COVID-19: The Pseudo-Environment and the Need for a Paradigm Change
Funding
Conflicts of Interest
References
- Liu, C.; Zhou, Q.; Li, Y.; et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020, 6, 315–331. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.P.; Gupta, V. COVID-19 vaccine: A comprehensive status report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, E.; Genovese, C.; Tettamanzi, M.; Fappani, C.; Raviglione, M.C.; Amendola, A. COVID-19 vaccines: Evidence, challenges and the future. J Prev Med Hyg. 2021, 62, E18–E29. [Google Scholar]
- Lythgoe, M.P.; Middleton, P. Comparison of COVID-19 vaccine approvals at the US Food and Drug Administration, European Medicines Agency, and Health Canada. JAMA Netw Open. 2021, 4, e2114531. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA approves first COVID-19 vaccine. 2021. Available online: https://www.fda.gov/news-events/press- announcements/fda-approves-first-covid-19-vaccine (accessed on 13 October 2021).
- Woodworth, K.R.; Moulia, D.; Collins, J.P.; et al. The Advisory Committee on Immunization Practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 vaccine in children aged 5-11 years—United States, November 2021. MMWR Morb Mortal Wkly Rep. 2021, 70, 1579–1583. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Brown, E.S.; Cheeseman, H.M.; et al. Vaccines for COVID-19. Clin Exp Immunol. 2020, 202, 162–192. [Google Scholar] [CrossRef]
- Yi, Y.; Lagniton, P.N.P.; Ye, S.; Li, E.; Xu, R.H. COVID-19, what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci. 2020, 16, 1753–1766. [Google Scholar] [CrossRef]
- Bhat, E.A.; Khan, J.; Sajjad, N.; et al. SARS-CoV-2, insight in genome structure, pathogenesis and viral receptor binding analysis—An updated review. Int Immunopharmacol. 2021, 95, 107493. [Google Scholar] [CrossRef]
- Deplanque, D.; Launay, O. Efficacy of COVID-19 vaccines: From clinical trials to real life. Therapie. 2021, 76, 277–283. [Google Scholar] [CrossRef]
- Kuter, B.J.; Offit, P.A.; Poland, G.A. The development of COVID-19 vaccines in the United States: Why and how so fast? Vaccine. 2021, 39, 2491–2495. [Google Scholar] [CrossRef]
- Forman, R.; Anderson, M.; Jit, M.; Mossialos, E. Ensuring access and affordability through COVID-19 vaccine research and development investments: A proposal for the options market for vaccines. Vaccine. 2020, 38, 6075–6077. [Google Scholar] [CrossRef]
- Lurie, N.; Keusch, G.T.; Dzau, V.J. Urgent lessons from COVID 19, why the world needs a standing, coordinated system and sustainable financing for global research and development. Lancet. 2021, 397, 1229–1236. [Google Scholar] [CrossRef]
- Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat Rev Drug Discov. 2021, 20, 817–838. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Thanh Le, T.; Andreadakis, Z.; Kumar, A.; et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020, 19, 305–306. [Google Scholar] [CrossRef]
- Hanney, S.R.; Wooding, S.; Sussex, J.; Grant, J. From COVID-19 research to vaccine application: Why might it take 17 months not 17 years and what are the wider lessons? Health Res Policy Syst. 2020, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing COVID-19 vaccines at pandemic speed. N Engl J Med. 2020, 382, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Krammer, F. SARS-CoV-2 vaccines in development. Nature. 2020, 586, 516–527. [Google Scholar] [CrossRef]
- Hodgson, J. The pandemic pipeline. Nat Biotechnol. 2020, 38, 523–532. [Google Scholar] [CrossRef]
- Damase, T.R.; Sukhovershin, R.; Boada, C.; Taraballi, F.; Pettigrew, R.I.; Cooke, J.P. The limitless future of RNA therapeutics. Front Bioeng Biotechnol. 2021, 9, 628137. [Google Scholar] [CrossRef]
- Maruggi, G.; Zhang, C.; Li, J.; Ulmer, J.B.; Yu, D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol Ther. 2019, 27, 757–772. [Google Scholar] [CrossRef]
- Hakim, M.S. SARS-CoV-2, Covid-19, and the debunking of conspiracy theories. Rev Med Virol. 2021, 31, e2222. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, K.S.; Tahir, M.J.; Ahmed, A.; Harapan, H. Myths and conspiracy theories on vaccines and COVID- 19, potential effect on global vaccine refusals. Vacunas. 2021, 22, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.O.; Akaito, J.A.; Joseph, I.; David, K.B. COVID-19, the trends of conspiracy theories vs. facts. Pan Afr Med, J. 2020, 35, 147. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Sarkar, T.; Khan, S.H.; et al. COVID-19-related infodemic and its impact on public health: A global social media analysis. Am J Trop Med Hyg. 2020, 103, 1621–1629. [Google Scholar] [CrossRef]
- Ahmed, W.; Vidal-Alaball, J.; Downing, J.; López Seguí, F. COVID-19 and the 5G conspiracy theory: Social network analysis of Twitter data. J Med Internet Res. 2020, 22, e19458. [Google Scholar] [CrossRef]
- Wirawan, G.B.S.; Mahardani, P.N.T.Y.; Cahyani, M.R.K.; Laksmi NLPSP, Januraga, P.P. Conspiracy beliefs and trust as determinants of COVID-19 vaccine acceptance in Bali, Indonesia: Cross-sectional study. Pers Individ Dif. 2021, 180, 110995. [Google Scholar] [CrossRef]
- Li, H.O.; Bailey, A.; Huynh, D.; Chan, J. YouTube as a source of information on COVID-19, a pandemic of misinformation? BMJ Glob Health. 2020, 5, e002604. [Google Scholar] [CrossRef]
- Mian, A.; Khan, S. Coronavirus: The spread of misinformation. BMC Med. 2020, 18, 89. [Google Scholar] [CrossRef]
- Merone, L.; Finlay, S. Pandemic and promise: Progress towards finding an effective treatment for novel coronavirus 19. Aust N Z J Public Health. 2020, 44, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Carrion-Alvarez, D.; Tijerina-Salina, P.X. Fake news in COVID-19, a perspective. Health Promot Perspect. 2020, 10, 290–291. [Google Scholar] [CrossRef]
- Machiels, J.D.; Ter Avest, M.; Ten Oever, J.; Kramers, C. [Chloroquine for COVID-19, a hype or not? ]. Ned Tijdschr Geneeskd. 2020, 164, D5475. [Google Scholar]
- Kahane, L.H. Politicizing the mask: Political, economic and demographic factors affecting mask wearing behavior in the USA. East Econ, J. 2021, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.C. Are face masks a partisan issue during the COVID-19 pandemic? Differentiating political ideology and political party affiliation. Int J Psychol. 2021. [CrossRef]
- He, L.; He, C.; Reynolds, T.L.; et al. Why do people oppose mask wearing? A comprehensive analysis of U.S. tweets during the COVID-19 pandemic. J Am Med Inform Assoc. 2021, 28, 1564–1573. [Google Scholar] [CrossRef]
- Lang, J.; Erickson, W.W.; Jing-Schmidt, Z. #MaskOn! #MaskOff! Digital polarization of mask-wearing in the United States during COVID-19. PLoS ONE. 2021, 16, e0250817. [Google Scholar] [CrossRef]
- Leung, N.H.L.; Chu, D.K.W.; Shiu, E.Y.C.; et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020, 26, 676–680. [Google Scholar] [CrossRef]
- Cowling, B.J.; Zhou, Y.; Ip, D.K.; Leung, G.M.; Aiello, A.E. Face masks to prevent transmission of influenza virus: A systematic review. Epidemiol Infect. 2010, 138, 449–456. [Google Scholar] [CrossRef]
- Bin-Reza, F.; Lopez Chavarrias, V.; Nicoll, A.; Chamberland, M.E. The use of masks and respirators to prevent transmission of influenza: A systematic review of the scientific evidence. Influenza Other Respir Viruses. 2012, 6, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Gao, L.; Cheng, C.; et al. Efficacy of face mask in preventing respiratory virus transmission: A systematic review and meta-analysis. Travel Med Infect Dis. 2020, 36, 101751. [Google Scholar] [CrossRef] [PubMed]
- Brienen, N.C.; Timen, A.; Wallinga, J.; van Steenbergen, J.E.; Teunis, P.F. The effect of mask use on the spread of influenza during a pandemic. Risk Anal. 2010, 30, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Ueki, H.; Furusawa, Y.; Iwatsuki-Horimoto, K.; et al. Effectiveness of face masks in preventing airborne transmission of SARS-CoV-2. mSphere. 2020, 5, e00637–e20. [Google Scholar] [CrossRef] [PubMed]
- Mitze, T.; Kosfeld, R.; Rode, J.; Wälde, K. Face masks considerably reduce COVID-19 cases in Germany. Proc Natl Acad Sci U S A. 2020, 117, 32293–32301. [Google Scholar] [CrossRef]
- Wang, J.; Pan, L.; Tang, S.; Ji, J.S.; Shi, X. Mask use during COVID-19, a risk adjusted strategy. Environ Pollut. 2020, 266, 115099. [Google Scholar] [CrossRef]
- Panda, S.; Kaur, H.; Dandona, L.; Bhargava, B. Face mask -an essential armour in the fight of India against COVID-19. Indian J Med Res. 2021, 153, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Tsang, P.M.; Prost, A. Boundaries of solidarity: A meta- ethnography of mask use during past epidemics to inform SARS-CoV-2 suppression. BMJ Glob Health. 2021, 6, e004068. [Google Scholar] [CrossRef]
- Burgess, A.; Horii, M. Risk, ritual and health responsibilisation: Japan’s ‘safety blanket’ of surgical face mask-wearing. Sociol Health Illn. 2012, 34, 1184–1198. [Google Scholar] [CrossRef]
- Robinson, E.; Jones, A.; Lesser, I.; Daly, M. International estimates of intended uptake and refusal of COVID-19 vaccines: A rapid systematic review and meta-analysis of large nationally representative samples. Vaccine. 2021, 39, 2024–2034. [Google Scholar] [CrossRef]
- Daly, M.; Robinson, E. Willingness to vaccinate against COVID-19 in the U. S.: Representative longitudinal evidence from April to October 2020. Am J Prev Med. 2021, 60, 766–773. [Google Scholar] [CrossRef]
- Paul, E.; Steptoe, A.; Fancourt, D. Attitudes towards vaccines and intention to vaccinate against COVID-19, implications for public health communications. Lancet Reg Health Eur. 2021, 1, 100012. [Google Scholar] [CrossRef]
- Holder, J. Tracking coronavirus vaccinations around the world. 2021. Available online: https://www.nytimes.com/interactive/2021/world/covi d-vaccinations-tracker.html (accessed on 4 November 2021).
- Brett, T.S.; Rohani, P. Transmission dynamics reveal the impracticality of COVID-19 herd immunity strategies. Proc Natl Acad Sci U S A. 2020, 117, 25897–25903. [Google Scholar] [CrossRef]
- Bleier, B.S.; Ramanathan, M., Jr; Lane, A.P. COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngol Head Neck Surg. 2021, 164, 305–307. [Google Scholar] [CrossRef]
- Schiavone, M.; Gasperetti, A.; Mitacchione, G.; Viecca, M.; Forleo, G.B. Response to: COVID-19 re-infection. Vaccinated individuals as a potential source of transmission. Eur J Clin Invest. 2021, 51, e13544. [Google Scholar] [CrossRef] [PubMed]
- Harder, T.; Koch, J.; Vygen-Bonnet, S.; et al. Efficacy and effectiveness of COVID-19 vaccines against SARS-CoV-2 infection: Interim results of a living systematic review, 1 January to 14 May 2021. Euro Surveill. 2021, 26, 2100563. [Google Scholar] [CrossRef] [PubMed]
- Aschwanden, C. Five reasons why COVID herd immunity is probably impossible. Nature. 2021, 591, 520–522. [Google Scholar] [CrossRef]
- Nachega, J.B.; Sam-Agudu, N.A.; Masekela, R.; et al. Addressing challenges to rolling out COVID-19 vaccines in African countries. Lancet Glob Health. 2021, 9, e746–e748. [Google Scholar] [CrossRef]
- Massinga Loembé, M.; Nkengasong, J.N. COVID-19 vaccine access in Africa: Global distribution, vaccine platforms, and challenges ahead. Immunity. 2021, 54, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Jerving, S. The long road ahead for COVID-19 vaccination in Africa. Lancet. 2021, 398, 827–828. [Google Scholar] [CrossRef]
- Pattin, A.J. Disparities in the use of immunization services among underserved minority patient populations and the role of pharmacy technicians: A review. J Pharm Technol. 2017, 33, 171–176. [Google Scholar] [CrossRef]
- Bazan, I.S.; Akgün, K.M. COVID-19 Healthcare inequity: Lessons learned from annual influenza vaccination rates to mitigate COVID-19 vaccine disparities. Yale J Biol Med. 2021, 94, 509–515. [Google Scholar]
- Hotez, P.; Batista, C.; Ergonul, O.; et al. Correcting COVID-19 vaccine misinformation: Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members. EClinicalMedicine. 2021, 33, 100780. [Google Scholar] [CrossRef]
- Islam, M.S.; Kamal, A.M.; Kabir, A.; et al. COVID-19 vaccine rumors and conspiracy theories: The need for cognitive inoculation against misinformation to improve vaccine adherence. PLoS ONE. 2021, 16, e0251605. [Google Scholar] [CrossRef]
- Loomba, S.; de Figueiredo, A.; Piatek, S.J.; de Graaf, K.; Larson, H.J. Measuring the impact of COVID-19 vaccine misinformation on vaccination intent in the UK and USA. Nat Hum Behav. 2021, 5, 337–348. [Google Scholar] [CrossRef]
- Markert, U.R.; Szekeres-Bartho, J.; Schleußner, E. Adverse effects on female fertility from vaccination against COVID-19 unlikely. J Reprod Immunol. 2021, 148, 103428. [Google Scholar] [CrossRef] [PubMed]
- Male, V. Are COVID-19 vaccines safe in pregnancy? Nat Rev Immunol. 2021, 21, 200–201. [Google Scholar] [CrossRef]
- Kharbanda, E.O.; Haapala, J.; DeSilva, M.; et al. Spontaneous abortion following COVID-19 vaccination during pregnancy. JAMA. 2021, 326, 1629–1631. [Google Scholar] [CrossRef]
- Schraer, R. Covid vaccine: Fertility and miscarriage claims fact-checked. 2021. Available online: https://www.bbc.com/news/health- 57552527 (accessed on 8 October 2021).
- Moodley, J.; Khaliq, O.P.; Mkhize, P.Z. Misrepresentation about vaccines that are scaring women. Afr J Prim Health Care Fam Med. 2021, 13, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ren, X.; Ferrara, E. Social media polarization and echo chambers in the context of COVID-19, case study. JMIRx Med. 2021, 2, e29570. [Google Scholar] [CrossRef] [PubMed]
- Broniatowski, D.A.; Jamison, A.M.; Qi, S.; et al. Weaponized health communication: Twitter bots and Russian trolls amplify the vaccine debate. Am J Public Health. 2018, 108, 1378–1384. [Google Scholar] [CrossRef]
- Cichocka, A. To counter conspiracy theories, boost well- being. Nature. 2020, 587, 177. [Google Scholar] [CrossRef]
- Parmet, W.E.; Paul, J. COVID-19, the first posttruth pandemic. Am J Public Health. 2020, 110, 945–946. [Google Scholar] [CrossRef]
- McKay, D.; Heisler, M.; Mishori, R.; Catton, H.; Kloiber, O. Attacks against health-care personnel must stop, especially as the world fights COVID-19. Lancet. 2020, 395, 1743–1745. [Google Scholar] [CrossRef] [PubMed]
- Larkin, H. Navigating attacks against health care workers in the COVID-19 Era. JAMA. 2021, 325, 1822–1824. [Google Scholar] [CrossRef] [PubMed]
- Dye, T.D.; Alcantara, L.; Siddiqi, S.; et al. Risk of COVID- 19-related bullying, harassment and stigma among healthcare workers: An analytical cross-sectional global study. BMJ Open. 2020, 10, e046620. [Google Scholar] [CrossRef]
- Nogrady, B. ‘I hope you die’: How the COVID pandemic unleashed attacks on scientists. Nature. 2021, 598, 250–253. [Google Scholar] [CrossRef]
- Devi, S. COVID-19 exacerbates violence against health workers. Lancet. 2020, 396, 658. [Google Scholar] [CrossRef]
- Swingle, C.A. How do we approach anti-vaccination attitudes? Mo Med. 2018, 115, 180–181. [Google Scholar]
- Poland, G.A.; Jacobson, R.M. The age-old struggle against the antivaccinationists. N Engl J Med. 2011, 364, 97–99. [Google Scholar] [CrossRef]
- Henderson, D.A. Edward Jenner’s vaccine. Public Health Rep. 1997, 112, 116–121. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Resurgence of wild poliovirus type 1 transmission and consequences of importation--21 countries, 2002-2005. MMWR Morb Mortal Wkly Rep. 2006, 55, 145–150.
- Warraich, H.J. Religious opposition to polio vaccination. Emerg Infect Dis. 2009, 15, 978. [Google Scholar] [CrossRef]
- Kapp, C. Surge in polio spreads alarm in northern Nigeria. Rumours about vaccine safety in Muslim-run states threaten WHO’s eradication programme. Lancet. 2003, 362, 1631–1632. [Google Scholar] [CrossRef]
- Clements, C.J.; Greenough, P.; Shull, D. How vaccine safety can become political--the example of polio in Nigeria. Curr Drug Saf. 2006, 1, 117–119. [Google Scholar] [CrossRef]
- Kaufmann, J.R.; Feldbaum, H. Diplomacy and the polio immunization boycott in Northern Nigeria. Health Aff (Millwood). 2009, 28, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Zipfel, C.M.; Garnier, R.; Kuney, M.C.; Bansal, S. The landscape of childhood vaccine exemptions in the United States. Sci Data. 2020, 7, 401. [Google Scholar] [CrossRef] [PubMed]
- Paquette, E.T. In the wake of a pandemic: Revisiting school approaches to nonmedical exemptions to mandatory vaccination in the US. J Pediatr. 2021, 231, 17–23. [Google Scholar] [CrossRef]
- Bednarczyk, R.A.; King, A.R.; Lahijani, A.; Omer, S.B. Current landscape of nonmedical vaccination exemptions in the United States: Impact of policy changes. Expert Rev Vaccines. 2019, 18, 175–190. [Google Scholar] [CrossRef]
- Wang, E.; Clymer, J.; Davis-Hayes, C.; Buttenheim, A. Nonmedical exemptions from school immunization requirements: A systematic review. Am J Public Health. 2014, 104, e62–e84. [Google Scholar] [CrossRef]
- Omer, S.B.; Enger, K.S.; Moulton, L.H.; Halsey, N.A.; Stokley, S.; Salmon, D.A. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis. Am J Epidemiol. 2008, 168, 1389–1396. [Google Scholar] [CrossRef]
- Omer, S.B.; Pan, W.K.; Halsey, N.A.; et al. Nonmedical exemptions to school immunization requirements: Secular trends and association of state policies with pertussis incidence. JAMA. 2006, 296, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Imported measles case associated with nonmedical vaccine exemption--Iowa, March 2004. MMWR Morb Mortal Wkly Rep. 2004, 53, 244–246.
- Phadke, V.K.; Bednarczyk, R.A.; Salmon, D.A.; Omer, S.B. Association between vaccine refusal and vaccine- preventable diseases in the United States: A review of measles and pertussis. JAMA. 2016, 315, 1149–1158. [Google Scholar] [CrossRef]
- Feikin, D.R.; Lezotte, D.C.; Hamman, R.F.; Salmon, D.A.; Chen, R.T.; Hoffman, R.E. Individual and community risks of measles and pertussis associated with personal exemptions to immunization. JAMA. 2000, 284, 3145–3150. [Google Scholar] [CrossRef]
- Salmon, D.A.; Haber, M.; Gangarosa, E.J.; Phillips, L.; Smith, N.J.; Chen, R.T. Health consequences of religious and philosophical exemptions from immunization laws: Individual and societal risk of measles. JAMA. 1999, 282, 47–53. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Measles outbreak--Southwestern Utah, 1996. MMWR Morb Mortal Wkly Rep. 1997, 46, 766–769.
- Arora, K.S.; Morris, J.; Jacobs, A.J. Refusal of vaccination: A test to balance societal and individual interests. J Clin Ethics. 2018, 29, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Megget, K. Even COVID-19 can’t kill the anti- vaccination movement. BMJ. 2020, 369, m2184. [Google Scholar] [CrossRef] [PubMed]
- Poland, G.A.; Ovsyannikova, I.G.; Kennedy, R.B. SARS- CoV-2 immunity: Review and applications to phase 3 vaccine candidates. Lancet. 2020, 396, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Edridge, A.W.D.; Kaczorowska, J.; Hoste, A.C.R.; et al. Seasonal coronavirus protective immunity is short- lasting. Nat Med. 2020, 26, 1691–1693. [Google Scholar] [CrossRef]
- Cao, W.C.; Liu, W.; Zhang, P.H.; Zhang, F.; Richardus, J.H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007, 357, 1162–1163. [Google Scholar] [CrossRef]
- Wu, L.P.; Wang, N.C.; Chang, Y.H.; et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007, 13, 1562–1564. [Google Scholar] [CrossRef]
- Mo, H.; Zeng, G.; Ren, X.; et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients and their clinical significance. Respirology. 2006, 11, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Seow, J.; Graham, C.; Merrick, B.; et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature Nat Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef] [PubMed]
- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; et al. Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19. N Engl J Med. 2020, 383, 1085–1087. [Google Scholar] [CrossRef]
- Long, Q.X.; Tang, X.J.; Shi, Q.L.; et al. Clinical and immunological assessment of asymptomatic SARS- CoV-2 infections. Nat Med. 2020, 26, 1200–1204. [Google Scholar] [CrossRef]
- Lau, E.H.Y.; Tsang, O.T.Y.; Hui, D.S.C.; et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun. 2021, 12, 63. [Google Scholar] [CrossRef]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; et al. Effectiveness of the Pfizer-BioNTech and Oxford- AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and mortality in older adults in England: Test negative case-control study. BMJ. 2021, 373, n1088. [Google Scholar] [CrossRef]
- Scobie, H.M.; Johnson, A.G.; Suthar, A.B.; et al. Monitoring incidence of COVID-19 cases, hospitalizations, and deaths, by vaccination status—13 U. S. jurisdictions, April 4-July 17, 2021. MMWR Morb Mortal Wkly Rep. 2021, 70, 1284–1290. [Google Scholar] [CrossRef]
- Thompson, M.G.; Stenehjem, E.; Grannis, S.; et al. Effectiveness of COVID-19 vaccines in ambulatory and inpatient care settings. N Engl J Med. 2021, 385, 1355–1371. [Google Scholar] [CrossRef]
- Cevik, M.; Grubaugh, N.D.; Iwasaki, A.; Openshaw, P. COVID-19 vaccines: Keeping pace with SARS-CoV-2 variants. Cell. 2021, 184, 5077–5081. [Google Scholar] [CrossRef] [PubMed]
- Tavilani, A.; Abbasi, E.; Kian Ara, F.; Darini, A.; Asefy, Z. COVID-19 vaccines: Current evidence and considerations. Metabol Open. 2021, 12, 100124. [Google Scholar] [CrossRef]
- Hodgson, S.H.; Mansatta, K.; Mallett, G.; Harris, V.; Emary, K.R.W.; Pollard, A.J. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS- CoV-2. Lancet Infect Dis. 2021, 21, e26–e35. [Google Scholar] [CrossRef]
- Zhang, S. We don’t even have a COVID-19 vaccine, and yet the conspiracies are here. 2020. Available online: https://www.theatlantic.com/science/archive/2020/0 5/covid-19-vaccine-skeptics-conspiracies/611998/ (accessed on 17 November 2021).
- Betsch, C.; Renkewitz, F.; Betsch, T.; Ulshöfer, C. The influence of vaccine-critical websites on perceiving vaccination risks. J Health Psychol. 2010, 15, 446–455. [Google Scholar] [CrossRef]
- Sylvia Chou, W.Y.; Gaysynsky, A.; Cappella, J.N. Where we go from here: Health misinformation on social media. Am J Public Health. 2020, 110, S273–s5. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Politics and the pandemic. In COVID-19 pandemic; Hidalgo, J., Rodríguez-Vega, G., Pérez-Fernández, J., Eds.; Elsevier, 2022; pp. 137–146. [Google Scholar] [CrossRef]
- Bruine de Bruin, W.; Saw, H.W.; Goldman, D.P. Political polarization in US residents’ COVID-19 risk perceptions, policy preferences, and protective behaviors. J Risk Uncertain. 2020, 1–18. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, E.; Lerman, K.; Ferrara, E. Political polarization drives online conversations about COVID-19 in the United States. Hum Behav Emerg Technol. 2020, 10.1002/hbe2.202. [Google Scholar] [CrossRef] [PubMed]
- Arabaghatta Basavaraj, K.; Saikia, P.; Varughese, A.; Semetko, H.A.; Kumar, A. The COVID-19-social identity-digital media nexus in India: Polarization and blame. Polit Psychol. 2021, 10.1111/pops.12774. [Google Scholar] [CrossRef]
- Havey, N.F. Partisan public health: How does political ideology influence support for COVID-19 related misinformation? J Comput Soc Sci. 2020, 1–24. [Google Scholar] [CrossRef]
- Jungkunz, S. Political polarization during the COVID-19 pandemic. Front Polit Sci. 2021, 3. [Google Scholar] [CrossRef]
- Hong, I.; Rutherford, A.; Cebrian, M. Social mobilization and polarization can create volatility in COVID-19 pandemic control. Appl Netw Sci. 2021, 6, 11. [Google Scholar] [CrossRef]
- Chipidza, W. The effect of toxicity on COVID-19 news network formation in political subcommunities on Reddit: An affiliation network approach. Int J Inf Manage. 2021, 61, 102397. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Karim, S.A. Relationship between political partisanship and COVID-19 deaths: Future implications for public health. J Public Health (Oxf). 2021, fdab136. [Google Scholar] [CrossRef]
- Del Vicario, M.; Vivaldo, G.; Bessi, A.; et al. Echo chambers: Emotional contagion and group polarization on Facebook. Sci Rep. 2016, 6, 37825. [Google Scholar] [CrossRef]
- Cinelli, M.; De Francisci Morales, G.; Galeazzi, A.; Quattrociocchi, W.; Starnini, M. The echo chamber effect on social media. Proc Natl Acad Sci U S A. 2021, 118, e2023301118. [Google Scholar] [CrossRef]
- Fung, I.C.; Blankenship, E.B.; Ahweyevu, J.O.; et al. Public health implications of image-based social media: A systematic review of Instagram, Pinterest, Tumblr, and Flickr. Perm, J. 2020, 24, 18.307. [Google Scholar] [CrossRef]
- Wang, D.; Qian, Y. Echo chamber effect in rumor rebuttal discussions about COVID-19 in China: Social media content and network analysis study. J Med Internet Res. 2021, 23, e27009. [Google Scholar] [CrossRef]
- Van Bavel, J.J.; Pereira, A. The partisan brain: An identity-based model of political belief. Trends Cogn Sci. 2018, 22, 213–224. [Google Scholar] [CrossRef]
- Brugnoli, E.; Cinelli, M.; Quattrociocchi, W.; Scala, A. Recursive patterns in online echo chambers. Sci Rep. 2019, 9, 20118. [Google Scholar] [CrossRef] [PubMed]
- Allahverdyan, A.E.; Galstyan, A. Opinion dynamics with confirmation bias. PLoS ONE. 2014, 9, e99557. [Google Scholar] [CrossRef] [PubMed]
- Villa, G.; Pasi, G.; Viviani, M. Echo chamber detection and analysis: A topology- and content-based approach in the COVID-19 scenario. Soc Netw Anal Min. 2021, 11, 78. [Google Scholar] [CrossRef]
- Patil, U.; Kostareva, U.; Hadley, M.; et al. Health literacy, digital health literacy, and COVID-19 pandemic attitudes and behaviors in U.S. college students: Implications for interventions. Int J Environ Res Public Health. 2021, 18, 3301. [Google Scholar] [CrossRef]
- Levin-Zamir, D. Communication, health literacy and a systems approach for mitigating the COVID-19 pandemic: The case for massive vaccine roll-out in Israel. J Health Commun. 2020, 25, 816–818. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.V.; Lin, C.Y.; Chen, S.C.; et al. Oxford COVID- 19 vaccine hesitancy in school principals: Impacts of gender, well-being, and coronavirus-related health literacy. Vaccines (Basel). 2021, 9, 985. [Google Scholar] [CrossRef]
- Lippmann, W. Public Opinion. In Free Press Paperbacks; Simon & Schuster: New York, 1997. [Google Scholar]
© GERMS 2021.
Share and Cite
Stein, R.A.; Ometa, O.; Broker, T.R. COVID-19: The Pseudo-Environment and the Need for a Paradigm Change. GERMS 2021, 11, 468-477. https://doi.org/10.18683/germs.2021.1283
Stein RA, Ometa O, Broker TR. COVID-19: The Pseudo-Environment and the Need for a Paradigm Change. GERMS. 2021; 11(4):468-477. https://doi.org/10.18683/germs.2021.1283
Chicago/Turabian StyleStein, Richard A., Oana Ometa, and Thomas R. Broker. 2021. "COVID-19: The Pseudo-Environment and the Need for a Paradigm Change" GERMS 11, no. 4: 468-477. https://doi.org/10.18683/germs.2021.1283
APA StyleStein, R. A., Ometa, O., & Broker, T. R. (2021). COVID-19: The Pseudo-Environment and the Need for a Paradigm Change. GERMS, 11(4), 468-477. https://doi.org/10.18683/germs.2021.1283
