Antibiotic Resistance of Non-Fermenting Gram-Negative Bacilli Isolated at a Large Infectious Diseases Hospital in North-Eastern Romania, During an 11-Year Period
Abstract
Introduction
Methods
- Research ethics
- Statistical analysis
Results
Discussion
Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of interest
References
- Bitew, A. High Prevalence of multi-drug resistance and extended spectrum beta lactamase production in non-fermenting Gram-negative bacilli in Ethiopia. Infect Dis (Auckl). 2019, 12, 1178633719884951. [Google Scholar] [CrossRef] [PubMed]
- Tucaliuc, D.; Alexa, O.; Tuchiluş, C.G.; et al. Antibiotic resistance spectrum of non fermenting Gram negative bacilli isolated in the Orthopedic Traumatology Clinic of “Sf. Spiridon” Clinical Emergency Hospital Iaşi. Rev Med Chir Soc Med Nat Iasi. 2015, 119, 536–543. [Google Scholar] [PubMed]
- Antunes, L.C.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Gokale, S.K.; Metgud, S.C. Characterization and antibiotic sensitivity pattern of nonfermenting gram-negative bacilli from varius clinical samples in a tertiary care hospital, Belgaum. J Pharm Biomed Sci. 2012, 17, 1–5. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2012; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2013. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2014; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2015. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2017; Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); ECDC: Stockholm, Sweden, 2018. [Google Scholar]
- Boiculese, V.; Dimitriu, G.; Moscalu, M. Elemente de biostatistica. Analiza statistică a datelor biologice. Editura Pim, 2007. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev. 2018, 42, fux053. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.P. The use of carbapenems in the treatment of serious infections. J Intensive Care Med. 2009, 24, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Perez, F.; El Chakhtoura, N.G.; Papp-Wallace, K.M.; Wilson, B.M.; Bonomo, R.A. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: Can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin Pharmacother. 2016, 17, 761–781. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.D.; Dorneanu, O.S.; Vremeră, T.; Reißig, A.; Monecke, S.; Ehricht, R. Carbapenemase-producing Enterobacteriaceae: A 2-year surveillance in a hospital in Iaşi, Romania. Future Microbiol. 2016, 11, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Malekzadegan, Y.; Abdi, A.; Heidari, H.; Moradi, M.; Rastegar, E.; Sedigh Ebrahim-Saraie, H. In vitro activities of colistin, imipenem and ceftazidime against drug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates in the south of Iran. BMC Res Notes. 2019, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Agodi, A.; Barchitta, M.; Quattrocchi, A.; et al. Antibiotic trends of Klebsiella pneumoniae and Acinetobacter baumannii resistance indicators in an intensive care unit of Southern Italy, 2008–2013. Antimicrob Resist Infect Control. 2015, 4, 43. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhang, Z.; Sun, Z. Antimicrobial resistance trends in bloodstream infections at a large teaching hospital in China: A 20-year surveillance study (1998-2017). Antimicrob Resist Infect Control. 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Xia, W.; Rong, G.; Pan, S.; Huang, P.; Gu, B. A 4-year surveillance of antimicrobial resistance patterns of Acinetobacter baumanni in a university-affiliated hospital in China. J Thorac Dis. 2013, 5, 506–512. [Google Scholar] [PubMed]
- Min, K.L.; Son, E.S.; Kim, J.S.; Kim, S.H.; Jung, S.M.; Chang, M.J. Risk factors of colistin safety according to administration routes: Intravenous and aerosolized colistin. PLoS ONE 2018, 13, e0207588. [Google Scholar] [CrossRef] [PubMed]
- Petrosillo, N.; Ioannidou, E.; Falagas, M.E. Colistin monotherapy vs. combination therapy: Evidence from microbiological, animal and clinical studies. Clin Microbiol Infect. 2008, 14, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Gomila, A.; Shaw, E.; Carratalà, J.; et al. Predictive factors for multidrug-resistant gram-negative bacteria among hospitalised patients with complicated urinary tract infections. Antimicrob Resist Infect Control. 2018, 7, 111. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, L.B.; Baral, R.; Khanal, B. Comparative study of antimicrobial resistance and biofilm formation among Gram-positive uropathogens isolated from community-acquired urinary tract infections and catheter-associated urinary tract infections. Infect Drug Resist. 2019, 12, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Pérez, A.; Gato, E.; Pérez-Llarena, J.; et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother. 2019, 74, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Popescu, G.A.; Șerban, R.; Niculcea, A. Consumul de antibiotice, Rezistența microbiană și Infecții Nosocomiale în România—2015 (CARMIN ROMÂNIA 2015). 2017. [Google Scholar]
- De Francesco, M.A.; Ravizzola, G.; Peroni, L.; Bonfanti, C.; Manca, N. Prevalence of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa in an Italian hospital. J Infect Public Health. 2013, 6, 179–185. [Google Scholar] [CrossRef] [PubMed]

| Collection site | Species | Total | |||||
|---|---|---|---|---|---|---|---|
| P. aeruginosa | Acinetobacter spp. | ||||||
| No. | % | No. | % | No. | % | ||
| Sterile sites | Blood | 40 | 4.02 | 35 | 3.52 | ||
| Cerebrospinal fluids | 9 | 0.91 | 15 | 1.51 | 112 | 11.27 | |
| Other products | 6 | 0.60 | 7 | 0.70 | |||
| Non-sterile sites | Respiratory tract | 86 | 8.65 | 77 | 7.75 | ||
| Urine | 296 | 29.78 | 81 | 8.15 | 882 | 88.73 | |
| Pus | 235 | 23.64 | 107 | 10.76 | |||
| Total | 672 | 67.61 | 322 | 32.39 | 994 | 100 | |
| Antibiotic | Acinetobacter spp. | Pseudomonas aeruginosa | ||||
|---|---|---|---|---|---|---|
| Non-sterile sites | Sterile sites | p | Non-sterile sites | Sterile sites | p | |
| R% | R% | R% | R% | |||
| SAM | 59 | 50 | 0.603 | - | - | |
| CAZ | 84.2 | 78 | 0.444 | 51.85 | 58.18 | 0.908 |
| FEP | 84.7 | 54.5 | 0.001 | 59 | 64.29 | 0.256 |
| TZP | 85 | 76 | 0.153 | 34 | 25 | 0.871 |
| CIP | 85.4 | 74.5 | 0.112 | 66.7 | 51.92 | 0.339 |
| LEV | 71.6 | 60.71 | 0.134 | 67 | 62.96 | 0.885 |
| G | 82.5 | 63.46 | 0.015 | 56 | 59.6 | 0.991 |
| TOB | 46 | 25 | 0.003 | 59.8 | 58 | 0.901 |
| AK | 73.9 | 50 | 0.011 | 41.96 | 43.6 | 0.505 |
| IMI | 77 | 54.4 | 0.035 | 62.77 | 67.3 | 0.888 |
| MEM | 81.7 | 68.63 | 0.049 | 63.75 | 68 | 0.509 |
| ATM | - | - | - | 43.6 | 52.3 | 0.411 |
| SXT | 73.4 | 62.5 | 0.172 | - | - | - |
| CT | 3.84 | 2.13 | 0.678 | 2.82 | 3.8 | 0.995 |
| Sputum | Tracheobronchial aspirate | p | ||
|---|---|---|---|---|
| %Resistant | %Resistant | |||
| P. aeruginosa | CAZ | 42.59 | 58.62 | 0.884 |
| FEP | 39.47 | 73.91 | 0.001 | |
| TZP | 13.73 | 50.00 | 0.001 | |
| CIP | 28.85 | 70.00 | 0.003 | |
| LEV | 18.52 | 71.43 | 0.001 | |
| G | 29.41 | 58.62 | 0.011 | |
| TOB | 29.17 | 63.33 | 0.015 | |
| AK | 29.63 | 53.33 | 0.005 | |
| IMI | 53.85 | 73.33 | 0.05 | |
| MEM | 45.45 | 73.33 | 0.041 | |
| ATM | 40.54 | 44.44 | 0.901 | |
| Acinetobacter | SAM | 44 | 77.8 | 0.197 |
| spp. | CAZ | 69 | 100 | 0.155 |
| FEP | 60 | 94 | 0.001 | |
| TZP | 57.1 | 100 | 0.001 | |
| CIP | 67.7 | 97.6 | 0.006 | |
| LEV | 31 | 85 | 0.001 | |
| G | 63 | 88 | 0.163 | |
| TOB | 31 | 41 | 0.001 | |
| AK | 50 | 70 | 0.025 | |
| IMI | 72 | 90 | 0.441 | |
| MEM | 63 | 95 | 0.037 | |
| SXT | 50 | 81.08 | 0.001 | |
| P. aeruginosa | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CAZ | TZP | CIP | G | TOB | AK | IMI | MEM | |||||||||
| %R | p | %R | p | %R | p | %R | p | %R | p | %R | p | %R | p | %R | p | |
| T1 vs. T2 | 47.31 | 0.4 | 41.53 | 0.05 | 63.1 | 0.9 | 55.41 | 0.75 | 52 | 0.34 | 44.79 | 0.41 | 54 | 0.04 | 67.95 | 0.76 |
| 57.65 | 25 | 68.9 | 58.82 | 66.4 | 38.64 | 71 | 65.05 | |||||||||
| T2 vs. T3 | 57.65 | 0.43 | 25 | 0.05 | 68.9 | 0.89 | 58.82 | 0.85 | 66.4 | 0.55 | 38.64 | 0.19 | 71 | 0.05 | 65.05 | 0.24 |
| 48 | 41.04 | 61.8 | 52.84 | 52.6 | 45.71 | 59 | 58.8 | |||||||||
| T1 vs. T3 | 47.31 | 0.75 | 41.53 | 0.99 | 63.1 | 0.76 | 55.41 | 0.65 | 52 | 0.75 | 44.79 | 0.88 | 54 | 0.79 | 67.95 | 0.46 |
| 48 | 41.04 | 61.8 | 52.84 | 52.6 | 45.71 | 51 | 58.8 | |||||||||
| Acinetobacter spp. | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CIP | G | TOB | AK | IMI | MEM | SXT | ||||||||
| %R | p | %R | p | %R | p | %R | p | %R | p | %R | p | R% | p | |
| T1 vs T2 | 83 | 0.84 | 78.3 | 0.72 | 18.97 | 0.007 | 75 | 0.16 | 54.5 | 0.001 | 81.5 | 0.24 | 67 | 0.99 |
| 84 | 80.6 | 37.41 | 65.44 | 80.9 | 80 | 67 | ||||||||
| T2 vs T3 | 84 | 0.91 | 80.6 | 0.60 | 37.41 | 0.05 | 65.44 | 0.36 | 80.9 | 0.49 | 80 | 0.73 | 67 | 0.036 |
| 83 | 76.9 | 64.44 | 71.74 | 76.1 | 77 | 81 | ||||||||
| T1 vs T3 | 83 | 0.99 | 78.3 | 0.86 | 16.97 | 0.001 | 75 | 0.74 | 54.5 | 0.049 | 81.5 | 0.48 | 67 | 0.036 |
| 83 | 76.9 | 64.44 | 71.74 | 76.1 | 77 | 81 | ||||||||
© GERMS 2021.
Share and Cite
Buzilă, E.R.; Năstase, E.V.; Luncă, C.; Bădescu, A.; Miftode, E.; Iancu, L.S. Antibiotic Resistance of Non-Fermenting Gram-Negative Bacilli Isolated at a Large Infectious Diseases Hospital in North-Eastern Romania, During an 11-Year Period. GERMS 2021, 11, 354-362. https://doi.org/10.18683/germs.2021.1272
Buzilă ER, Năstase EV, Luncă C, Bădescu A, Miftode E, Iancu LS. Antibiotic Resistance of Non-Fermenting Gram-Negative Bacilli Isolated at a Large Infectious Diseases Hospital in North-Eastern Romania, During an 11-Year Period. GERMS. 2021; 11(3):354-362. https://doi.org/10.18683/germs.2021.1272
Chicago/Turabian StyleBuzilă, Elena Roxana, Eduard Vasile Năstase, Cătălina Luncă, Aida Bădescu, Egidia Miftode, and Luminiţa Smaranda Iancu. 2021. "Antibiotic Resistance of Non-Fermenting Gram-Negative Bacilli Isolated at a Large Infectious Diseases Hospital in North-Eastern Romania, During an 11-Year Period" GERMS 11, no. 3: 354-362. https://doi.org/10.18683/germs.2021.1272
APA StyleBuzilă, E. R., Năstase, E. V., Luncă, C., Bădescu, A., Miftode, E., & Iancu, L. S. (2021). Antibiotic Resistance of Non-Fermenting Gram-Negative Bacilli Isolated at a Large Infectious Diseases Hospital in North-Eastern Romania, During an 11-Year Period. GERMS, 11(3), 354-362. https://doi.org/10.18683/germs.2021.1272
