doi.org/10.3390/separations10010059
Chicago/Turabian StyleHouti, Habiba, Mohamed Ghanmi, Badr Satrani, Fouad El Mansouri, Francesco Cacciola, Moulay Sadiki, and Abdellatif Boukir. 2023. "Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation" Separations 10, no. 1: 59. https://doi.org/10.3390/separations10010059
APA StyleHouti, H., Ghanmi, M., Satrani, B., Mansouri, F. E., Cacciola, F., Sadiki, M., & Boukir, A. (2023). Moroccan Endemic Artemisia herba-alba Essential Oil: GC-MS Analysis and Antibacterial and Antifungal Investigation. Separations, 10(1), 59. https://doi.org/10.3390/separations10010059