Prevalence of Anti-SARS-CoV-2 IgG Antibodies in a Group of Patients, a Control Group, and Healthcare Workers of Thrace Area in Greece, by the Use of Two Distinct Methods
Abstract
Introduction
Methods
Results
Discussion
Conclusions
Author Contributions
Funding
Conflicts of interest
References
- Zhu, N.; Zhang, D.; Wang, W.; et al. A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. 2021. Available online: https://covid19.who.int (accessed on 14 May 2021).
- Moore, A.J.; Nakahata, M.I.; Kalinich, C.C.; et al. The sensitivity of respiratory tract specimens for the detection of SARS-CoV-2: A protocol for a living systematic review and meta-analysis. medRxiv. 2020. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Brito, A.F.; Wyllie, A.L.; et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat Microbiol. 2020, 5, 1299–1305. [Google Scholar] [CrossRef]
- Egger, M.; Bundschuh, C.; Wiesinger, K.; et al. Comparison of the Elecsys® Anti-SARS-CoV-2 immunoassay with the EDITM enzyme linked immunosorbent assays for the detection of SARS-CoV-2 antibodies in human plasma. Clin Chim Acta. 2020, 509, 18–21. [Google Scholar] [CrossRef]
- Nicol, T.; Lefeuvre, C.; Serri, O.; et al. Assessment of SARS-CoV-2 serological tests for the diagnosis of COVID-19 through the evaluation of three immunoassays: Two automated immunoassays (Euroimmun and Abbott) and one rapid lateral flow immunoassay (NG Biotech). J Clin Virol. 2020, 129, 104511. [Google Scholar] [CrossRef]
- Andrey, D.O.; Cohen, P.; Meyer, B.; et al. Diagnostic accuracy of Augurix COVID-19 IgG serology rapid test. Eur J Clin Invest. 2020, 50, e13357. [Google Scholar] [CrossRef]
- Iversen, K.; Bundgaard, H.; Hasselbalch, R.B.; et al. Risk of COVID-19 in health-care workers in Denmark: An observational cohort study. Lancet Infect Dis. 2020, 20, 1401–1408. [Google Scholar] [CrossRef]
- Koh, D. Occupational risks for COVID-19 infection. Occup Med (Lond). 2020, 70, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Kohmer, N.; Westhaus, S.; Rühl, C.; Ciesek, S.; Rabenau, H.F. Brief clinical evaluation of six high-throughput SARS-CoV-2 IgG antibody assays. J Clin Virol. 2020, 129, 104480. [Google Scholar] [CrossRef] [PubMed]
- Long, Q.X.; Liu, B.Z.; Deng, H.J.; et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020, 26, 845–848. [Google Scholar] [CrossRef]
- Döhla, M.; Boesecke, C.; Schulte, B.; et al. Rapid point-of-care testing for SARS-CoV-2 in a community screening setting shows low sensitivity. Public Health 2020, 182, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Kontou, P.I.; Braliou, G.G.; Dimou, N.L.; Nikolopoulos, G.; Bagos, P.G. Antibody tests in detecting SARS-CoV-2 infection: A meta-analysis. Diagnostics (Basel). 2020, 10, 319. [Google Scholar] [CrossRef]
- Coste, A.T.; Jaton, K.; Papadimitriou-Olivgeris, M.; Greub, G.; Croxatto, A. Comparison of SARS-CoV-2 serological tests with different antigen targets. J Clin Virol. 2021, 134, 104690. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, S.; Shen, H.; et al. Cross-reaction of SARS-CoV antigen with autoantibodies in autoimmune diseases. Cell Mol Immunol. 2004, 1, 304–307. [Google Scholar]
- Durlik-Popińska, K.; Żarnowiec, P.; Lechowicz, Ł.; Gawęda, J.; Kaca, W. Antibodies isolated from rheumatoid arthritis patients against lysine-containing Proteus mirabilis O3 (S1959) lipopolysaccharide may react with collagen type I. Int J Mol Sci. 2020, 21, 9635. [Google Scholar] [CrossRef]
- Singh, D.; Oudit, O.; Hajtovic, S.; et al. Antibodies to an Epstein Barr Virus protein that cross-react with dsDNA have pathogenic potential. Mol Immunol 2021, 132, 41–52. [Google Scholar] [CrossRef]
- Mughal, M.S.; Kaur, I.P.; Patton, C.D.; Mikhail, N.H.; Vareechon, C.; Granet, K.M. The prevalence of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) IgG antibodies in intensive care unit (ICU) healthcare personnel (HCP) and its implications-a single-center, prospective, pilot study. Infect Control Hosp Epidemiol 2021, 42, 638–639. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Grüter, L.; Boltzmann, M.; Rollnik, J.D. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. PLoS ONE. 2020, 15, e0235417. [Google Scholar] [CrossRef]
- Xu, X.; Sun, J.; Nie, S.; et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med 2020, 26, 1193–1195. [Google Scholar] [CrossRef]
- Stubblefield, W.B.; Talbot, H.K.; Feldstein, L.; et al. Seroprevalence of SARS-CoV-2 among frontline healthcare personnel during the first month of caring for COVID-19 patients - Nashville, Tennessee. Clin Infect Dis. 2021, 72, 1645–1648. [Google Scholar] [CrossRef] [PubMed]
- Galanis, P.; Vraka, I.; Fragkou, D.; Bilali, A.; Kaitelidou, D. Seroprevalence of SARS-CoV-2 antibodies and associated factors in healthcare workers: A systematic review and meta-analysis. J Hosp Infect. 2021, 108, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Tong, X.; Wang, J.; et al. High SARS-CoV-2 antibody prevalence among healthcare workers exposed to COVID-19 patients. J Infect. 2020, 81, 420–426. [Google Scholar] [CrossRef] [PubMed]


| Hospitalized n=82 | Outpatients n= 19 | p | χ2 | |
|---|---|---|---|---|
| Age, years | 57.4±5.5 | 49.1±7.3 | 0.013 | 5.42 |
| Female | 29 (35.4%) | 7 (36.8%) | 0.601 | 1.75 |
| Laboratory findings | ||||
| WBC (K/µL) | 8.04±8.9 | 7.7±6.7 | 0.317 | 2.61 |
| Neutrophils (%) | 75.6±4.7 | 74.1±7.6 | 0.621 | 0.47 |
| Lymphocytes (%) | 13.8±3.2 | 14.2±2.9 | 0.802 | 0.68 |
| Glucose (mg/dL) | 140.4±21.9 | 100.3±9.8 | <0.001 | 31.32 |
| Urea (mg/dL) | 53.4±12.1 | 29.3±8.1 | <0.001 | 36.45 |
| Creatinine (mg/dL) | 1.3±0.4 | 0.9±0.2 | 0.021 | 6.12 |
| Potassium (mmol/L) | 4.12±0.16 | 3.9±0.2 | 0.005 | 7.42 |
| Sodium (mmol/L) | 138.2±12.2 | 140.3±10.1 | 0.514 | 1.24 |
| AST (U/L) | 81.4±44.1 | 45.7±17.8 | 0.04 | 8.78 |
| ALT (U/L) | 58.7±23.3 | 31.6±15.7 | 0.012 | 15.41 |
| LDH (U/L) | 460.6±78.8 | 422.4±78.5 | 0.346 | 2.62 |
| CPK (U/L) | 854.4±890 | 82.5±42.3 | <0.001 | 68.4 |
| TP (g/dL) | 6.01±0.3 | 6.7±0.4 | 0.001 | 7.14 |
| Albumin (mg/dL) | 3.5±0.18 | 3.7±0.27 | 0.031 | 3.56 |
| γ-GT (U/L) | 90.2±29.6 | 51.4±20.4 | 0.004 | 4.12 |
| CRP (mg/dL) | 8.7±2.3 | 2.9±1.1 | <0.001 | 31.36 |
| Ferritin (µg/L) | 1204.6±374.9 | 211.2±62.8 | <0.001 | 54.47 |
| D-dimers (ng/mL) | 809.8±265.4 | 324.2±66.7 | <0.001 | 39.25 |
| Underlying disease | ||||
| CVD | 20 (24.4%) | 4 (31.6%) | 0.071 | 4.25 |
| Hypertension | 38 (46.3%) | 6 (21%) | 0.034 | 6.21 |
| Diabetes mellitus | 28 (34.1%) | 2 (10.5%) | <0.001 | 14.2 |
| Cancer | 4 (4.9%) | 1 (5.3%) | 0.312 | 0.64 |
| CLIA | ELISA | |
|---|---|---|
| Sensitivity | 99.02% | 97.09% |
| Specificity | 99.52% | 99.05% |
| Positive likelihood ratio | 207.94 | 102.43 |
| Negative likelihood ratio | 0.01 | 0.03 |
| Positive predictive value | 99.02% | 98.04% |
| Negative predictive value | 99.52% | 98.58% |
| Accuracy | 99.36% | 98.41% |
| Total | Participants (n) | Participants (%) | |
|---|---|---|---|
| Hospital 1 | 1239 | 615 | 49.4 |
| Hospital 2 | 287 | 228 | 79.4 |
| Health center 1 | 54 | 54 | 100 |
| Health center 2 | 68 | 48 | 70.6 |
| Health center 3 | 69 | 59 | 85.5 |
| Health center 4 | 31 | 15 | 48.4 |
| Health center 5 | 27 | 17 | 62.3 |
| Total | 1775 | 1036 | 58.36 |
| Hospitals | Health centers | Overall | ||||||
|---|---|---|---|---|---|---|---|---|
| 1 (n=615) | 2 (n=228) | 1 (n=54) | 2 (n=48) | 3 (n=59) | 4 (n=15) | 5 (n=17) | 1036 | |
| Age (mean±SD), years | 44.3±1.04 | 45.8±1.4 | 49.06±2.1 | 48.5±2.3 | 49.05±2.7 | 48.5±4.3 | 45.9±4.7 | 45.6±2.7 |
| Female | 447 (72.7%) | 178 (78.1%) | 49 (90.4%) | 41 (85.4%) | 46 (78%) | 14 (93.3%) | 12 (70.6%) | 787 (75.9%) |
| Professional group | ||||||||
| Nurse | 293 (48.4%) | 103 (45.2%) | 18 (33.3%) | 19 (39.6%) | 22 (37.3%) | 10 (66.7%) | 7 (41.2%) | 472 (45.6%) |
| Medical doctors | 170 (27.6%) | 26 (11.4%) | 17 (31.5%) | 9 (18.7%) | 21 (35.6%) | 1 (6.7%) | 5 (29.4%) | 249 (24%) |
| Laboratory staff | 37 (6%) | 11 (4.8%) | 5 (9.3%) | 5 (10.4%) | 2 (3.4%) | 1 (6.7%) | 1 (5.9%) | 62 (6%) |
| Administrative staff | 9 (1.5%) | 7 (3.1%) | 4 (7.4%) | 3 (6.25%) | 2 (3.4%) | 1 (6.7%) | 1 (5.9%) | 27 (2.6%) |
| Other | 106 (17.2%) | 81 (35.5%) | 10 (18.5%) | 12 (25%) | 12 (20.3%) | 2 (13.3%) | 3 (27.6%) | 226 (21.8%) |
| Risk group n | ||||||||
| High-risk | 131 (23.3%) | 45 (19.7%) | 0 | 0 | 0 | 0 | 0 | 176 (17%) |
| Low-risk | 484 (78.7%) | 183 (80.3%) | 54 (100%) | 48 (100%) | 59 (100%) | 15 (100%) | 17 (100%) | 860 (83%) |
| History of travel | 13 (2.1%) | 4 (1.75%) | 0 | 0 | 0 | 0 | 0 | 17 (1.6%) |
© GERMS 2021.
Share and Cite
Konstantinidis, T.; Zisaki, S.; Mitroulis, I.; Cassimos, D.; Nanousi, I.; Kontekaki, E.G.; Petrakis, V.; Parrisi, K.; Fotiadou, E.; Linardou, A.; et al. Prevalence of Anti-SARS-CoV-2 IgG Antibodies in a Group of Patients, a Control Group, and Healthcare Workers of Thrace Area in Greece, by the Use of Two Distinct Methods. GERMS 2021, 11, 372-380. https://doi.org/10.18683/germs.2021.1274
Konstantinidis T, Zisaki S, Mitroulis I, Cassimos D, Nanousi I, Kontekaki EG, Petrakis V, Parrisi K, Fotiadou E, Linardou A, et al. Prevalence of Anti-SARS-CoV-2 IgG Antibodies in a Group of Patients, a Control Group, and Healthcare Workers of Thrace Area in Greece, by the Use of Two Distinct Methods. GERMS. 2021; 11(3):372-380. https://doi.org/10.18683/germs.2021.1274
Chicago/Turabian StyleKonstantinidis, Theocharis, Stavroula Zisaki, Ioannis Mitroulis, Dimitrios Cassimos, Ioanna Nanousi, Eftychia G. Kontekaki, Vasilis Petrakis, Kalliopi Parrisi, Eleni Fotiadou, Aikaterini Linardou, and et al. 2021. "Prevalence of Anti-SARS-CoV-2 IgG Antibodies in a Group of Patients, a Control Group, and Healthcare Workers of Thrace Area in Greece, by the Use of Two Distinct Methods" GERMS 11, no. 3: 372-380. https://doi.org/10.18683/germs.2021.1274
APA StyleKonstantinidis, T., Zisaki, S., Mitroulis, I., Cassimos, D., Nanousi, I., Kontekaki, E. G., Petrakis, V., Parrisi, K., Fotiadou, E., Linardou, A., Lemonakis, N., Grapsa, A., Gioka, T., Lazidis, L., Papagoras, C., Tsigalou, C., Panagopoulos, P., Skendros, P., Martinis, G., & Panopoulou, M. (2021). Prevalence of Anti-SARS-CoV-2 IgG Antibodies in a Group of Patients, a Control Group, and Healthcare Workers of Thrace Area in Greece, by the Use of Two Distinct Methods. GERMS, 11(3), 372-380. https://doi.org/10.18683/germs.2021.1274