Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model
Abstract
:1. Introduction
2. Research Object
2.1. Geometric Model
2.2. Experimental Device
3. Numerical Methods
4. Optimization
4.1. Space-Filling Latin Hypercubes
4.2. Parallel Filling Criterion of RKM
4.2.1. Minimizing Surrogate Predictor
4.2.2. Probability of Improvement
4.2.3. Expected Improvement
4.3. Optimization Stage
4.3.1. Initial Stage
4.3.2. Improvement Stage
4.3.3. Convergence Stage
4.4. Experimental Verification
4.5. Flow Field Analysis
5. Flow Field Prediction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbari, G.; Montazerin, N.; Akbarizadeh, M. Stereoscopic particle image velocimetry of the flow field in the rotor exit region of a forward-blade centrifugal turbomachine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2012, 226, 163–181. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, B.; Wang, J.; Yang, X.; Xiao, Q. Numerical and experimental investigations on non-axisymmetric D-type inlet nozzle for a squirrel-cage fan. Eng. Appl. Comput. Fluid Mech. 2021, 15, 363–376. [Google Scholar] [CrossRef]
- Keane, A.; Forrester, A.; Sóbester, A. Engineering Design via Surrogate Modelling: A Practical Guide; John Wiley & Sons: Chichester, UK, 2008. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, H.; Zhang, H.; Sun, B.; Qin, Z.; Tian, Y. CFD Optimization Process of a Lateral Inlet/Outlet Diffusion Part of a Pumped Hydroelectric Storage Based on Optimal Surrogate Models. Processes 2019, 7, 204. [Google Scholar] [CrossRef] [Green Version]
- Elfarra, M.A. Optimization of helicopter rotor blade performance by spline-based taper distribution using neural networks based on CFD solutions. Eng. Appl. Comput. Fluid Mech. 2019, 13, 833–848. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.-B.; Kim, S.; Kim, J.-H. Optimization Design of a Two-Vane Pump for Wastewater Treatment Using Machine-Learning-Based Surrogate Modeling. Processes 2020, 8, 1170. [Google Scholar] [CrossRef]
- De Paepe, W.; Pappa, A.; Coppitters, D.; Carrero, M.M.; Tsirikoglou, P.; Contino, F. Recuperator Performance Assessment in Humidified Micro Gas Turbine Applications Using Experimental Data Extended with Preliminary Support Vector Regression Model Analysis. J. Eng. Gas. Turbines Power 2021, 143, 071030. [Google Scholar] [CrossRef]
- Zhang, W.; Li, L.; Zhang, B.; Xu, X.; Zhai, J.; Wang, J. A Closed-Loop Optimized System with CFD Data for Liquid Maldistribution Model. Processes 2020, 8, 1332. [Google Scholar] [CrossRef]
- Forrester, A.I.J.; Keane, A.J.; Bressloff, N.W. Design and Analysis of "Noisy" Computer Experiments. AIAA J. 2006, 44, 2331–2339. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Han, Z.-H.; Zhang, K.-S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions. Struct. Multidiscip. Optim. 2018, 58, 1431–1451. [Google Scholar] [CrossRef]
- Ginsbourger, D.; Le Riche, R.; Carraro, L. A multi-points criterion for deterministic parallel global optimization based on kriging. In Proceedings of the International Conference on Nonconvex Programming, Local and Global Approaches, Rouen, France, 1–30 March 2008. [Google Scholar]
- Booker, A.J.; Dennis, J.E.; Frank, P.D.; Torczon, V.; Trosset, M.W. A Rigorous Framework for Optimization of Expensive Functions by Surrogates. Struct. Optim. 1998, 17, 1–13. [Google Scholar] [CrossRef]
- Jones, D.R.; Schonlau, M.; Welch, W.J. Efficient Global Optimization of Expensive Black-Box Functions. J. Glob. Optim. 1998, 13, 455–492. [Google Scholar] [CrossRef]
- Jeong, S.; Murayama, M.; Yamamoto, K. Efficient Optimization Design Method Using Kriging Model. J. Aircr. 2005, 42, 413–420. [Google Scholar] [CrossRef]
- Jones, D.R. A Taxonomy of Global Optimization Methods Based on Response Surfaces. J. Glob. Optim. 2001, 21, 345–383. [Google Scholar] [CrossRef]
- Sasena, M.J.; Papalambros, P.; Goovaerts, P. Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization. Eng. Optim. 2002, 34, 263–278. [Google Scholar] [CrossRef]
- Laurenceau, J.; Meaux, M.; Montagnac, M.; Sagaut, P. Comparison of Gradient-Based and Gradient-Enhanced Response-Surface-Based Optimizers. AIAA J. 2010, 48, 981–994. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Han, Z.; Song, W. Comparison of infill sampling criteria in kriging-based aerodynamic optimization. In Proceedings of the 28th Congress of the International Council of the Aeronautical Sciences, Brisbane, Australia, 23–28 September 2012. [Google Scholar]
- Hengl, T.; Heuvelink, G.B.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Bonakdari, H.; Baghalian, S.; Nazari, F.; Fazli, M. Numerical Analysis and Prediction of the Velocity Field in Curved Open Channel Using Artificial Neural Network and Genetic Algorithm. Eng. Appl. Comput. Fluid Mech. 2011, 5, 384–396. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Rabault, J.; Kuchta, M.; Jensen, A.; Réglade, U.; Cerardi, N. Artificial Neural Networks trained through Deep Reinforcement Learning discover control criterion for active flow control. J. Fluid Mech. 2019, 865, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yang, Z.; Zhang, X.; He, G.; Deng, B.-Q.; Shen, L. Using machine learning to detect the turbulent region in flow past a circular cylinder. J. Fluid Mech. 2020, 905, 1–26. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, B.; Wang, J.; Huang, Y.; Yang, W.; Yuan, K.; Shi, X. Multi-objective optimization of dual-arc blades in a squirrel-cage fan using modified non-dominated sorting genetic algorithm. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 234, 1053–1068. [Google Scholar] [CrossRef]
- Wang, K.; Ju, Y.; Zhang, C. Experimental and numerical investigations on effect of blade trimming on aerodynamic performance of squirrel cage fan. Int. J. Mech. Sci. 2020, 177, 105579. [Google Scholar] [CrossRef]
- Yanyan, D.; Wang, J.; Wang, W.; Jiang, B.; Xiao, Q.; Ye, T. Multi-condition optimization of a cross-flow fan based on the maximum entropy method. Proc. Inst. Mech. Eng. Part A J. Power Energy 2021. [Google Scholar] [CrossRef]
- Kim, J.-H.; Choi, J.-H.; Husain, A.; Kim, K.-Y. Performance enhancement of axial fan blade through multi-objective optimization techniques. J. Mech. Sci. Technol. 2010, 24, 2059–2066. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef] [Green Version]
- Giunta, A.; Wojtkiewicz, S.; Eldred, M. Overview of Modern Design of Experiments Methods for Computational Simulations (Invited). In Proceedings of the 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar] [CrossRef]
- Morris, M.D.; Mitchell, T.J. Exploratory designs for computational experiments. J. Stat. Plan. Inference 1995, 43, 381–402. [Google Scholar] [CrossRef] [Green Version]
- Forrester, A.I.; Keane, A. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [Google Scholar] [CrossRef]
- Leary, S.; Keane, A. A parallel updating scheme for approximating and optimizing high fidelity computer simulations. Struct. Multidiscip. Optim. 2004, 27, 371–383. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Ju, Y.; Zhang, C. A Quantitative Evaluation Method for Impeller-Volute Tongue Interaction and Application to Squirrel Cage Fan with Bionic Volute Tongue. J. Fluids Eng. 2019, 141, 081104. [Google Scholar] [CrossRef]
- Wen, X.; Mao, Y.; Yang, X.; Qi, D. Design Method for the Volute Profile of a Squirrel Cage Fan with Space Limitation. J. Turbomach. 2016, 138, 081001. [Google Scholar] [CrossRef]
Geometrical Parameters | Size |
---|---|
Impeller width, bI (mm) | 146.4 |
Impeller inlet diameter, D1 (mm) | 210 |
Impeller outlet diameter, D2 (mm) | 250 |
Blade inlet angle, β1 (deg) | 85 |
Blade outlet angle, β2 (deg) | 177 |
Number of blades, Z | 60 |
Volute tongue radius, RV (mm) | 8.9 |
Impeller–tongue clearance, dt (mm) | 24 |
Volute width, bV (mm) | 173 |
Chord length of midline of blade, b (mm) | 27.7 |
Maximum camber, f (mm) | 6.5 |
Blade thickness, d (mm) | 1.2 |
Design Variable | Baseline | Lower Limit | Upper Limit |
---|---|---|---|
β2, ° | 177 | 160 | 177 |
f, mm | 6.5 | 5 | 8 |
Δθ, ° | 0 | −3 | 3 |
Flow Zones | Cavity | Volute | Impeller | Outlet Collector | Total |
---|---|---|---|---|---|
Quantity | 2.6 | 3.3 | 3 | 0.4 | 9.3 |
No. | Β2 | f | Δθ | Qv |
---|---|---|---|---|
1 | 168.50 | 5 | 1.5 | 18.41 |
2 | 172.75 | 5.38 | −2.25 | 17.52 |
3 | 166.38 | 6.88 | −3 | 17.5 |
4 | 174.88 | 7.63 | −1.5 | 15.16 |
5 | 170.63 | 7.25 | 2.25 | 18.37 |
6 | 160 | 5.75 | −0.75 | 18.28 |
7 | 162.13 | 6.5 | 3 | 18.78 |
8 | 177 | 6.13 | 0.75 | 17.84 |
9 | 164.25 | 8 | 0 | 17.5 |
Filling Times | Number of Samples | Filling Criterion | β2 (°) | f (mm) | Δθ (°) | Fill Factor | Predictive Value (m3/min) | CFD (m3/min) |
---|---|---|---|---|---|---|---|---|
1 | 10 | EI | 160 | 6.43 | 1.69 | 0.2 | 18.67 | 18.84 |
11 | PI | 162.13 | 6.5 | 3 | 0.58 | 18.78 | 18.9 | |
12 | MSP | 162.47 | 6.42 | 2.64 | 18.8 | 18.8 | 19.32 |
Filling Times | Number of Samples | Filling Criterion | β2 (°) | f (mm) | Δθ (°) | Fill Factor | Predictive Value (m3/min) | CFD (m3/min) |
---|---|---|---|---|---|---|---|---|
2 | 13 | EI | 160.23 | 6 | 2.39 | 0.17 | 19.39 | 18.77 |
14 | PI | 162.29 | 6.4 | 2.56 | 0.96 | 19.37 | 18.6 | |
15 | MSP | 161.40 | 6.16 | 2.37 | 19.48 | 19.48 | 19.27 | |
3 | 16 | EI | 177 | 5.4 | 3 | 0.004 | 19.39 | 18.26 |
17 | PI | 177 | 5.52 | 3 | 0.022 | 19.37 | 18.26 | |
18 | MSP | 163.09 | 6.29 | 2.43 | 18.96 | 18.96 | 19.08 | |
4 | 19 | EI | 160 | 8 | 3 | 1.2 × 10−4 | 18.24 | 18.34 |
19 | PI | 160 | 8 | 3 | 0.001 | 18.24 | 18.34 | |
20 | MSP | 164.32 | 6.24 | 2.38 | 19.02 | 19.02 | 18.88 | |
5 | 21 | EI | 160 | 5 | −3 | 5.13 × 10−4 | 18.24 | 17.54 |
21 | PI | 160 | 5 | −3 | 0.004 | 18.24 | 17.54 | |
22 | MSP | 163.02 | 6.29 | 2.38 | 18.97 | 18.97 | 18.81 | |
6 | 23 | EI | 160 | 8 | −3 | 1.1 × 10−6 | 18.24 | 17.83 |
23 | PI | 160 | 8 | −3 | 1.2 × 10−5 | 18.24 | 17.83 | |
24 | MSP | 163.73 | 6.32 | 2.46 | 18.97 | 18.96 | 18.76 |
Filling Times | Number of Samples | Filling Criterion | β2 (°) | f (mm) | Δθ (°) | Fill Factor | Predictive Value (m3/min) | CFD (m3/min) |
---|---|---|---|---|---|---|---|---|
7 | 25 | EI | 177 | 8 | 3 | 8.9 × 10−14 | 17.8 | 17.8 |
26 | PI | 177 | 5 | 0.18 | 2.5 × 10−13 | 17 | 17.54 | |
27 | MSP | 162.88 | 6.33 | 2.41 | 18.93 | 18.94 | 18.98 | |
8 | 28 | EI | 160 | 6.52 | −3 | 1.1 × 10−13 | 18.05 | 18.13 |
28 | PI | 160 | 6.52 | −3 | 5.4 × 10−12 | 18.05 | 18.13 | |
29 | MSP | 162.28 | 6.23 | 2.43 | 18.94 | 18.94 | 18.97 | |
9 | 30 | EI | 177 | 5 | −3 | 4 × 10−21 | 17.36 | 17.36 |
30 | PI | 177 | 5 | −3 | 0 | 17.36 | 17.36 | |
31 | MSP | 163.46 | 6.23 | 2.46 | 18.94 | 18.94 | 18.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Q.; Shi, X.; Wu, L.; Wang, J.; Ding, Y.; Jiang, B. Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model. Processes 2021, 9, 1620. https://doi.org/10.3390/pr9091620
Xiao Q, Shi X, Wu L, Wang J, Ding Y, Jiang B. Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model. Processes. 2021; 9(9):1620. https://doi.org/10.3390/pr9091620
Chicago/Turabian StyleXiao, Qianhao, Xuna Shi, Linghui Wu, Jun Wang, Yanyan Ding, and Boyan Jiang. 2021. "Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model" Processes 9, no. 9: 1620. https://doi.org/10.3390/pr9091620
APA StyleXiao, Q., Shi, X., Wu, L., Wang, J., Ding, Y., & Jiang, B. (2021). Squirrel-Cage Fan System Optimization and Flow Field Prediction Using Parallel Filling Criterion and Surrogate Model. Processes, 9(9), 1620. https://doi.org/10.3390/pr9091620