Molecular and Genetic Markers for Malignant Melanoma: Implications for Prognosis and Therapy
Abstract
1. Introduction
2. Immunohistochemical and Tissue-Based Prognostic Markers
2.1. Preferentially Expressed Antigen in Melanoma (PRAME; Gene Symbol PRAME)
2.2. Ki-67
2.3. Activating Molecule in Beclin1-Regulated Autophagy (AMBLor)
2.4. Y-Box Binding Protein 1 (YB-1)
2.5. Microphthalmia Transcription Factor (MITF) and Transient Receptor Potential Melastatin-1 (TRPM1)
Summary
3. Circulating Biomarkers and Liquid Biopsies
3.1. Lactate Dehydrogenase (LDH)
3.2. Serum S100 Calcium-Binding Protein B (S100B)
3.3. Melanoma-Inhibiting Activity (MIA) Protein
3.4. Liquid Biopsy Biomarkers (Cell Free DNA (cfDNA), Cell Free RNA (cfRNA), Circulating Tumor DNA (ctDNA))
Summary
4. MicroRNA
4.1. miR-200a-3p
4.2. miR-335-5p
4.3. miR-451a
4.4. miR-29b-3p
4.5. miR-424
Summary
5. Genomic and Transcriptomic
5.1. Gene Expression Profile (GEP) Analysis
Summary
5.2. Telomerase Activation Through Telomerase Reverse Transcriptase (TERT) Promoter Mutation
5.3. Tumor Mutational Burden (TMB)
5.4. BRAF Mutation
5.5. Neuroblastoma RAS (NRAS) Mutation
5.6. Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A) Deletions/Mutations
5.7. Tissue Epigenetic Biomarkers (DNA Methylation)
5.8. Long Noncoding RNAs (lncRNA)
Summary
6. Immune-Related Markers
6.1. Programmed Death-Ligand 1 (PD-L1)
6.2. Lymphocyte Activation Gene-3 (LAG-3)
6.3. T Cell Immunoglobulin and Mucin Domain-Containing Protein 3 (TIM-3)
6.4. Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4)
6.5. Melanocortin-1 Receptor (MC1R) Variants
Summary
7. Therapy Associated and Investigational Biomarkers
8. Limitations and Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, O.; Miller, D.D.; Bhawan, J. Cutaneous Malignant Melanoma: Update on Diagnostic and Prognostic Biomarkers. Am. J. Dermatopathol. 2014, 36, 363. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Singh, D.; Laversanne, M.; Vignat, J.; Vaccarella, S.; Meheus, F.; Cust, A.E.; de Vries, E.; Whiteman, D.C.; Bray, F. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatol. 2022, 158, 495–503. [Google Scholar] [CrossRef]
- Kahlon, N.; Doddi, S.; Yousif, R.; Najib, S.; Sheikh, T.; Abuhelwa, Z.; Burmeister, C.; Hamouda, D.M. Melanoma Treatments and Mortality Rate Trends in the US, 1975 to 2019. JAMA Netw. Open 2022, 5, e2245269. [Google Scholar] [CrossRef] [PubMed]
- Pilard, C.; Ancion, M.; Delvenne, P.; Jerusalem, G.; Hubert, P.; Herfs, M. Cancer immunotherapy: It’s time to better predict patients’ response. Br. J. Cancer 2021, 125, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Gershenwald, J.E. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: Implications for melanoma treatment and care. Expert Rev. Anticancer Ther. 2018, 18, 775–784. [Google Scholar] [CrossRef]
- Swetter, S.M.; Johnson, D.; Albertini, M.R.; Barker, C.A.; Bateni, S.; Baumgartner, J.; Bhatia, S.; Bichakjian, C.; Boland, G.; Chandra, S.; et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2024. J. Natl. Compr. Cancer Netw. JNCCN 2024, 22, 290–298. [Google Scholar] [CrossRef]
- Rozeman, E.A.; Dekker, T.J.A.; Haanen, J.B.A.G.; Blank, C.U. Advanced Melanoma: Current Treatment Options, Biomarkers, and Future Perspectives. Am. J. Clin. Dermatol. 2018, 19, 303–317. [Google Scholar] [CrossRef]
- Safai, B.; Wu, A.G.; Hamby, C.V. Prognostic Biomarkers in Melanoma: Tailoring Treatments to the Patient. J. Clin. Aesthetic Dermatol. 2021, 14, 44–48. [Google Scholar]
- Lezcano, C.; Jungbluth, A.A.; Nehal, K.S.; Hollmann, T.J.; Busam, K.J. PRAME Expression in Melanocytic Tumors. Am. J. Surg. Pathol. 2018, 42, 1456–1465. [Google Scholar] [CrossRef]
- Asato, M.A.; Neto, F.A.M.M.; Moraes, M.P.d.T.; Ocanha-Xavier, J.P.; Takita, L.C.; Fung, M.A.; Marques, M.E.A.; Xavier-Júnior, J.C.C. The Utility of PRAME and Ki-67 as Prognostic Markers for Cutaneous Melanoma. Am. J. Dermatopathol. 2025, 47, 9–16. [Google Scholar] [CrossRef]
- Broggi, G.; Failla, M.; Russo, A.; Longo, A.; Palicelli, A.; Zanelli, M.; Lombardo, C.; Loreto, C.; Merolla, F.; Di Crescenzo, R.M.; et al. Immunohistochemical expression of PRAME is a marker of poor prognosis in uveal melanoma: A clinico-pathologic and immunohistochemical study on a series of 85 cases. Pathol. Res. Pract. 2023, 247, 154543. [Google Scholar] [CrossRef]
- Lezcano, C.; Pulitzer, M.; Moy, A.P.; Hollmann, T.J.; Jungbluth, A.A.; Busam, K.J. Immunohistochemistry for PRAME in the distinction of nodal nevi from metastatic melanoma. Am. J. Surg. Pathol. 2020, 44, 503–508. [Google Scholar] [CrossRef]
- Cassalia, F.; Danese, A.; Tudurachi, I.; Federico, S.; Zambello, A.; Guidotti, A.; Franceschin, L.; Bolzon, A.; Naldi, L.; Fortina, A.B. PRAME Updated: Diagnostic, Prognostic, and Therapeutic Role in Skin Cancer. Int. J. Mol. Sci. 2024, 25, 1582. [Google Scholar] [CrossRef]
- Liu, Q.; Peng, Z.; Shen, L.; Shen, L. Prognostic and Clinicopathological Value of Ki-67 in Melanoma: A Meta-Analysis. Front. Oncol. 2021, 11, 737760. [Google Scholar] [CrossRef]
- Du, Y.; Li, C.; Mao, L.; Wei, X.; Bai, X.; Chi, Z.; Cui, C.; Sheng, X.; Lian, B.; Tang, B.; et al. A nomogram incorporating Ki67 to predict survival of acral melanoma. J. Cancer Res. Clin. Oncol. 2023, 149, 13077–13085. [Google Scholar] [CrossRef]
- Ewen, T.; Husain, A.; Stefanos, N.; Barrett, P.; Jones, C.; Ness, T.; Long, A.; Horswell, S.; Bosomworth, H.; Lowenstein, J.; et al. Validation of epidermal AMBRA1 and loricrin (AMBLor) as a prognostic biomarker for nonulcerated American Joint Committee on Cancer stage I/II cutaneous melanoma. Br. J. Dermatol. 2024, 190, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Kosnopfel, C.; Sinnberg, T.; Sauer, B.; Busch, C.; Niessner, H.; Schmitt, A.; Forchhammer, S.; Grimmel, C.; Mertens, P.R.; Hailfinger, S.; et al. YB-1 Expression and Phosphorylation Regulate Tumorigenicity and Invasiveness in Melanoma by Influencing EMT. Mol. Cancer Res. MCR 2018, 16, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Levy, C.; Khaled, M.; Fisher, D.E. MITF: Master regulator of melanocyte development and melanoma oncogene. Trends Mol. Med. 2006, 12, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Hartman, M.L.; Czyz, M. Pro-Survival Role of MITF in Melanoma. J. Investig. Dermatol. 2015, 135, 352–358. [Google Scholar] [CrossRef]
- Hammock, L.; Cohen, C.; Carlson, G.; Murray, D.; Ross, J.S.; Sheehan, C.; Nazir, T.M.; Carlson, J.A. Chromogenic in situ hybridization analysis of melastatin mRNA expression in melanomas from American Joint Committee on Cancer stage I and II patients with recurrent melanoma. J. Cutan. Pathol. 2006, 33, 599–607. [Google Scholar] [CrossRef]
- Carlson, J.A.; Ross, J.S.; Slominski, A.; Linette, G.; Mysliborski, J.; Hill, J.; Mihm, M. Molecular diagnostics in melanoma. J. Am. Acad. Dermatol. 2005, 52, 743–775. [Google Scholar] [CrossRef] [PubMed]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma Staging: Evidence-Based Changes in the American Joint Committee on Cancer Eighth Edition Cancer Staging Manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef]
- Henry, L.; Fabre, C.; Guiraud, I.; Bastide, S.; Fabbro-Peray, P.; Martinez, J.; Lavabre-Bertrand, T.; Meunier, L.; Stoebner, P. Clinical use of p-proteasome in discriminating metastatic melanoma patients: Comparative study with LDH, MIA and S100B protein. Int. J. Cancer 2013, 133, 142–148. [Google Scholar] [CrossRef]
- Diem, S.; Kasenda, B.; Spain, L.; Martin-Liberal, J.; Marconcini, R.; Gore, M.; Larkin, J. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br. J. Cancer 2016, 114, 256–261. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, J.; Wang, J.; Sun, C.; Zhu, X. Prognostic value of lactate dehydrogenase for melanoma patients receiving anti-PD-1/PD-L1 therapy. Medicine 2021, 100, e25318. [Google Scholar] [CrossRef]
- Prkačin, I.; Mokos, M.; Ferara, N.; Šitum, M. Melanoma’s New Frontier: Exploring the Latest Advances in Blood-Based Biomarkers for Melanoma. Cancers 2024, 16, 4219. [Google Scholar] [CrossRef]
- Janka, E.A.; Várvölgyi, T.; Sipos, Z.; Soós, A.; Hegyi, P.; Kiss, S.; Dembrovszky, F.; Csupor, D.; Kéringer, P.; Pécsi, D.; et al. Predictive Performance of Serum S100B Versus LDH in Melanoma Patients: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 772165. [Google Scholar] [CrossRef]
- Wagner, N.B.; Forschner, A.; Leiter, U.; Garbe, C.; Eigentler, T.K. S100B and LDH as early prognostic markers for response and overall survival in melanoma patients treated with anti-PD-1 or combined anti-PD-1 plus anti-CTLA-4 antibodies. Br. J. Cancer 2018, 119, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Revythis, A.; Shah, S.; Kutka, M.; Moschetta, M.; Ozturk, M.A.; Pappas-Gogos, G.; Ioannidou, E.; Sheriff, M.; Rassy, E.; Boussios, S. Unraveling the Wide Spectrum of Melanoma Biomarkers. Diagnostics 2021, 11, 1341. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Fernández-Landázuri, S.; Rodríguez, C.; Lozano, M.D.; Echeveste, J.I.; Gracia, J.L.P.; Alegre, E.; Carranza, O.; Zubiri, L.; Martín-Algarra, S.; et al. Relevance of MIA and S100 serum tumor markers to monitor BRAF inhibitor therapy in metastatic melanoma patients. Clin. Chim. Acta Int. J. Clin. Chem. 2014, 429, 168–174. [Google Scholar] [CrossRef]
- Marchisio, S.; Ricci, A.A.; Roccuzzo, G.; Bongiovanni, E.; Ortolan, E.; Bertero, L.; Berrino, E.; Pala, V.; Ponti, R.; Fava, P.; et al. Monitoring circulating tumor DNA liquid biopsy in stage III BRAF-mutant melanoma patients undergoing adjuvant treatment. J. Transl. Med. 2024, 22, 1074. [Google Scholar] [CrossRef]
- Dao, J.; Conway, P.J.; Subramani, B.; Meyyappan, D.; Russell, S.; Mahadevan, D. Using cfDNA and ctDNA as Oncologic Markers: A Path to Clinical Validation. Int. J. Mol. Sci. 2023, 24, 13219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palacios-Diaz, R.D.; de Unamuno-Bustos, B.; Carratalá-García, A.; Pérez-Simó, G.; Moreno-Ramírez, D.; Ferrándiz, L.; Almazán-Fernández, F.M.; Boada, A.; Loidi-Pascual, L.; Palanca-Suela, S.; et al. Circulating tumor DNA predicts tumor progression and poor survival in patients with stage III melanoma. Melanoma Res. 2025, 35, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Knuever, J.; Weiss, J.; Persa, O.-D.; Kreuzer, K.; Mauch, C.; Hallek, M.; Schlaak, M. The use of circulating cell-free tumor DNA in routine diagnostics of metastatic melanoma patients. Sci. Rep. 2020, 10, 4940. [Google Scholar] [CrossRef]
- Váraljai, R.; Elouali, S.; Lueong, S.; Wistuba-Hamprecht, K.; Seremet, T.; Siveke, J.; Becker, J.; Sucker, A.; Paschen, A.; Horn, P.; et al. The predictive and prognostic significance of cell-free DNA concentration in melanoma. J. Eur. Acad. Dermatol. Venereol. JEADV 2021, 35, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Aoude, L.G.; Brosda, S.; Ng, J.; Lonie, J.M.; Belle, C.J.; Patel, K.; Koufariotis, L.T.; Wood, S.; Atkinson, V.; Smithers, B.M.; et al. Circulating Tumor DNA: A Promising Biomarker for Predicting Recurrence in Patients with BRAF-Negative Melanoma. J. Mol. Diagn. 2023, 25, 771–781. [Google Scholar] [CrossRef]
- Eroglu, Z.; Krinshpun, S.; Kalashnikova, E.; Sudhaman, S.; Topcu, T.O.; Nichols, M.; Martin, J.; Bui, K.M.; Palsuledesai, C.C.; Malhotra, M.; et al. Circulating tumor DNA-based molecular residual disease detection for treatment monitoring in advanced melanoma patients. Cancer 2023, 129, 1723–1734. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, L.J.; Höwner, A.; Griewank, K.; Lueong, S.S.; von Neuhoff, N.; Horn, P.A.; Sucker, A.; Paschen, A.; Livingstone, E.; Ugurel, S.; et al. Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. Clin. Transl. Med. 2022, 12, e1090. [Google Scholar] [CrossRef]
- Prodan, M.; Dema, A.; Nataras, B.R.; Seclaman, E.; Bloanca, V.; Crainiceanu, Z.; Deak, I.E.; Virzob, C.R.B.; Toma, A.-O.; Fericean, R.M. Prognostic Significance of miRNA Subtypes in Melanoma: A Survival Analysis and Correlation with Treatment Response Across Patient Stages. Biomedicines 2024, 12, 2809. [Google Scholar] [CrossRef]
- Xu, S.-J.; Xu, W.-J.; Zeng, Z.; Zhang, M.; Zhang, D.-Y. MiR-424 Functions as Potential Diagnostic and Prognostic Biomarker in Melanoma. Clin. Lab. 2020, 66, 1207–1213. [Google Scholar] [CrossRef]
- Amaral, T.M.; Hoffmann, M.-C.; Sinnberg, T.; Niessner, H.; Sülberg, H.; Eigentler, T.K.; Garbe, C. Clinical validation of a prognostic 11-gene expression profiling score in prospectively collected FFPE tissue of patients with AJCC v8 stage II cutaneous melanoma. Eur. J. Cancer Oxf. Engl. 1990 2020, 125, 38–45. [Google Scholar] [CrossRef]
- Eggermont, A.M.; Bellomo, D.; Arias-Mejias, S.M.; Quattrocchi, E.; Sominidi-Damodaran, S.; Bridges, A.G.; Lehman, J.S.; Hieken, T.J.; Jakub, J.W.; Murphree, D.H.; et al. Identification of stage I/IIA melanoma patients at high risk for disease relapse using a clinicopathologic and gene expression model. Eur. J. Cancer Oxf. Engl. 1990 2020, 140, 11–18. [Google Scholar] [CrossRef]
- Gandini, S.; Zanna, I.; De Angelis, S.; Palli, D.; Raimondi, S.; Ribero, S.; Masala, G.; Suppa, M.; Bellerba, F.; Corso, F.; et al. TERT promoter mutations and melanoma survival: A comprehensive literature review and meta-analysis. Crit. Rev. Oncol. Hematol. 2021, 160, 103288. [Google Scholar] [CrossRef]
- Ning, B.; Liu, Y.; Wang, M.; Li, Y.; Xu, T.; Wei, Y. The Predictive Value of Tumor Mutation Burden on Clinical Efficacy of Immune Checkpoint Inhibitors in Melanoma: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 748674. [Google Scholar] [CrossRef]
- Andrews, M.C.; Li, G.; Graf, R.P.; Fisher, V.A.; Mitchell, J.; Aboosaiedi, A.; O’ROurke, H.; Shackleton, M.; Iddawela, M.; Oxnard, G.R.; et al. Predictive Impact of Tumor Mutational Burden on Real-World Outcomes of First-Line Immune Checkpoint Inhibition in Metastatic Melanoma. JCO Precis. Oncol. 2024, 8, e2300640. [Google Scholar] [CrossRef] [PubMed]
- Castellani, G.; Buccarelli, M.; Arasi, M.B.; Rossi, S.; Pisanu, M.E.; Bellenghi, M.; Lintas, C.; Tabolacci, C. BRAF Mutations in Melanoma: Biological Aspects, Therapeutic Implications, and Circulating Biomarkers. Cancers 2023, 15, 4026. [Google Scholar] [CrossRef]
- Ny, L.; Hernberg, M.; Nyakas, M.; Koivunen, J.; Oddershede, L.; Yoon, M.; Wang, X.; Guyot, P.; Geisler, J. BRAF mutational status as a prognostic marker for survival in malignant melanoma: A systematic review and meta-analysis. Acta Oncol. 2020, 59, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Siepmann, T.; Engel, J.; Schubert-Fritschle, G.; Eckel, R.; Mirlach, L.; Kirchner, T.; Jung, A.; Gesierich, A.; Ruzicka, T.; et al. Prognostic significance of BRAF and NRAS mutations in melanoma: A German study from routine care. BMC Cancer 2017, 17, 536. [Google Scholar] [CrossRef]
- Jakob, J.A.; Bassett, R.L., Jr.; Ng, C.S.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 2012, 118, 4014–4023. [Google Scholar] [CrossRef]
- Zaremba, A.; Mohr, P.; Gutzmer, R.; Meier, F.; Pföhler, C.; Weichenthal, M.; Terheyden, P.; Forschner, A.; Leiter, U.; Ulrich, J.; et al. Immune checkpoint inhibition in patients with NRAS mutated and NRAS wild type melanoma: A multicenter Dermatologic Cooperative Oncology Group study on 637 patients from the prospective skin cancer registry ADOREG. Eur. J. Cancer 2023, 188, 140–151. [Google Scholar] [CrossRef]
- Danishevich, A.; Bilyalov, A.; Nikolaev, S.; Khalikov, N.; Isaeva, D.; Levina, Y.; Makarova, M.; Nemtsova, M.; Chernevskiy, D.; Sagaydak, O.; et al. CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines 2023, 11, 3343. [Google Scholar] [CrossRef]
- Smith-Sørensen, B.; Hovig, E. CDKN2A (p16INK4A) somatic and germline mutations. Hum. Mutat. 1996, 7, 294–303. [Google Scholar] [CrossRef]
- Ipenburg, N.A.; El Sharouni, M.A.; van Doorn, R.; van Diest, P.J.; van Leerdam, M.E.; van der Rhee, J.I.; Goeman, J.; Kukutsch, N.A. Lack of association between CDKN2A germline mutations and survival in patients with melanoma: A retrospective cohort study. J. Am. Acad. Dermatol. 2022, 87, 479–482. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, R. Surveillance, CDKN2A and survival of familial melanoma. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 218–219. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, L. Identification of a CpG-based signature coupled with gene expression as prognostic indicators for melanoma: A preliminary study. Sci. Rep. 2024, 14, 5302. [Google Scholar] [CrossRef]
- Huo, Y.; Gao, Y.; Ruan, J.; Wang, L.; Li, H.; Hong, G. A qualitative prognostic biomarker for melanoma based on the relative methylation orderings of CpG loci. Epigenetics 2025, 20, 2487316. [Google Scholar] [CrossRef]
- Meevassana, J.; Varophas, S.; Prabsattru, P.; Kamolratanakul, S.; Ruangritchankul, K.; Kitkumthorn, N. 5-Methylcytosine immunohistochemistry for predicting cutaneous melanoma prognosis. Sci. Rep. 2024, 14, 7554. [Google Scholar] [CrossRef]
- Masrour, M.; Khanmohammadi, S.; Fallahtafti, P.; Hashemi, S.M.; Rezaei, N. Long non-coding RNA as a potential diagnostic and prognostic biomarker in melanoma: A systematic review and meta-analysis. J. Cell. Mol. Med. 2024, 28, e18109. [Google Scholar] [CrossRef]
- Guo, S.; Chen, J.; Yi, X.; Lu, Z.; Guo, W. Identification and validation of ferroptosis-related lncRNA signature as a prognostic model for skin cutaneous melanoma. Front. Immunol. 2022, 13, 985051. [Google Scholar] [CrossRef]
- Zhou, J.-G.; Liang, B.; Liu, J.-G.; Jin, S.-H.; He, S.-S.; Frey, B.; Gu, N.; Fietkau, R.; Hecht, M.; Ma, H.; et al. Identification of 15 lncRNAs Signature for Predicting Survival Benefit of Advanced Melanoma Patients Treated with Anti-PD-1 Monotherapy. Cells 2021, 10, 977. [Google Scholar] [CrossRef]
- Sorroche, B.P.; Teixeira, R.d.J.; Pereira, C.A.D.; Santana, I.V.V.; Vujanovic, L.; Vazquez, V.d.L.; Arantes, L.M.R.B. PD-L1 Tumor Expression as a Predictive Biomarker of Immune Checkpoint Inhibitors’ Response and Survival in Advanced Melanoma Patients in Brazil. Diagnostics 2023, 13, 1041. [Google Scholar] [CrossRef] [PubMed]
- Ellebaek, E.; Khan, S.; Bastholt, L.; Schmidt, H.; Haslund, C.A.; Donia, M.; Svane, I.M. PD-L1 is a biomarker of real-world clinical outcomes for anti-CTLA-4 plus anti-PD-1 or anti-PD-1 monotherapy in metastatic melanoma. Eur. J. Cancer 2024, 198, 113476. [Google Scholar] [CrossRef]
- Reschke, R.; Enk, A.H.; Hassel, J.C. Prognostic Biomarkers in Evolving Melanoma Immunotherapy. Am. J. Clin. Dermatol. 2025, 26, 213–223. [Google Scholar] [CrossRef]
- Gide, T.N.; Paver, E.C.; Yaseen, Z.; Maher, N.; Adegoke, N.; Menzies, A.M.; da Silva, I.P.; Wilmott, J.S.; Long, G.V.; Scolyer, R.A. Lag-3 expression and clinical outcomes in metastatic melanoma patients treated with combination anti-lag-3 + anti-PD-1-based immunotherapies. Oncoimmunology 2023, 12, 2261248. [Google Scholar] [CrossRef]
- Arimura, K.; Hiroshima, K.; Nagashima, Y.; Nakazawa, T.; Ogihara, A.; Orimo, M.; Sato, Y.; Katsura, H.; Kanzaki, M.; Kondo, M.; et al. LAG3 is an independent prognostic biomarker and potential target for immune checkpoint inhibitors in malignant pleural mesothelioma: A retrospective study. BMC Cancer 2023, 23, 1206. [Google Scholar] [CrossRef]
- Machiraju, D.; Wiecken, M.; Lang, N.; Hülsmeyer, I.; Roth, J.; Schank, T.E.; Eurich, R.; Halama, N.; Enk, A.; Hassel, J.C. Soluble immune checkpoints and T-cell subsets in blood as biomarkers for resistance to immunotherapy in melanoma patients. Oncoimmunology 2021, 10, 1926762. [Google Scholar] [CrossRef]
- Wiecken, M.; Machiraju, D.; Chakraborty, S.; Mayr, E.-M.; Lenoir, B.; Eurich, R.; Richter, J.; Pfarr, N.; Halama, N.; Hassel, J.C. The immune checkpoint LAG-3 is expressed by melanoma cells and correlates with clinical progression of the melanoma. Oncoimmunology 2025, 14, 2430066. [Google Scholar] [CrossRef]
- Navani, V.; Graves, M.C.; Marchett, G.C.; Mandaliya, H.; Bowden, N.A.; van der Westhuizen, A. Overall survival in metastatic melanoma correlates with pembrolizumab exposure and T cell exhaustion markers. Pharmacol. Res. Perspect. 2021, 9, e00808. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.M.C.; Carron, J.; Gomez, G.V.B.; Vazquez, V.L.; Serrano, S.V.; Lourenço, G.J.; Lima, C.S.P. Association of Cytotoxic T-Lymphocyte Antigen-4 (CTLA-4) Genetic Variants with Risk and Outcome of Cutaneous Melanoma. Int. J. Mol. Sci. 2024, 25, 12327. [Google Scholar] [CrossRef]
- Pistillo, M.P.; Carosio, R.; Grillo, F.; Fontana, V.; Mastracci, L.; Morabito, A.; Banelli, B.; Tanda, E.; Cecchi, F.; Dozin, B.; et al. Phenotypic characterization of tumor CTLA-4 expression in melanoma tissues and its possible role in clinical response to Ipilimumab. Clin. Immunol. 2020, 215, 108428. [Google Scholar] [CrossRef] [PubMed]
- Mastracci, L.; Fontana, V.; Queirolo, P.; Carosio, R.; Grillo, F.; Morabito, A.; Banelli, B.; Tanda, E.; Boutros, A.; Dozin, B.; et al. Response to ipilimumab therapy in metastatic melanoma patients: Potential relevance of CTLA-4+ tumor infiltrating lymphocytes and their in situ localization. Cancer Immunol. Immunother. CII 2020, 69, 653–662. [Google Scholar] [CrossRef]
- Dębniak, T.; Baszuk, P.; Rowińska, K.; Feherpataky, M.; Boer, M.; Kiedrowicz, M.; Marchlewicz, M.; Cybulski, C.; Jakubowska, A.; Huzarski, T.; et al. MC1R Common Variants and the 10-Year Survival after Melanoma in Polish Population. Clin. Oncol. 2024, 9, 2061. [Google Scholar]
- Su, D.G.; Djureinovic, D.; Schoenfeld, D.; Marquez-Nostra, B.; Olino, K.; Jilaveanu, L.; Kluger, H. Melanocortin 1 receptor (MC1R) expression as a marker of progression in melanoma. JCO Precis. Oncol. 2024, 8, e2300702. [Google Scholar] [CrossRef]
- Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma 2018, 127, 175–186. [Google Scholar] [CrossRef] [PubMed]
- DiVincenzo, M.J.; Angell, C.D.; Suarez-Kelly, L.P.; Ren, C.; Barricklow, Z.; Moufawad, M.; Fadda, P.; Yu, L.; Backes, F.J.; Ring, K.; et al. Expression of microRNAs and their target genes in melanomas originating from gynecologic sites. PLoS ONE 2023, 18, e0285804. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Shen, P. miR-335 Acts as a Tumor Suppressor and Enhances Ionizing Radiation-Induced Tumor Regression by Targeting ROCK1. Front. Oncol. 2020, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Prodan, M.; Costescu, S.; Elagez, A.; Laitin, S.M.D.; Bloanca, V.; Crainiceanu, Z.; Seclaman, E.; Toma, A.-O.; Fericean, R.M.; Puenea, G.; et al. Molecular Markers in Melanoma Progression: A Study on the Expression of miRNA Gene Subtypes in Tumoral vs. Benign Nevi. Curr. Oncol. (Tor. Ont.) 2024, 31, 2881–2894. [Google Scholar] [CrossRef]
- Nakahara, S.; Fukushima, S.; Okada, E.; Morinaga, J.; Kubo, Y.; Tokuzumi, A.; Matsumoto, S.; Tsuruta-Kadohisa, M.; Kimura, T.; Kuriyama, H.; et al. MicroRNAs that predict the effectiveness of anti-PD-1 therapies in patients with advanced melanoma. J. Dermatol. Sci. 2020, 97, 77–79. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Q.; Zhang, J.; Maihemuti, M.; He, H.; Jiang, R. Melanoma cell line-derived exosomal miR-424-5p: A key promoter of angiogenesis through LATS2 interaction. Oncol. Res. 2025, 33, 357–367. [Google Scholar] [CrossRef]
- Segundo-Val, I.S.; Sanz-Lozano, C.S. Introduction to the Gene Expression Analysis. Methods Mol. Biol. 2016, 1434, 29–43. [Google Scholar]
- Bailey, C.N.; Martin, B.J.; Petkov, V.I.; Schussler, N.C.; Stevens, J.L.; Bentler, S.; Cress, R.D.; Doherty, J.A.; Durbin, E.B.; Gomez, S.L.; et al. 31-Gene Expression Profile Testing in Cutaneous Melanoma and Survival Outcomes in a Population-Based Analysis: A SEER Collaboration. JCO Precis. Oncol. 2023, 7, e2300044. [Google Scholar] [CrossRef]
- Sun, J.; Karasaki, K.M.; Farma, J.M. The Use of Gene Expression Profiling and Biomarkers in Melanoma Diagnosis and Predicting Recurrence: Implications for Surveillance and Treatment. Cancers 2024, 16, 583. [Google Scholar] [CrossRef]
- Mulder, E.; Dwarkasing, J.; Tempel, D.; van der Spek, A.; Bosman, L.; Verver, D.; Mooyaart, A.; van der Veldt, A.; Verhoef, C.; Nijsten, T.; et al. Validation of a clinicopathological and gene expression profile model for sentinel lymph node metastasis in primary cutaneous melanoma. Br. J. Dermatol. 2021, 184, 944–951. [Google Scholar] [CrossRef]
- Perzia, B.M.; Heng, J.S.; Sinard, J.; Lim, R. Telomerase gene promoter (TERT) mutation in recurrent uveal melanoma after secondary enucleation revealed by targeted next-generation sequencing. Investig. Ophthalmol. Vis. Sci. 2022, 63, 2350-A0019. [Google Scholar]
- Budczies, J.; Kazdal, D.; Menzel, M.; Beck, S.; Kluck, K.; Altbürger, C.; Schwab, C.; Allgäuer, M.; Ahadova, A.; Kloor, M.; et al. Tumour mutational burden: Clinical utility, challenges and emerging improvements. Nat. Rev. Clin. Oncol. 2024, 21, 725–742. [Google Scholar] [CrossRef]
- Czarnecka, A.M.; Bartnik, E.; Fiedorowicz, M.; Rutkowski, P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int. J. Mol. Sci. 2020, 21, 4576. [Google Scholar] [CrossRef]
- Nagore, E.; Requena, C.; Traves, V.; Guillen, C.; Hayward, N.K.; Whiteman, D.C.; Hacker, E. Prognostic value of BRAF mutations in localized cutaneous melanoma. J. Am. Acad. Dermatol. 2014, 70, 858–862.e2. [Google Scholar] [CrossRef]
- Rizzetto, G.; De Simoni, E.; Molinelli, E.; Offidani, A.; Simonetti, O. Efficacy of Pembrolizumab in Advanced Melanoma: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 12383. [Google Scholar] [CrossRef]
- Guida, M.; Strippoli, S.; Ferretta, A.; Bartolomeo, N.; Porcelli, L.; Maida, I.; Azzariti, A.; Tommasi, S.; Grieco, C.; Guida, S.; et al. Detrimental effects of melanocortin-1 receptor (MC1R) variants on the clinical outcomes of BRAF V600 metastatic melanoma patients treated with BRAF inhibitors. Pigment Cell Melanoma Res. 2016, 29, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Curti, B.D.; Faries, M.B. Recent Advances in the Treatment of Melanoma. N. Engl. J. Med. 2021, 384, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Poulikakos, P.I.; Sullivan, R.J.; Yaeger, R. Molecular Pathways and Mechanisms of BRAF in Cancer Therapy. Clin. Cancer Res. 2022, 28, 4618–4628. [Google Scholar] [CrossRef]
- Maher, N.G.; Vergara, I.A.; Long, G.V.; Scolyer, R.A. Prognostic and predictive biomarkers in melanoma. Pathology 2024, 56, 259–273. [Google Scholar] [CrossRef]
- Teixido, C.; Castillo, P.; Martinez-Vila, C.; Arance, A.; Alos, L. Molecular Markers and Targets in Melanoma. Cells 2021, 10, 2320. [Google Scholar] [CrossRef]
- Szabó, I.L.; Emri, G.; Ladányi, A.; Tímár, J. Clinical Applications of the Molecular Landscape of Melanoma: Integration of Research into Diagnostic and Therapeutic Strategies. Cancers 2025, 17, 1422. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.-D.; Li, T. Comprehensive insights on genetic alterations and immunotherapy prognosis in Chinese melanoma patients. Sci. Rep. 2024, 14, 16607. [Google Scholar] [CrossRef] [PubMed]
- Kashani-Sabet, M.; Leachman, S.A.; Stein, J.A.; Arbiser, J.L.; Berry, E.G.; Celebi, J.T.; Curiel-Lewandrowski, C.; Ferris, L.K.; Grant-Kels, J.M.; Grossman, D.; et al. Early Detection and Prognostic Assessment of Cutaneous Melanoma: Consensus on Optimal Practice and the Role of Gene Expression Profile Testing. JAMA Dermatol. 2023, 159, 545–553. [Google Scholar] [CrossRef]
- Tonella, L.; Pala, V.; Ponti, R.; Rubatto, M.; Gallo, G.; Mastorino, L.; Avallone, G.; Merli, M.; Agostini, A.; Fava, P.; et al. Prognostic and Predictive Biomarkers in Stage III Melanoma: Current Insights and Clinical Implications. Int. J. Mol. Sci. 2021, 22, 4561. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, R.; Bellenghi, M.; Pontecorvi, G.; Pallante, G.; Carè, A.; Mattia, G. Biomarkers for Diagnosis, Prognosis and Response to Immunotherapy in Melanoma. Cancers 2021, 13, 2875. [Google Scholar] [CrossRef]
- Roccuzzo, G.; Sarda, C.; Pala, V.; Ribero, S.; Quaglino, P. Prognostic biomarkers in melanoma: A 2023 update from clinical trials in different therapeutic scenarios. Expert Rev. Mol. Diagn. 2024, 24, 379–392. [Google Scholar] [CrossRef]
- Hossain, S.M.; Carpenter, C.; Eccles, M.R. Genomic and Epigenomic Biomarkers of Immune Checkpoint Immunotherapy Response in Melanoma: Current and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 7252. [Google Scholar] [CrossRef]
- Adeuyan, O.; Gordon, E.R.; Kenchappa, D.; Bracero, Y.; Singh, A.; Espinoza, G.; Geskin, L.J.; Saenger, Y.M. An update on methods for detection of prognostic and predictive biomarkers in melanoma. Front. Cell Dev. Biol. 2023, 11, 1290696. [Google Scholar] [CrossRef]
- He, R.; Lu, J.; Feng, J.; Lu, Z.; Shen, K.; Xu, K.; Luo, H.; Yang, G.; Chi, H.; Huang, S. Advancing immunotherapy for melanoma: The critical role of single-cell analysis in identifying predictive biomarkers. Front. Immunol. 2024, 15, 1435187. [Google Scholar] [CrossRef]
- Tímár, J.; Ladányi, A. Molecular Pathology of Skin Melanoma: Epidemiology, Differential Diagnostics, Prognosis and Therapy Prediction. Int. J. Mol. Sci. 2022, 23, 5384. [Google Scholar] [CrossRef] [PubMed]
- Svedman, F.C.; Das, I.; Tuominen, R.; Ramqvist, E.D.; Höiom, V.; Brage, S.E. Proliferation and Immune Response Gene Signatures Associated with Clinical Outcome to Immunotherapy and Targeted Therapy in Metastatic Cutaneous Malignant Melanoma. Cancers 2022, 14, 3587. [Google Scholar] [CrossRef] [PubMed]
- Pilla, L.; Alberti, A.; Di Mauro, P.; Gemelli, M.; Cogliati, V.; Cazzaniga, M.E.; Bidoli, P.; Maccalli, C. Molecular and Immune Biomarkers for Cutaneous Melanoma: Current Status and Future Prospects. Cancers 2020, 12, 3456. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A.; Carini, C. Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and Resistance and Strategies to Improve Response Rates. Int. J. Mol. Sci. 2022, 24, 41. [Google Scholar] [CrossRef]
- He, Y.; Wang, X. Identifying biomarkers associated with immunotherapy response in melanoma by multi-omics analysis. Comput. Biol. Med. 2023, 167, 107591. [Google Scholar] [CrossRef]
Biomarker | Gene | Association | Independence from AJCC Covariates | Clinical Readiness |
---|---|---|---|---|
Immunohistochemical and Tissue-Based Prognostic Markers | ||||
PRAME [10,11,12,13] | PRAME | Elevated PRAME protein expression is linked to worse overall survival (OS). | Unclear | Validated/used |
Ki-67 [10,14,15] | MKi67 | Elevated Ki67 predicts worse OS and higher sentinel lymph node (SLN) positivity. | Yes | Promising |
AMBRA1 and loricin 1 [16] | AMBRA1/LOR | Elevated AMBL or was associated with low risk of recurrence. | Yes | Promising |
Y-box binding protein 1 [17] | YB-1 | Elevated YB-1 expression is associated with epithelial-to-mesenchymal transition and poor survival in melanoma. | Unclear | Investigational |
Microphthalmia transcription factor [18] | MITF | Acts as a transcription factor in melanoma; high expression promotes proliferation; low expression is linked to invasion and therapy resistance. | Unclear | Investigational |
Transient receptor potential melastatin-1 [19,20,21] | TRPM1 | Downregulated in metastatic melanoma; loss of TRPM1 is associated with increased invasiveness and poor prognosis. | Unclear | Investigational |
Circulating Biomarkers and Liquid Biopsies | ||||
Lactate Dehydrogenase (LDH) [22,23,24,25] | LDHA/LDHB | Elevated LDH expression is linked with worse OS and shorter progression-free survival (PFS). | Yes | Validated/used |
S100B [26,27,28] | S100 | Elevated S100B is linked to worse outcomes and advanced stages. | Unclear | Validated/used |
MIA [29,30] | MIA | Elevated MIA is linked with advanced disease stage, worse tumor burden, and worse overall prognosis. | Unclear | Validated/used |
Circulating Tumor DNA [31,32,33,34,35] | ctDNA | Plasma ctDNA detection was associated with an overall worse prognosis and mortality. Patients negative for BRAF mutation-positive ctDNA also had better responses to the MEK inhibitor (trametinib) and the BRAF inhibitor (dabrafenib). Low ctDNA concentrations are associated with better disease-specific survival and PFS, as opposed to higher concentrations. | Yes | Promising |
Cell free DNA (CfDNA) and Cell free RNA (CfRNA) [34,35,36,37,38] | – | CfDNA presence correlates with higher tumor burden and advanced stage. Elevated CfRNA is linked with shorter PFS. | No | Investigational/promising |
MicroRNA | ||||
miR-200a-3p [39] | miR-200a-3p | Elevated levels were significantly associated with poorer OS. | Unclear | Investigational |
miR-335-5p [39] | miR-335-5p | Elevated levels were significantly associated with poorer OS. | Unclear | Investigational |
miR-451a [39] | miR-451a | Elevated levels correlated with improved survival rates. | Unclear | Investigational |
miR-29b-3p [39] | miR-29b-3p | Patients with increased expression showed better survival outcomes. | Unclear | Investigational |
miR-424 [40] | miR-424 | Elevated expression has shown decreased OS and DFS compared to those with low expression. | Unclear | Investigational |
Genomic and Transcriptomic Biomarkers | ||||
11-gene GEP [41] | – | “High-risk” GEP score had significant differences in melanoma-specific survival, distant metastasis-free survival, and RFS compared to “low-risk”. | Unclear | Promising |
CP-GEP [42] The CP-GEP model combines Breslow thickness and patient age, with the expression of eight genes in the primary tumor. | – | High-risk CP-GEP had considerably worse five-year RFS than the low-risk patient group. | Unclear | Promising |
TERT Promoter Mutation [43] | TERT | TERT-mutated melanoma patients had a significantly worse OS. | Unclear | Promising |
Tumor Mutational Burden (TMB) [44,45] | – | High TMB predicts OS after first-line ICIs and PFS. | Unclear | |
BRAF [46,47] | BRAF | The BRAF V600E mutation promotes tumor proliferation and is associated with more aggressive disease, brain metastasis, and shorter survival in patients with advanced melanoma. | Yes | Validated/Used |
NRAS [48,49,50] | NRAS | NRAS mutations are associated with aggressive tumor behavior, increased risk of nodal relapse and metastasis, and poorer outcomes. | Unclear | Promising |
CDKN2A [51,52,53,54] | CDKN2A | Loss or mutation of CDKN2A is linked to earlier melanoma onset, multiple primary melanomas, and worse melanoma-specific survival in unscreened patients. | Unclear | Validated/used |
Tissue Epigenetic Biomarkers (DNA methylation) [55,56,57] | – | Global hypomethylation and specific CpG signatures are associated with tumor aggressiveness and poor survival. | Unclear | Promising |
Long noncoding RNAs (lncRNA) [58,59,60] | – | Altered lncRNA expression is significantly associated with OS; specific lncRNA panels may predict prognosis and ICI therapy response. | Unclear | Investigational |
Immune-related Markers | ||||
PD-L1 [61,62,63] | CD274 | PD-L1 expression is correlated with improved OS. | Yes | Validated/used |
LAG-3 [64,65] | LAG3 | LAG-3 was associated with poor prognosis. | Unclear | Promising |
TIM-3 [66,67,68] | HAVCR2 | High TIM-3 protein expression on tumor-infiltrating lymphocytes is associated with resistance to anti–PD-1 therapy and variable survival outcomes. | Unclear | Promising |
CTLA-4 [69,70,71] | CTLA-4 | CTLA-4 expression is associated with worsened event-free survival. Higher tumor/TIL expression may predict a better response to ipilimumab (anti-CTLA-4). | Unclear | Promising |
MC1R Variants [72,73] | MC1R | Higher MC1R expression was associated with worse OS in primary and metastatic melanomas. | Unclear | Investigational |
FDA-Approved Therapy | Molecular/Genetic Biomarker | Role of Biomarker in Therapy Selection | Predictive Value for Treatment Outcome |
---|---|---|---|
BRAF inhibitors (vemurafenib, dabrafenib, encorafenib) [90,92,93,94] | BRAF V600E/K mutation | Required for therapy selection; only patients with BRAF V600 mutations are eligible | Strong predictor of response; high ORR and PFS improvement with BRAF/MEK inhibitors |
MEK inhibitors (trametinib, cobimetinib, binimetinib) (used in combination with BRAF inhibitors) [90,92,93] | BRAF V600E/K mutation | Used only in combination with BRAF inhibitors in BRAF-mutant melanoma | Combination improves progression-free survival (PFS) and overall survival (OS) vs. BRAF inhibitor alone |
Anti–PD-1 antibodies (pembrolizumab, nivolumab) [90,92,93,95,96,97] | None required; BRAF status not required | Used in all advanced melanoma regardless of mutation status | Predictive biomarkers (PD-L1, tumor mutational burden, TMB) not required for selection; benefit seen across subgroups |
Anti–CTLA-4 antibody (ipilimumab) [90,92,95] | None required | Used in all advanced melanoma regardless of mutation status | No validated predictive biomarker; used alone or in combination with anti–PD-1 |
Oncolytic virus (Talimogene laherparepvec, T-VEC) [90,92] | None required | Used for injectable, unresectable cutaneous, subcutaneous, and nodal lesions | No validated predictive biomarker; best for limited disease burden |
KIT inhibitors (imatinib, off-label use) [95,98] | KIT mutation (rare, acral/mucosal) | Considered in KIT-mutant melanoma (not FDA-approved for melanoma) | KIT mutation predicts response in select cases |
PD-L1 inhibitors (atezolizumab, in combination) [90] | None required | Used in combination with BRAF/MEK inhibitors in BRAF-mutant melanoma | No validated predictive biomarker; PD-L1 expression not required |
Biomarker/Signature | Investigational Status | Potential Clinical Impact |
---|---|---|
LAG-3 expression [63,100] | Early-phase clinical/translational studies; not standard | May predict response/resistance to immune-checkpoint inhibitors (ICIs) |
Circulating tumor DNA (ctDNA) [63,99] | Prospective validation ongoing; translational research | Early detection of relapse; dynamic monitoring of treatment response |
Immune cell phenotyping (TILs, peripheral blood) [63,102] | Under investigation with single-cell and spatial profiling | May stratify prognosis and predict ICI response; not yet validated |
Gut microbiota composition [63,100] | Exploratory clinical studies | Potentially modulates ICI efficacy; not yet actionable |
Gene expression signatures (e.g., allograft rejection, IFN-γ, inflammatory response, E2F/MYC downregulation) [99,103,104] | Identified in transcriptomic studies; validation required | May predict benefit from ICI or targeted therapy; not yet standard |
Mast cell and dendritic cell activation [107] | Multi-omics and translational studies | Negative correlation with ICI response; potential for risk stratification |
Oncogenic pathway enrichment (JAK-STAT, RAS, MAPK, HIF-1, PI3K-Akt, VEGF) [107] | Multi-omics studies; not in clinical use | May predict ICI response or resistance; further validation needed |
MicroRNA and protein expression profiles [105,107] | Identified in omics studies; not validated | Potential predictive/prognostic markers for ICI response |
Intratumor heterogeneity (ITH) [103,107] | Genomic/transcriptomic studies | May predict resistance to immunotherapy; not yet clinically actionable |
Epigenomic signatures (e.g., DNA methylation, chromatin modifiers) [100,106] | Early translational research | May influence ICI response; under investigation |
Tumor-associated antibodies [102] | Single-cell and serological studies | Potential for non-invasive prediction of response; not validated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the European Society of Dermatopathology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fleshner, L.; Sayegh, A.; Atak, M.F.; Hirani, R.; Farabi, B.; Safai, B.; Marmon, S. Molecular and Genetic Markers for Malignant Melanoma: Implications for Prognosis and Therapy. Dermatopathology 2025, 12, 31. https://doi.org/10.3390/dermatopathology12030031
Fleshner L, Sayegh A, Atak MF, Hirani R, Farabi B, Safai B, Marmon S. Molecular and Genetic Markers for Malignant Melanoma: Implications for Prognosis and Therapy. Dermatopathology. 2025; 12(3):31. https://doi.org/10.3390/dermatopathology12030031
Chicago/Turabian StyleFleshner, Lauren, Alyssa Sayegh, Mehmet Fatih Atak, Rahim Hirani, Banu Farabi, Bijan Safai, and Shoshana Marmon. 2025. "Molecular and Genetic Markers for Malignant Melanoma: Implications for Prognosis and Therapy" Dermatopathology 12, no. 3: 31. https://doi.org/10.3390/dermatopathology12030031
APA StyleFleshner, L., Sayegh, A., Atak, M. F., Hirani, R., Farabi, B., Safai, B., & Marmon, S. (2025). Molecular and Genetic Markers for Malignant Melanoma: Implications for Prognosis and Therapy. Dermatopathology, 12(3), 31. https://doi.org/10.3390/dermatopathology12030031