DNA Vaccines: Roles Against Diseases
Abstract
Introduction
Construction of DNA vaccines
Strategies for DNA vaccines
Advantages and disadvantages of DNA vaccines
Applications of DNA vaccines
DNA vaccines against cancer
DNA vaccines against tuberculosis
DNA vaccines against Edwardsiella tarda
DNA vaccines against HIV
DNA vaccines against anthrax
DNA vaccines against influenza
DNA vaccine and malaria
DNA vaccine against dengue
DNA vaccine against typhoid
Other diseases
Guidance on prophylactic DNA vaccines
Conclusion
Acknowledgments
Conflicts of Interest
References
- Wolff, J.A.; Malone, R.W.; Williams, P.; et al. Direct gene transfer into mouse muscle in vivo. Science 1990, 247 Pt 1, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Chow, Y.H.; Chiang, B.L.; Lee, Y.L.; et al. Development of Th1 and Th2 populations and the nature of immune responses to hepatitis B virus DNA vaccines can be modulated by codelivery of various cytokine genes. J. Immunol. 1998, 160, 1320–1329. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef]
- Klinman, D.M.; Yamshchikov, G.; Ishigatsubo, Y. Contribution of CpG motifs to the immunogenicity of DNA vaccines. J Immunol. 1997, 158, 3635–3639. [Google Scholar]
- Khan, K.H. Vectors Used in Gene Manipulation—A retrospective. Advanced Biotech Journal—Online. Tutor. Rev. 2009, 9, 1–8. [Google Scholar]
- Khan, K.H. Gene transfer technologies in plants: Roles in improving crops. Recent Res. Sci. Technol. 2009, 1, 116–123. [Google Scholar]
- Khan, K.H. Gene transfer technologies leading to transgenic animals. J. Ecobiotechnology 2009, 1, 32–40. [Google Scholar]
- Khan, K.H. Gene Transfer Technologies and their Applications: Roles in Human Diseases. Asian J. Exp. Biol. Sci. 2010, 1, 208–218. [Google Scholar]
- Manthorpe, M.; Cornefert-Jensen, F.; Hartikka, J.; et al. Gene therapy by intramuscular injection of plasmid DNA: Studies on firefly luciferase gene expression in mice. Hum Gene Ther. 1993, 4, 419–431. [Google Scholar] [CrossRef]
- Condon, C.; Watkins, S.C.; Celluzzi, C.M.; et al. DNA-based immunization by in vivo transfection of dendritic cells. Nat Med. 1996, 2, 1122–1128. [Google Scholar] [CrossRef]
- Mor, G.; Klinman, D.M.; Shapiro, S.; et al. Complexity of the cytokine and antibody response elicited by immunizing mice with Plasmodium yoelii circumsporozoite protein plasmid DNA. J Immunol. 1995, 155, 2039–2046. [Google Scholar] [PubMed]
- Casares, S.; Inaba, K.; Brumeanu, T.D.; et al. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med. 1997, 186, 1481–1486. [Google Scholar] [CrossRef]
- Corr, M.; Lee, D.J.; Carson, D.A.; et al. Gene vaccination with naked plasmid DNA: Mechanism of CTL priming. J Exp Med. 1996, 184, 1555–1560. [Google Scholar] [CrossRef]
- Doe, B.; Selby, M.; Barnett, S.; et al. Induction of cytotoxic T lymphocytes by intramuscular immunization with plasmid DNA is facilitated by bone marrow-derived cells. Proc Natl Acad Sci USA 1996, 93, 8578–8583. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Deck, R.R.; Dewitt, C.M.; et al. Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: Antigen presentation by non-muscle cells. Immunology 1996, 89, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Corr, M.; von Damm, A.; Lee, D.J.; et al. In vivo priming by DNA injection occurs predominantly by antigen transfer. J Immunol. 1999, 163, 4721–4727. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.M.; Ulmer, J.B.; Caulfield, M.J.; et al. Priming of cytotoxic T lymphocytes by DNA vaccines: Requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med. 1997, 3, 362–371. [Google Scholar] [CrossRef]
- Cheng, W.F.; Hung, C.F.; Chen, C.A. Characterization of DNA vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine 2005, 23, 3864–3874. [Google Scholar] [CrossRef]
- Alarcon, J.B.; Waine, G.W.; McManus, D.P. DNA vaccines: Technology and application as anti-parasite and antimicrobial agents. Adv Parasitol. 1999, 42, 343–410. [Google Scholar] [CrossRef]
- Smooker, P.M.; Rainczuk, A.; Kennedy, N.; et al. DNA vaccines and their application against parasites--promise, limitations and potential solutions. Biotechnol Annu Rev. 2004, 10, 189–236. [Google Scholar] [CrossRef]
- Kennedy, N.J.; Spithill, T.W.; Tennent, J. DNA vaccines in sheep: CTLA-4 mediated targeting and CpG motifs enhance immunogenicity in a DNA prime/protein boost strategy. Vaccine 2006, 24, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Male, D.; Brostoff, J.; Roth, D.B.; Roitt, I. Immunology, 7th Edition, Vaccination, Chapter 18 (p325-40), MOSBY Elsevier, 2006.
- Kindt, T.J.; Goldsby, R.A.; Osborne, B.A. Sixth Edition, Kuby Immunology. Vaccines Chapter 19 (p475-92), W.H.Freeman and Co, New York. 2007.
- Li, L.; Saade, F.; Petrovsky, N. The future of human DNA vaccines. J Biotechnol. 2012, 162, 171–182. [Google Scholar] [CrossRef]
- Khan, F.A. The elements of immunology. Vaccines, Chapter 16 (p343-59). Chennai Microprint, India, 2009.
- Doria-Rose, N.A.; Haigwood, N.L. DNA vaccine strategies: Candidates for immune modulation and immunization regimens. Methods 2003, 31, 207–216. [Google Scholar] [CrossRef]
- Sasaki, S.; Takeshita, F.; Xin, K.Q.; et al. Adjuvant formulations and delivery systems for DNA vaccines. Methods 2003, 31, 243–254. [Google Scholar] [CrossRef]
- Robinson, H.L.; Pertmer, T.M. DNA vaccines for viral infections: Basic studies and applications. Adv Virus Res. 2000, 55, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hu, Y.H.; Liu, C.S.; et al. Construction and analysis of an experimental Streptococcus iniae DNA vaccine. Vaccine 2010, 28, 3905–3912. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.L.; Barnett, P.V. Progress in the development of DNA vaccines against foot-and-mouth disease. Expert Rev Vaccines. 2012, 11, 481–493. [Google Scholar] [CrossRef]
- Kim, D.; Hung, C.F.; Wu, T.C.; et al. DNA vaccine with αgalactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine 2010, 28, 7297–7305. [Google Scholar] [CrossRef]
- Bharadwaj, M.; Hussain, S.; Nasare, V.; et al. HPV & HPV vaccination: Issues in developing countries. Indian J Med Res. 2009, 130, 327–333. [Google Scholar]
- Poláková, I.; Pokorná, D.; Dusková, M.; et al. DNA vaccine against human papillomavirus type 16: Modifications of the E6 oncogene. Vaccine 2010, 28, 1506–1513. [Google Scholar] [CrossRef]
- Changhong, S.; Hai, Z.; Limei, W.; et al. Therapeutic efficacy of a tuberculosis DNA vaccine encoding heat shock protein 65 of Mycobacterium tuberculosis and the human interleukin 2 fusion gene. Tuberculosis (Edinb). 2009, 89, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ma, H.; Qu, Q. Incorporation of immunostimulatory motifs in the transcribed region of a plasmid DNA vaccine enhances Th1 immune responses and therapeutic effect against Mycobacterium tuberculosis in mice. Vaccine 2011, 29, 7624–7630. [Google Scholar] [CrossRef]
- Hu, D.; Wu, J.; Zhang, R.; et al. T-bet acts as a powerful adjuvant in Ag85B DNA-based vaccination against tuberculosis. Mol Med Report. 2012, 6, 139–144. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Xiong, S. A novel tuberculosis DNA vaccine in an HIV-1 p24 protein backbone confers protection against Mycobacterium tuberculosis and simultaneously elicits robust humoral and cellular responses to HIV-1. Clin Vaccine Immunol. 2012, 19, 723–730. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. Infections associated with the genus Edwardsiella: The role of Edwardsiella tarda in human disease. Clin Infect Dis. 1993, 17, 742–748. [Google Scholar] [CrossRef]
- Slaven, E.M.; Lopez, F.A.; Hart, S.M.; et al. Myonecrosis caused by Edwardsiella tarda: A case report and case series of extraintestinal E. tarda infections. Clin Infect Dis. 2001, 32, 1430–1433. [Google Scholar] [CrossRef]
- Jiao, X.D.; Zhang, M.; Hu, Y.H. Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens. Vaccine 2009, 27, 5195–5202. [Google Scholar] [CrossRef]
- Boyapalle, S.; Mohapatra, S.; Mohapatra, S. Nanotechnology applications to HIV vaccines and microbicides. J Glob Infect Dis. 2012, 4, 62–68. [Google Scholar] [CrossRef]
- Hutnick, N.A.; Myles, D.J.; Bian, C.B.; et al. Selected approaches for increasing HIV DNA vaccine immunogenicity in vivo. Curr Opin Virol. 2011, 1, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Streinu-Cercel, A. Nanoparticles. GERMS 2012, 2, 90. [Google Scholar] [CrossRef] [PubMed]
- Munang’andu, H.M.; Banda, F.; Chikampa, W. Risk analysis of an anthrax outbreak in cattle and humans of Sesheke district of Western Zambia. Acta Trop. 2012, 124, 162–165. [Google Scholar] [CrossRef]
- Chitlaru, T.; Altboum, Z.; Reuveny, S. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev. 2011, 239, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Bhatnagar, R. Recent progress in the development of anthrax vaccines. Recent Pat Biotechnol. 2011, 5, 148–159. [Google Scholar] [CrossRef]
- Albrecht, M.T.; Eyles, J.E.; Baillie, L.W. Immunogenicity and efficacy of an anthrax/plague DNA fusion vaccine in a mouse model. FEMS Immunol Med Microbiol. 2012, 65, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Klimov, A.I.; Garten, R.; Russell, C.; et al. WHO recommendations for the viruses to be used in the 2012 Southern Hemisphere Influenza Vaccine: Epidemiology, antigenic and genetic characteristics of influenza A(H1N1)pdm09, A(H3N2) and B influenza viruses collected from February to September 2011. Vaccine 2012, 30, 6461–6471. [Google Scholar] [CrossRef]
- Drape, R.J.; Macklin, M.D.; Barr, L.J.; et al. Epidermal DNA vaccine for influenza is immunogenic in humans. Vaccine 2006, 24, 4475–4481. [Google Scholar] [CrossRef]
- Donnelly, J.J.; Friedman, A.; Martinez, D.; et al. Preclinical efficacy of a prototype DNA vaccine: Enhanced protection against antigenic drift in influenza virus. Nat Med. 1995, 1, 583–587. [Google Scholar] [CrossRef]
- Zhao, K.; Shi, X.; Zhao, Y.; et al. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine 2011, 29, 8549–8556. [Google Scholar] [CrossRef]
- Park, K.S.; Seo, Y.B.; Lee, J.Y.; et al. Complete protection against a H5N2 avian influenza virus by a DNA vaccine expressing a fusion protein of H1N1 HA and M2e. Vaccine 2011, 29, 5481–5487. [Google Scholar] [CrossRef]
- WHO Media Centre. Malaria. Fact sheet No.94. 2012. Accessed on: November 2, 2012. Available at: http://www.who.int/mediacentre/factsheets/fs094/en/.
- Kumar, A.; Chery, L.; Biswas, C.; et al. Malaria in South Asia: Prevalence and control. Acta Trop. 2012, 121, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Cherif, M.S.; Shuaibu, M.N.; Kurosaki, T.; et al. Immunogenicity of novel nanoparticle-coated MSP-1 C-terminus malaria DNA vaccine using different routes of administration. Vaccine 2011, 29, 9038–9050. [Google Scholar] [CrossRef]
- Bergmann-Leitner, E.S.; Leitner, W.W.; Duncan, E.H.; et al. Molecular adjuvants for malaria DNA vaccines based on the modulation of host-cell apoptosis. Vaccine 2009, 27, 5700–5708. [Google Scholar] [CrossRef]
- Sedegah, M.; Rogers, W.O.; Belmonte, M.; et al. Vaxfectin enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 2010, 28, 3055–3065. [Google Scholar] [CrossRef]
- Solomons, H.D.; Joubert, C.G.; Beichter, B.; et al. The winding road to developing a malaria vaccine. Study hypothesis. GERMS 2012, 2, 91–94. [Google Scholar] [CrossRef]
- Wright, W.F.; Pritt, B.S. Update: The diagnosis and management of dengue virus infection in North America. Diagn Microbiol Infect Dis. 2012, 73, 215–220. [Google Scholar] [CrossRef]
- Lorenz, I.C.; Allison, S.L.; Heinz, F.X.; et al. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol. 2002, 76, 5480–5491. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kuhn, R.J.; Rossmann, M.G. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005, 3, 13–22. [Google Scholar] [CrossRef]
- Danko, J.R.; Beckett, C.G.; Porter, K.R. Development of dengue DNA vaccines. Vaccine 2011, 29, 7261–7266. [Google Scholar] [CrossRef]
- Hughes, H.R.; Crill, W.D.; Davis, B.S.; et al. A West Nile virus CD4 T cell epitope improves the immunogenicity of dengue virus serotype 2 vaccines. Virology 2012, 424, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Porter, K.R.; Ewing, D.; Chen, L.; et al. Immunogenicity and protective efficacy of a vaxfectin-adjuvanted tetravalent dengue DNA vaccine. Vaccine 2012, 30, 336–341. [Google Scholar] [CrossRef]
- Dhanashekar, R.; Akkinepalli, S.; Nellutla, A. Milk-borne infections. An analysis of their potential effect on the milk industry. GERMS 2012, 2, 101–109. [Google Scholar] [CrossRef]
- Khan, K.H. Recent trends in typhoid research-a review. Int. J. Biosci. 2012, 2, 110–120. [Google Scholar]
- Khan, K.H. Emblica officinalis reduces the initiation of oxidative stress by Salmonella typhimurium in mice and can be used in typhoid. Lat Am J Pharm. 2010, 29, 171–177. [Google Scholar]
- Khan, K.H. Protective effect of Emblica officinalis against S typhimurium through its antioxidant activity. Recent Res. Sci. Technol. 2010, 2, 29–36. [Google Scholar]
- Khan, K.H. Immunomodulatory activity of Terminalia chebula against Salmonella typhimurium in mice. Recent Res. Sci. Technology. 2009, 1, 211–216. [Google Scholar]
- Khan, K.H.; Ganjewala, D.; Jain, S.K. Pretreatment with Emblica officinalis can reduce typhoid risk. Trendz BioTech 2008, 4, 15–21. [Google Scholar]
- Khan, K.H. Terminalia chebula reduces the oxidative stress induced by salmonella typhimurium in mice and may reduce the risk of getting typhoid. Adv. Biol. Res. 2009, 3, 1–8. [Google Scholar]
- Khan, K.H. Roles of Emblica officinalis in medicine—A review. Bot. Res. Int. 2009, 2, 218–228. [Google Scholar]
- Khan, K.H. The effect of regular intake of Terminalia chebula on oxidative stress in mice originated from Salmonella typhimurium. EurAsia J BioSci. 2009, 3, 113–121. [Google Scholar] [CrossRef]
- Khan, K.H.; Jain, S.K. Regular intake of Terminalia chebula can reduce the risk of getting typhoid fever. Adv. Biotech. 2009, 8, 10–15. [Google Scholar]
- Khan, K.H.; Ganjewala, D. Recent advancement in typhoid research—A review. Adv. Biotech. 2008, 7, 35–41. [Google Scholar]
- Khan, K.H.; Prasad, B.N.; Ganjewala, D.; Jain, S.K. Efficacy of lyophilized juice of Emblica officinalis against experimentally induced salmonellosis. Recent Adv. Biotechnol. 2008, 136–143. [Google Scholar]
- Khan, K.H.; Madani, A.; Jain, S.K. Infectious diseases and herbal drugs. Compendium of Invited lectures. World Ayurveda Congr. 2002, 64–76. [Google Scholar]
- Khan, K.H.; Jain, S.K. Medicinal Plants a retrospective. Hamdard Med. 2003, XLVI, 23–33. [Google Scholar]
- Marathe, S.A.; Lahiri, A.; Negi, V.D.; et al. Typhoid fever & vaccine development: A partially answered question. Indian J Med Res. 2012, 135, 161–169. [Google Scholar]
- Brocato, R.; Josleyn, M.; Ballantyne, J.; et al. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS). PLoS ONE 2012, 7, e35996. [Google Scholar] [CrossRef] [PubMed]
- Masih, S.; Arora, S.K.; Vasishta, R.K. Efficacy of Leishmania donovani ribosomal P1 gene as DNA vaccine in experimental visceral leishmaniasis. Exp Parasitol. 2011, 129, 55–64. [Google Scholar] [CrossRef]
- Zeng, Q.; Gomez, B.P.; Viscidi, R.P.; et al. Development of a DNA vaccine targeting Merkel cell polyomavirus. Vaccine 2012, 30, 1322–1329. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Liu, C.; et al. A divalent DNA vaccine based on Sia10 and OmpU induces cross protection against Streptococcus iniae and Vibrio anguillarum in Japanese flounder. Fish Shellfish Immunol. 2012, 32, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Klinman, D.M.; Klaschik, S.; Tross, D. FDA guidance on prophylactic DNA vaccines: Analysis and recommendations. Vaccine 2010, 28, 2801–2805. [Google Scholar] [CrossRef] [PubMed]

| Advantages of DNA vaccines | References |
| Inexpensive | [27] |
| Long-term persistence of immunogenicity | [19] |
| Subunit vaccination with no risk for infection | [28] |
| Antigen presentation by both MHC class I and class II molecules | [28] |
| Ability to polarize T-cell help toward type 1 or type 2 | [28] |
| Ease of development and production | [27,28] |
| Immune response focused only on antigen of interest | [23] |
| Stability of vaccine for storage and shipping | [25] |
| In vivo expression ensures that the protein resembles the normal eukaryotic structure more closely, with accompanying post-translational modifications | [19] |
| DNA vaccines are safer, more stable, and easy to handle | [29] |
| DNA vaccines induce protective humoral and cellular immune responses | [30] |
| DNA vaccines are heat stable | [27] |
| A mixture of plasmids could be used to form a broad spectrum vaccine | [25] |
| Disadvantages of DNA vaccines | References |
| Limited to protein immunogens (not useful for non-protein based antigens such as bacterial polysaccharides). Certain vaccines, such as those for pneumococcal and meningococcal infections, use protective polysaccharide antigens | [23] |
| Inducing antibody production against DNA | [25] |
| May induce immunologic tolerance by antigens expressed inside host body | [25] |
| DNA vaccines may have a relatively poor immunogenicity | [31] |
| Atypical processing of bacterial and parasite proteins | [28] |
| Insertion of foreign DNA into the host genome may cause the cell to become cancerous | [25] |
| Name of DNA vaccine | Antigen against which the DNA vaccine was directed | System in which the DNA vaccine was experimented | References |
| PCE6 | Eta6 | Fish | [40] |
| PCE18 | FliC | Fish | [40] |
| S iniae DNA vaccine in the form of plasmid pSia10 | Sia10 | Fish (turbot model—Scophthalmus maximus) | [83] |
| pcDNA3-LT DNA vaccine | MCPyV large T antigen (LT) (aa1-258) | Mice | [82] |
| pIDSia10 | Sia10 | Fish | [83] |
| pIDOmpU | OmpU | Fish | [83] |
| pSiVa1 | Sia10 and OmpU | Fish | [83] |
© GERMS 2013.
Share and Cite
Khan, K.H. DNA Vaccines: Roles Against Diseases. GERMS 2013, 3, 26-35. https://doi.org/10.11599/germs.2013.1034
Khan KH. DNA Vaccines: Roles Against Diseases. GERMS. 2013; 3(1):26-35. https://doi.org/10.11599/germs.2013.1034
Chicago/Turabian StyleKhan, Kishwar Hayat. 2013. "DNA Vaccines: Roles Against Diseases" GERMS 3, no. 1: 26-35. https://doi.org/10.11599/germs.2013.1034
APA StyleKhan, K. H. (2013). DNA Vaccines: Roles Against Diseases. GERMS, 3(1), 26-35. https://doi.org/10.11599/germs.2013.1034
