Preliminary Research: Effectiveness of an Intervention Program Based on New Technologies for the Improvement of Cognitive and Motor Processes in Children and Adolescents with ADHD: A Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Variables/Instruments
- -
- Wechsler Intelligence Scale for Children—Fifth Edition (WISC-V): This standardized test assesses a range of cognitive functions in children aged 6–16 years. For this study, we used the Processing Speed Index, which evaluates visual processing and graphomotor speed. The WISC-V has excellent psychometric properties, with internal consistency coefficients ranging from 0.88 to 0.96 and strong construct validity (Wechsler, 2015).
- -
- Stroop Color and Word Test: The STROOP test measures cognitive interference and inhibitory control by evaluating the subject’s ability to inhibit a prepotent response (e.g., reading a word) in favor of a conflicting one (e.g., naming a color). It has demonstrated good reliability (test–retest coefficients around 0.80) and is widely used in clinical neuropsychology (Stroop, 1935).
- -
- CARAS-R (Test of Perception of Similarities and Differences): CARAS-R assesses sustained and selective attention through rapid identification of matching or non-matching schematic faces. It evaluates both accuracy and impulsivity via error and success rates. The instrument shows acceptable internal consistency (α = 0.78–0.84) and strong applicability in pediatric populations (Thurstone & Yela, 2012).
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Practical and Clinical Implications
- High Motivation and Engagement: The use of commercially available gaming technologies like the Nintendo Switch may significantly enhance adherence to neurocognitive therapy in children and adolescents with ADHD due to their strong motivational appeal.
- Complementary Tool: Although no statistically significant differences were found between interventions, observed trends suggest that video game-based therapy can complement traditional approaches by enhancing processing speed, while conventional therapies may be more effective for attention and inhibitory control.
- Group-Based Delivery: Implementing these interventions in group settings may further increase motivation, social engagement, and cost-effectiveness—especially important in clinical or educational contexts with limited resources.
- Accessibility and Scalability: The Nintendo Switch platform offers a low-cost, scalable option for widespread implementation in schools, clinics, or home-based programs, making it particularly suitable for under-resourced environments.
- Clinical Integration: These findings support the integration of gamified digital tools into multimodal ADHD treatment plans as a means of increasing participation, maintaining engagement, and targeting specific cognitive domains.
4.2. Limitations and Future Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADHD | Attention Deficit Hyperactivity Disorder |
WISC-V | Wechsler Intelligence Scale for Children, Fifth Edition |
CARAS | Test of Perception of Similarities and Differences |
STROOP | Stroop Color and Word Test |
EG | Experimental Group |
CG | Control Group |
RCT | Randomized Controlled Trial |
IRB | Institutional Review Board |
References
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing. [Google Scholar]
- Benzing, V., & Schmidt, M. (2019). The effect of exergaming on executive functions in children with ADHD: A randomized clinical trial. Scandinavian Journal of Medicine & Science in Sports, 29(8), 1243–1253. [Google Scholar] [CrossRef]
- Bikic, A., Leckman, J. F., Christensen, T., Bilenberg, N., & Dalsgaard, S. (2018). Attention and executive functions computer training for attention-deficit/hyperactivity disorder (ADHD): Results from a randomized, controlled trial. European Child & Adolescent Psychiatry, 27(12), 1563–1574. [Google Scholar] [CrossRef]
- Bruce, C. R., Unsworth, C. A., Dillon, M. P., Tay, R., Falkmer, T., Bird, P., & Carey, L. M. (2017). Hazard perception skills of young drivers with Attention Deficit Hyperactivity Disorder (ADHD) can be improved with computer based driver training: An exploratory randomised controlled trial. Accident; Analysis and Prevention, 109, 70–77. [Google Scholar] [CrossRef]
- Carrasco-Chaparro, X. (2022). On Attention Deficit Hyperactivity Disorder: Consolidations, updates and perspectives. Revista Medica Clinica Las Condes, 33(5), 440–449. [Google Scholar] [CrossRef]
- Cortese, S., Ferrin, M., Brandeis, D., Buitelaar, J., Daley, D., Dittmann, R. W., Holtmann, M., Santosh, P., Stevenson, J., Stringaris, A., Zuddas, A., & Sonuga-Barke, E. J. S. (2015). Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. Journal of the American Academy of Child and Adolescent Psychiatry, 54(3), 164–174. [Google Scholar] [CrossRef] [PubMed]
- Dovis, S., Van Der Oord, S., Wiers, R. W., & Prins, P. J. M. (2015). Improving executive functioning in children with ADHD: Training multiple executive functions within the context of a computer game. A randomized double-blind placebo controlled trial. PLoS ONE, 10(4), e0121651. [Google Scholar] [CrossRef]
- Faraone, S. V., Newcorn, J. H., Antshel, K. M., Adler, L., Roots, K., & Heller, M. (2016). The groundskeeper gaming platform as a diagnostic tool for attention-deficit/hyperactivity disorder: Sensitivity, specificity, and relation to other measures. Journal of Child and Adolescent Psychopharmacology, 26(8), 672–685. [Google Scholar] [CrossRef]
- García Ron, A., Blasco Fontecilla, H., Huete Hernani, B., & Sabaté, J. (2015). Tratamiento farmacológico estimulante del TDAH. Revista Española de Pediatría: Clínica e Investigación, 71(2), 75–81. [Google Scholar]
- Granic, I., Lobel, A., & Engels, R. C. M. E. (2013). The benefits of playing video games. American Psychologist, 69(1), 66–78. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C., & Park, J. L. (2015). Interventions for attention-deficit hyperactivity disorder: A year in review. Current Developmental Disorders Reports, 2(1), 38–45. [Google Scholar] [CrossRef]
- Johnstone, S. J., Roodenrys, S. J., Johnson, K., Bonfield, R., & Bennett, S. J. (2017). Game-based combined cognitive and neurofeedback training using Focus Pocus reduces symptom severity in children with diagnosed AD/HD and subclinical AD/HD. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 116, 32–44. [Google Scholar] [CrossRef]
- Llanos Lizcano, L. J., García Ruiz, D. J., González Torres, H. J., & Puentes Rozo, P. (2019). Trastorno por déficit de atención e hiperactividad (TDAH) en niños escolarizados de 6 a 17 años. Pediatría Atención Primaria, 21(83), e101–e108. [Google Scholar]
- Lumsden, J., Edwards, E. A., Lawrence, N. S., Coyle, D., & Munafò, M. R. (2016). Gamification of cognitive assessment and cognitive training: A systematic review of applications and efficacy. JMIR Serious Games, 4(2), e11. [Google Scholar] [CrossRef] [PubMed]
- Macia, D. (2012). TDAH en la infancia y la adolescencia: Concepto, evaluación y tratamiento (219p). Piramide Ediciones Sa. [Google Scholar]
- Malhotra, S., Kishore, M. T., & De Sousa, A. (2025). Clinical practice guidelines on cognitive impairment and ADHD—Assessment and management. Indian Journal of Psychiatry, 67(1), 106–116. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J., Sagar, R., Joseph, A. A., Gazzaley, A., & Merzenich, M. M. (2016). Training sensory signal-to-noise resolution in children with ADHD in a global mental health setting. Translational Psychiatry, 6(4), e781. [Google Scholar] [CrossRef]
- Muszynska, M., & Ossmy, O. (2025). A multivariate analysis reveals benefits of specific ADHD characteristics in trial-and-error learning. PsyArXiv. [Google Scholar] [CrossRef]
- Pareja, M. Á. V., & Muñoz, M. d. l. F. R. (2022). Manual de terapia de conducta en la infancia. Available online: https://dialnet.unirioja.es/servlet/libro?codigo=939266 (accessed on 18 August 2025).
- Primack, B. A., Carroll, M. V., McNamara, M., Klem, M. L., King, B., Rich, M., Chan, C. W., & Nayak, S. (2012). Role of video games in improving health-related outcomes. American Journal of Preventive Medicine, 42(6), 630–638. [Google Scholar] [CrossRef]
- Rosa, V. d. O., Schmitz, M., Moreira-Maia, C. R., Wagner, F., Londero, I., Bassotto, C. d. F., Moritz, G., de Souza, C. d. S., & Rohde, L. A. P. (2017). Computerized cognitive training in children and adolescents with attention deficit/hyperactivity disorder as add-on treatment to stimulants: Feasibility study and protocol description. Trends in Psychiatry and Psychotherapy, 39(2), 65–76. [Google Scholar] [CrossRef]
- Rusca-Jordán, F., & Cortez Vergara, C. (2020). Trastorno por déficit de atención con hiperactividad (TDAH) en niños y adolescentes. Una revisión clínica. Revista de Neuro-Psiquiatría: (RNP), 83(3), 148–156. [Google Scholar] [CrossRef]
- Simone, M., Viterbo, R. G., Margari, L., & Iaffaldano, P. (2018). Computer-assisted rehabilitation of attention in pediatric multiple sclerosis and ADHD patients: A pilot trial. BMC Neurology, 18(1), 82. [Google Scholar] [CrossRef]
- Song, X., Hou, Y., Shi, W., Wang, Y., Fan, F., & Hong, L. (2025). Exploring the impact of different types of exercise on working memory in children with ADHD: A network meta-analysis. Frontiers in Psychology, 16, 1522944. [Google Scholar] [CrossRef] [PubMed]
- Sordo, S. Á., Cantero-García, M., Garrido-Hernansaiz, H., Sánchez-Iglesias, I., & Mas, J. S. (2021). Atención sostenida y selectiva en subtipos de TDAH y en trastorno de aprendizaje: Una comparación clínica. Electronic Journal of Research in Education Psychology, 19(53), 117–144. [Google Scholar] [CrossRef]
- Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662. [Google Scholar] [CrossRef]
- Tahiroglu, A. Y., Celik, G. G., Avci, A., Seydaoglu, G., Uzel, M., & Altunbas, H. (2010). Short-term effects of playing computer games on attention. Journal of Attention Disorders, 13(6), 668–676. [Google Scholar] [CrossRef]
- Thurstone, L. L., & Yela, M. (2012). Caras-R. Test de percepción de test de percepción de diferencias—Revisado (11th ed.). Tea. Available online: https://www.hogrefe-tea.com/recursos/Ejemplos/caras-r%20manual_2012.pdf (accessed on 18 August 2025).
- Wechsler, D. (2015). Wechsler intelligence scale for children—Fifth edition (WISC–V). Pearson. [Google Scholar]
- Weerdmeester, J., Cima, M., Granic, I., Hashemian, Y., & Gotsis, M. (2016). A feasibility study on the effectiveness of a full-body videogame intervention for decreasing Attention Deficit Hyperactivity Disorder symptoms. Games for Health Journal, 5(4), 258–269. [Google Scholar] [CrossRef]
- Wolraich, M. L., Hagan, J. F., Allan, C., Chan, E., Davison, D., Earls, M., Evans, S. W., Flinn, S. K., Froehlich, T., Frost, J., Holbrook, J. R., Lehmann, C. U., Lessin, H. R., Okechukwu, K., Pierce, K. L., Winner, J. D., & Zurhellen, W. (2019). Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics, 144(4), e20192528. [Google Scholar] [CrossRef]
Week | Objective | Experimental Group (Nintendo Switch) | Control Group (Traditional Games) |
---|---|---|---|
1 | Baseline assessment, familiarization | “Brain Training” warm-up, guided interface use | Visual attention puzzles, basic instruction games |
2 | Focused attention | “Big Brain Academy” timed tasks | Matching card games, rule-based sorting tasks |
3 | Processing speed | Mini-games with increasing time constraints | Timed maze games, shape sequencing |
4 | Inhibitory control | Tasks with distractors and delayed responses | Simon says, “Don’t clap,” impulse-control game |
5 | Working memory | Number and object recall challenges | Board games with sequence memorization |
6 | Cognitive flexibility | Task-switching games (e.g., color vs. shape rules) | Color–shape card sorting with rule changes |
7 | Integration of skills | Mixed-modality challenges, feedback-based scoring | Combined rule puzzles, cooperative logic games |
8 | Final review and consolidation | Replay of prior challenges, therapist feedback | Repetition of previous games, strategy reflection |
Control Group (n = 16) Experimental Group (n = 17) | Pre-Treatment Mean ± SD (Score) | Post-Treatment Mean ± SD (Score) | Intragroup Mean Difference (Δ) with 95% Confidence Interval (CI) | Pre-Post Treatment Effect Size (d) | Pre-Post Treatment p Value | |
---|---|---|---|---|---|---|
Compulsivity index (CARAS test) | Control | 82.8 ± 16.8 | 89.9 ± 20.8 | 10.4 (−20.5, 0.75) | −0.343 | 0.06 ττ |
Experimental | 90.4 ± 10.3 | 90.8 ± 16.2 | 2.25 (−12.5, 7.65) | −0.12 | 0.71 ττ | |
CARAS interpretation | Control | 2.06 ± 0.68 | 2.44 ± 0.73 | 1.00 (1.00, 1.00) | −1.00 | 0.03 τ* |
Experimental | 1.88 ± 0.49 | 2.00 ± 0.61 | 4.31 (−1.00, 1.98) | −0.33 | 0.43 τ | |
Interference (STROOP test) | Control | 1.19 ± 6.55 | 6.02 ± 6.51 | 6.33 (−9.26, −0.27) | −0.60 | 0.02 τ* |
Experimental | 0.35 ± 6.31 | 1.99 ± 13.4 | 2.17 (−7.17, 3.66) | −0.28 | 0.63 τ | |
STROOP interpretation | Control | 1.19 ± 6.55 | 2.19 ± 0.66 | 1.00 (−1.00, −6.72) | −0.43 | 0.27 τ |
Experimental | 0.35 ± 6.31 | 2.00 ± 0.79 | 1.93 (−1.00, 1.00) | 0.20 | 0.58 τ | |
WISC-V TEST | Control | 87.8 ± 15.4 | 92.3 ± 19.4 | 7.00 (−11.50, 3.00) | −0.35 | 0.17 τ |
Experimental | 96.0 ± 14.3 | 107 ± 16.3 | 12.00 (−17.00, −7.00) | −0.98 | 0.001 τ* | |
WISC-V interpretation | Control | 3.06 ± 1.34 | 3.50 ± 1.32 | 1.00 (−1.50, 0.5) | −0.53 | 0.11 τ |
Experimental | 3.76 ± 1.15 | 4.41 ± 1.06 | 1.00 (−1.50, −1.00) | −0.71 | 0.02 τ* |
Intergroup Mean Difference (Δ) with 95% Confidence Interval (CI) | Pre-Post Treatment p Value | |
---|---|---|
Compulsivity index (CARAS Test) | −6.06 (−16.5, 2.30) | 0.18 ττ |
CARAS interpretation | −0.26 (−0.69, 0.18) | 0.24 τ |
Interference (STROOP test) | −3.52 (−8.73, 3.28) | 0.41 τ |
STROOP interpretation | −0.31 (−0.85, 0.24) | 0.26 τ |
WISC-V TEST | 5.00 (−3.00, 12.00) | 0.11 τ |
WISC-V interpretation | 0.21 (−0.51, 0.93) | 0.56 τ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the University Association of Education and Psychology. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caro-Puértolas, B.; Báez-Tavero, I.; Lemus-Corchero, L.; Rodríguez-Ruiz, L.; Cerezo-Casillas, C.E.; Cosa-Aguirre, A.I.; Apolo-Arenas, M.D.; Caña-Pino, A. Preliminary Research: Effectiveness of an Intervention Program Based on New Technologies for the Improvement of Cognitive and Motor Processes in Children and Adolescents with ADHD: A Randomized Controlled Trial. Eur. J. Investig. Health Psychol. Educ. 2025, 15, 167. https://doi.org/10.3390/ejihpe15090167
Caro-Puértolas B, Báez-Tavero I, Lemus-Corchero L, Rodríguez-Ruiz L, Cerezo-Casillas CE, Cosa-Aguirre AI, Apolo-Arenas MD, Caña-Pino A. Preliminary Research: Effectiveness of an Intervention Program Based on New Technologies for the Improvement of Cognitive and Motor Processes in Children and Adolescents with ADHD: A Randomized Controlled Trial. European Journal of Investigation in Health, Psychology and Education. 2025; 15(9):167. https://doi.org/10.3390/ejihpe15090167
Chicago/Turabian StyleCaro-Puértolas, Berta, Inmaculada Báez-Tavero, Laura Lemus-Corchero, Laura Rodríguez-Ruiz, Celia Esther Cerezo-Casillas, Ana Inés Cosa-Aguirre, María Dolores Apolo-Arenas, and Alejandro Caña-Pino. 2025. "Preliminary Research: Effectiveness of an Intervention Program Based on New Technologies for the Improvement of Cognitive and Motor Processes in Children and Adolescents with ADHD: A Randomized Controlled Trial" European Journal of Investigation in Health, Psychology and Education 15, no. 9: 167. https://doi.org/10.3390/ejihpe15090167
APA StyleCaro-Puértolas, B., Báez-Tavero, I., Lemus-Corchero, L., Rodríguez-Ruiz, L., Cerezo-Casillas, C. E., Cosa-Aguirre, A. I., Apolo-Arenas, M. D., & Caña-Pino, A. (2025). Preliminary Research: Effectiveness of an Intervention Program Based on New Technologies for the Improvement of Cognitive and Motor Processes in Children and Adolescents with ADHD: A Randomized Controlled Trial. European Journal of Investigation in Health, Psychology and Education, 15(9), 167. https://doi.org/10.3390/ejihpe15090167