A Preliminary Assessment of the ‘Greenness’ of Halide-Free Ionic Liquids—An MCDA Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Selection of Halide-Free Ionic Liquids
2.2. Ranking Methodology-TOPSIS Algorithm
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Endres, F.; Doughlas, R.M.; Abbott, A.P. Physical Properties of Ionic Liquids for Electrochemical Applications. In Electrodeposition from Ionic Liquids; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 55–94. [Google Scholar]
- Verma, C.; Ebenso, E.E.; Quraishi, M. Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview. J. Mol. Liq. 2017, 233, 403–414. [Google Scholar] [CrossRef]
- Greer, A.J.; Jacquemin, J.; Hardacre, C. Industrial Applications of Ionic Liquids. Molecules 2020, 25, 5207. [Google Scholar] [CrossRef]
- Abbott, A.P.; Dalrymple, I.; Endres, F.; Macfarlane, D.R. Why use Ionic Liquids for Electrodeposition? In Electrodeposition from Ionic Liquids; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 1–13. [Google Scholar]
- Haerens, K.; Matthijs, E.; Chmielarz, A.; Van der Bruggen, B. The use of ionic liquids based on choline chloride for metal deposition: A green alternative? J. Environ. Manag. 2009, 90, 3245–3252. [Google Scholar] [CrossRef]
- Haerens, K.; Van Deuren, S.; Matthijs, E.; Van Der Bruggen, B. Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem. 2010, 12, 2182–2188. [Google Scholar] [CrossRef]
- Maniam, K.; Paul, S. Progress in Electrodeposition of Zinc and Zinc Nickel Alloys Using Ionic Liquids. Appl. Sci. 2020, 10, 5321. [Google Scholar] [CrossRef]
- Earle, M.J.; Esperança, J.; Gilea, M.A.; Lopes, J.N.C.; Rebelo, L.P.; Magee, J.; Seddon, K.R.; Widegren, J. The distillation and volatility of ionic liquids. Nature 2006, 439, 831–834. [Google Scholar] [CrossRef]
- Costa, S.P.F.; Azevedo, A.M.O.; Pinto, P.C.A.G.; Saraiva, M.L.M.F.S. Environmental Impact of Ionic Liquids: Recent Advances in (Eco)toxicology and (Bio)degradability. ChemSusChem 2017, 10, 2321–2347. [Google Scholar] [CrossRef]
- Amde, M.; Liu, J.-F.; Pang, L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015, 49, 12611–12627. [Google Scholar] [CrossRef]
- Ranke, J.; Stolte, S.; Störmann, R.; Arning, A.J.; Jastorff, B. Design of Sustainable Chemical Products the Example of Ionic Liquids. Chem. Rev. 2007, 107, 2183–2206. [Google Scholar] [CrossRef]
- Flieger, J.; Flieger, M. Ionic Liquids Toxicity—Benefits and Threats. Int. J. Mol. Sci. 2020, 21, 6267. [Google Scholar] [CrossRef]
- Gonçalves, A.; Paredes, X.; Cristino, A.; Santos, F.; Queirós, C. Ionic Liquids—A Review of Their Toxicity to Living Organisms. Int. J. Mol. Sci. 2021, 22, 5612. [Google Scholar] [CrossRef] [PubMed]
- Magina, S.; Barros-Timmons, A.; Ventura, S.P.; Evtuguin, D.V. Evaluating the hazardous impact of ionic liquids—Challenges and opportunities. J. Hazard. Mater. 2021, 412, 125215. [Google Scholar] [CrossRef] [PubMed]
- Bystrzanowska, M.; Tobiszewski, M. Chemometrics for Selection, Prediction, and Classification of Sustainable Solutions for Green Chemistry—A Review. Symmetry 2020, 12, 2055. [Google Scholar] [CrossRef]
- Bystrzanowska, M.; Tobiszewski, M. Assessment and design of greener deep eutectic solvents—A multicriteria decision analysis. J. Mol. Liq. 2020, 321, 114878. [Google Scholar] [CrossRef]
- Bystrzanowska, M.; Pena-Pereira, F.; Marcinkowski, L.; Tobiszewski, M. How green are ionic liquids?—A multicriteria decision analysis approach. Ecotoxicol. Environ. Saf. 2019, 174, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Bystrzanowska, M.; Tobiszewski, M. How can analysts use multicriteria decision analysis? TrAC Trends Anal. Chem. 2018, 105, 98–105. [Google Scholar] [CrossRef]
- Mardani, A.; Jusoh, A.; Nor, K.M.; Khalifah, Z.; Zakwan, N.; Valipour, A. Multiple criteria decision-making techniques and their applications—A review of the literature from 2000 to 2014. Econ. Res. Ekon. Istraživanja 2015, 28, 516–571. [Google Scholar] [CrossRef]
- Huang, I.B.; Keisler, J.; Linkov, I. Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Sci. Total Environ. 2011, 409, 3578–3594. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J.; Pena-Pereira, F. A solvent selection guide based on chemometrics and multicriteria decision analysis. Green Chem. 2015, 17, 4773–4785. [Google Scholar] [CrossRef]
- Moodley, K.; Arumugam, V.; Ogundele, O.; Xu, H.; Redhi, G.; Gao, Y. Thermophysical and thermodynamic properties of binary liquid systems of [BMIM][MeSO4] ionic liquid with carboxylic acids. Indian J. Chem. Sect. A 2020, 59, 1136–1147. [Google Scholar]
- Xu, A.; Wang, F. Carboxylate ionic liquid solvent systems from 2006 to 2020: Thermal properties and application in cellulose processing. Green Chem. 2020, 22, 7622–7664. [Google Scholar] [CrossRef]
- Królikowska, M.; Lipiński, P.; Maik, D. Density, viscosity and phase equilibria study of {ethylsulfate-based ionic liquid+water} binary systems as a function of temperature and composition. Thermochim. Acta 2014, 582, 1–9. [Google Scholar] [CrossRef]
- Ribeiro, M.C.C. High Viscosity of Imidazolium Ionic Liquids with the Hydrogen Sulfate Anion: A Raman Spectroscopy Study. J. Phys. Chem. B 2012, 116, 7281–7290. [Google Scholar] [CrossRef]
- Gurau, G.; Wang, H.; Qiao, Y.; Lu, X.; Zhang, S.; Rogers, R.D. Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure Appl. Chem. 2012, 84, 745–754. [Google Scholar] [CrossRef]
- Guan, W.; Ma, X.-X.; Li, L.; Tong, J.; Fang, D.-W.; Yang, J.-Z. Ionic Parachor and Its Application in Acetic Acid Ionic Liquid Homologue 1-Alkyl-3-methylimidazolium Acetate {[Cnmim][OAc](n = 2,3,4,5,6)}. J. Phys. Chem. B 2011, 115, 12915–12920. [Google Scholar] [CrossRef]
- González, B.; Gómez, E.; Domínguez, A.; Vilas, M.; Tojo, E. Physicochemical Characterization of New Sulfate Ionic Liquids. J. Chem. Eng. Data 2011, 56, 14–20. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Su, S.-G.; Gung, S.-T.; Lin, M.-W.; Lin, Y.-C.; Lai, C.-A.; Sun, I.-W. Ionic liquids containing an alkyl sulfate group as potential electrolytes. Electrochim. Acta 2010, 55, 4475–4482. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Su, S.-G.; Lin, Y.-C.; Wang, H.P.; Lin, M.-W.; Gung, S.-T.; Sun, I.-W. Electrochemical and physicochemical properties of cyclic amine-based Brønsted acidic ionic liquids. Electrochim. Acta 2010, 56, 853–862. [Google Scholar] [CrossRef]
- Calvar, N.; Gómez, E.; González, B.; Domínguez, A. Experimental Vapor−Liquid Equilibria for the Ternary System Ethanol + Water + 1-Ethyl-3-methylpyridinium Ethylsulfate and the Corresponding Binary Systems at 101.3 kPa: Study of the Effect of the Cation. J. Chem. Eng. Data 2010, 55, 2786–2791. [Google Scholar] [CrossRef]
- Shekaari, H.; Armanfar, E. Physical Properties of Aqueous Solutions of Ionic Liquid, 1-Propyl-3-methylimidazolium Methyl Sulfate, at T = (298.15 to 328.15) K. J. Chem. Eng. Data 2010, 55, 765–772. [Google Scholar] [CrossRef]
- Rathika, R.; Suthanthiraraj, S.A. Effect of ionic liquid 1-ethyl-3-methylimidazolium hydrogen sulfate on zinc-ion dynamics in PEO/PVdF blend gel polymer electrolytes. Ionics 2018, 25, 1137–1146. [Google Scholar] [CrossRef]
- Gómez, E.; Calvar, N.; Domínguez, A.; Macedo, E.A. Synthesis and temperature dependence of physical properties of four pyridinium-based ionic liquids: Influence of the size of the cation. J. Chem. Thermodyn. 2010, 42, 1324–1329. [Google Scholar] [CrossRef]
- González, B.; Calvar, N.; Gómez, E.; Domínguez, I.; Domínguez, A. Synthesis and Physical Properties of 1-Ethylpyridinium Ethylsulfate and its Binary Mixtures with Ethanol and 1-Propanol at Several Temperatures. J. Chem. Eng. Data 2009, 54, 1353–1358. [Google Scholar] [CrossRef]
- Gómez, E.; González, B.; Calvar, N.; Domínguez, A. Excess molar properties of ternary system (ethanol+water+1,3-dimethylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 2008, 40, 1208–1216. [Google Scholar] [CrossRef]
- González, B.; Calvar, N.; Gómez, E.; Domínguez, A. Physical properties of the ternary system (ethanol+water+1-butyl-3-methylimidazolium methylsulphate) and its binary mixtures at several temperatures. J. Chem. Thermodyn. 2008, 40, 1274–1281. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Verdía, P.; Tojo, E.; Rodriguez, A. Physical Properties of 1-Butyl-3-methylimidazolium Methyl Sulfate as a Function of Temperature. J. Chem. Eng. Data 2007, 52, 377–380. [Google Scholar] [CrossRef]
- Holbrey, J.; Reichert, W.; Swatloski, R.P.; Broker, G.A.; Pitner, W.R.; Seddon, K.R.; Rogers, R.D. Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem. 2002, 4, 407–413. [Google Scholar] [CrossRef]
- Dong, L.; Zheng, D.X.; Wei, Z.; Wu, X.H. Synthesis of 1,3-Dimethylimidazolium Chloride and Volumetric Property Investigations of Its Aqueous Solution. Int. J. Thermophys. 2009, 30, 1480–1490. [Google Scholar] [CrossRef]
- Sashina, E.S.; Kashirskii, D.A.; Zaborski, M.; Jankowski, S. Synthesis and dissolving power of 1-Alkyl-3-methylpyridinium-based ionic liquids. Russ. J. Gen. Chem. 2012, 82, 1994–1998. [Google Scholar] [CrossRef]
- Vraneš, M.; Papović, S.; Idrissi, A.; Zec, N.; Panaget, T.; Ajduković, J.; Gadžurić, S. New methylpyridinium ionic liquids—Influence of the position of –CH3 group on physicochemical and structural properties. J. Mol. Liq. 2019, 283, 208–220. [Google Scholar] [CrossRef]
- Boruah, K.; Borah, R. Design of Water STable 1,3-Dialkyl- 2-Methyl Imidazolium Basic Ionic Liquids as Reusable Homogeneous Catalysts for Aza-Michael Reaction in Neat Condition. ChemistrySelect 2019, 4, 3479–3485. [Google Scholar] [CrossRef]
- Pandit, S.A.; Rather, M.A.; Bhat, S.A.; Rather, G.M.; Bhat, M.A. Influence of the Anion on the Equilibrium and Transport Properties of 1-Butyl-3-methylimidazolium Based Room Temperature Ionic Liquids. J. Solut. Chem. 2016, 45, 1641–1658. [Google Scholar] [CrossRef]
- Lu, X.; Wu, D.; Ye, D.; Wang, Y.; Guo, Y.; Fang, W. Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3-tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol. J. Chem. Eng. Data 2015, 60, 2618–2628. [Google Scholar] [CrossRef]
- Lu, X.; Yu, J.; Wu, J.; Guo, Y.; Xie, H.; Fang, W. Novel Guanidinium-Based Ionic Liquids for Highly Efficient SO2 Capture. J. Phys. Chem. B 2015, 119, 8054–8062. [Google Scholar] [CrossRef]
- Sashina, E.S.; Kashirskii, D.A.; Jankowski, S. PMR Study of Structural Features of Ionic Liquids Based on 1-Alkyl-3-Methylpyridinium and Mechanism of their Interaction with Cellulose. Fibre Chem. 2014, 45, 268–273. [Google Scholar] [CrossRef]
- European Chemicals Agency. Registered Substances. Available online: https://echa.europa.eu/information-on-chemicals/registered-substances (accessed on 23 July 2021).
- National Center for Biotechnology Information. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 23 July 2021).
- ChemSpider. Data Sources. Available online: https://www.chemspider.com/DataSources.aspx (accessed on 24 July 2021).
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making. Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar] [CrossRef]
- SCHER; SCENIHR. Toxicity and Assessment of Chemical Mixtures. Available online: https://op.europa.eu/en/publication-detail/-/publication/ffab4074-6ce5-4f87-89b7-fbd438943b54/language-en (accessed on 25 July 2021).
- Matzke, M.; Stolte, S.; Thiele, K.; Juffernholz, T.; Arning, J.; Ranke, J.; Welz-Biermann, U.; Jastorff, B. The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem. 2007, 9, 1198–1207. [Google Scholar] [CrossRef]
- Barrosse-Antle, L.E.; Compton, R.G. Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate. Chem. Commun. 2009, 3744–3746. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, J.; Zhang, X.; Xin, J.; Miao, Q.; Wang, J. Ionic liquid-based green processes for energy production. Chem. Soc. Rev. 2014, 43, 7838–7869. [Google Scholar] [CrossRef]
- Estager, J.; Holbrey, J.; Swadzba-Kwasny, M. Halometallate ionic liquids—Revisited. Chem. Soc. Rev. 2014, 43, 847–886. [Google Scholar] [CrossRef] [Green Version]
- Ventura, S.; Silva, F.; Gonçalves, A.M.; Pereira, J.; Gonçalves, F.J.M.; Coutinho, J.A. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol. Environ. Saf. 2014, 102, 48–54. [Google Scholar] [CrossRef]
- Santos, J.I.; Gonçalves, A.M.M.; Pereira, J.L.; Figueiredo, B.F.H.T.; Silva, F.; Coutinho, J.; Ventura, S.P.M.; Gonçalves, F.J.M. Environmental safety of cholinium-based ionic liquids: Assessing structure–ecotoxicity relationships. Green Chem. 2015, 17, 4657–4668. [Google Scholar] [CrossRef]
- Proionic. Proionic to Broaden Its Service Portfolio by Custom Chemical Manufacturing & Process Development. Available online: https://proionic.com/ (accessed on 25 July 2021).
- Ghazvini, M.S.; Pulletikurthi, G.; Lahiri, A.; Endres, F. Electrochemical and Spectroscopic Studies of Zinc Acetate in 1-Ethyl-3-methylimidazolium Acetate for Zinc Electrodeposition. ChemElectroChem 2016, 3, 598–604. [Google Scholar] [CrossRef]
- European Chemicals Agency. Summary and Classification. Available online: https://echa.europa.eu/registration-dossier/-/registered-dossier/25928/1/1 (accessed on 25 July 2021).
- Ostadjoo, S.; Berton, P.; Shamshina, J.L.; Rogers, R.D. Scaling-Up Ionic Liquid-Based Technologies: How Much Do We Care About Their Toxicity? Prima Facie Information on 1-Ethyl-3-Methylimidazolium Acetate. Toxicol. Sci. 2017, 161, 249–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Criteria | Weightage |
---|---|
Signal wording | 0.02 |
Hazard statements | 0.06 |
Precautionary statements | 0.06 |
Special hazards arising from the substance or mixture/Hazardous decomposition products | 0.02 |
Biodegradability | 0.1 |
Toxicity towards Daphnia Magna | 0.13 |
Toxicity towards algae | 0.13 |
Toxicity towards fish | 0.13 |
Toxicity towards rodents (rats, mice) | 0.13 |
Flash point | 0.04 |
Vapor pressure | 0.06 |
Partition coefficient | 0.04 |
pH | 0.04 |
Carcinogenity | 0.04 |
Ranking | Name of the Ionic Liquid | Abbrevation | Similarity to Ideal Solution Value E(Cmix) |
---|---|---|---|
1 | methanol | [MeOH] | 0.62834 |
2 | 1,3-diethyl imidazolium acetate | [EE’Im][OAc] | 0.46447 |
3 | 1-ethyl-2-butyl pyridinium bisulfate | [E2BPyr][HSO4] | 0.46441 |
4 | 1,3-diethyl imidazolium propionate | [EE’Im][C2COO] | 0.46025 |
5 | 1-propyl-1-methyl piperidinium bisulfate | [PMPip][HSO4] | 0.45638 |
6 | 1,3-diethyl imidazolium butyrate | [EE’Im][C3COO] | 0.45439 |
7 | 1,3-dimethyl imidazolium bisulfate | [MM’Im][HSO4] | 0.44969 |
8 | 1-propyl-2,3-dimethyl imidazolium bisulfate | [PMM’Im][HSO4] | 0.44879 |
9 | 1,3-diethyl imidazolium bisulfate | [EE’Im][HSO4] | 0.42599 |
10 | 2,2-diethyl-1,1,3,3-tetramethyl guanidinium ethyl sulfate | [EE’TMG][EtSO4] | 0.41882 |
11 | 1,3-diethyl imidazolium methane sulfonate | [EE’Im][CH3SO3] | 0.41720 |
12 | 1,3-diethyl imidazolium ethane sulfonate | [EE’Im][C2H5SO3] | 0.41503 |
13 | 1-butyl-1-ethyl pyrrolidinium acetate | [BEPyrl][OAc] | 0.41328 |
14 | 1-butyl-1-ethyl pyrrolidinium propionate | [BEPyrl][C2COO] | 0.40906 |
15 | 1-butyl-1-ethyl pyrrolidinium methane sulfonate | [BEPyrl][CH3SO3] | 0.40903 |
16 | 1-ethyl-2,3-dimethyl imidazolium bisulfate | [EMM’Im][HSO4] | 0.40766 |
17 | 1-butyl-1-ethyl pyrrolidinium butyrate | [BEPyrl][C3COO] | 0.40320 |
18 | 1-butyl-2,3-dimethyl imidazolium bisulfate | [BMM’Im][HSO4] | 0.40032 |
19 | 1-butyl-2,3-dimethyl imidazolium methyl sulfate | [BMM’Im][MeSO4] | 0.39949 |
20 | 1-ethyl-2,3-dimethyl imidazolium methyl sulfate | [EMM’Im][MeSO4] | 0.38581 |
21 | 1-butyl-2-methyl pyridinium bisulfate | [B2MPyr][HSO4] | 0.38369 |
22 | 1-ethyl-2-butyl pyridinium acetate | [E2BPyr][OAc] | 0.37927 |
23 | 1-propyl-1-methyl piperidinium acetate | [PMPip][OAc] | 0.37015 |
24 | 1-ethyl-2-butyl pyridinium butyrate | [E2BPyr][C3COO] | 0.36918 |
25 | 1-propyl-1-methyl piperidinium propionate | [PMPip][C2COO] | 0.36701 |
26 | 1-butyl-1-ethyl pyrrolidinium methane sulfonate | [BEPyrl][CH3SO3] | 0.36601 |
27 | 1-butyl-1-ethyl pyrrolidinium ethane sulfonate | [BEPyrl][C2H5SO3] | 0.36384 |
28 | 1-propyl-2,3-dimethyl imidazolium acetate | [PMM’Im][OAc] | 0.36364 |
29 | 1-propyl-1-methyl piperidinium butyrate | [PMPip][C3COO] | 0.36007 |
30 | 1-propyl-2,3-dimethyl imidazolium propionate | [PMM’Im][C2COO] | 0.35942 |
31 | Choline acetate | [Ch][OAc] | 0.35756 |
32 | ethanol | [EtOH] | 0.35613 |
33 | 1-propyl-3-methyl imidazolium propionate | [PMIm][C2COO] | 0.35396 |
34 | 1-propyl-2,3-dimethyl imidazolium butyrate | [PMM’Im][C3COO] | 0.35356 |
35 | Choline propionate | [Ch][C2COO] | 0.35333 |
36 | 1,1-dimethyl pyrrolidinium acetate | [MM’Pyrl][OAc] | 0.35101 |
37 | Choline butyrate | [Ch][C3COO] | 0.34748 |
38 | 1,1-dimethyl pyrrolidinium propionate | [MM’Pyrl][C2COO] | 0.34679 |
39 | 1-propyl-3-methyl pyridinium acetate | [PMPyr][OAc] | 0.34379 |
39 | 1-propyl-3-methyl pyridinium butyrate | [P3MPyr][C3COO] | 0.34379 |
41 | 1,1-dimethyl pyrrolidinium butyrate | [MM’Pyr][C3COO] | 0.34093 |
42 | 1-propyl-3-methyl pyridinium propionate | [PMPyr][C2COO] | 0.33957 |
43 | 1-propyl-1-methyl pyrrolidinium propionate | [PMPyrl][C2COO] | 0.33648 |
44 | 1-ethyl-2-butyl pyridinium methane sulfonate | [E2BPyr][CH3SO3] | 0.32982 |
44 | 1-ethyl-2-butyl pyridinium ethane sulfonate | [E2BPyr][C2H5SO3] | 0.32982 |
46 | 1-propyl-3-methyl pyridinium methyl sulfate | [PMPyr][MeSO4] | 0.32609 |
47 | 1,3-dibutyl imidazolium Propionate | [BB’Im][C2COO] | 0.32516 |
48 | 1-propyl-1-methyl piperidinium methane sulfonate | [PMPip][CH3SO3] | 0.32396 |
49 | 1-ethyl-2,3-dimethyl imidazolium acetate | [EMM’Im][OAc] | 0.32251 |
50 | 1-propyl-1-methyl piperidinium ethane sulfonate | [PMPip][C2H5SO3] | 0.32179 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniam, K.K.; Paul, S. A Preliminary Assessment of the ‘Greenness’ of Halide-Free Ionic Liquids—An MCDA Based Approach. Processes 2021, 9, 1524. https://doi.org/10.3390/pr9091524
Maniam KK, Paul S. A Preliminary Assessment of the ‘Greenness’ of Halide-Free Ionic Liquids—An MCDA Based Approach. Processes. 2021; 9(9):1524. https://doi.org/10.3390/pr9091524
Chicago/Turabian StyleManiam, Kranthi Kumar, and Shiladitya Paul. 2021. "A Preliminary Assessment of the ‘Greenness’ of Halide-Free Ionic Liquids—An MCDA Based Approach" Processes 9, no. 9: 1524. https://doi.org/10.3390/pr9091524
APA StyleManiam, K. K., & Paul, S. (2021). A Preliminary Assessment of the ‘Greenness’ of Halide-Free Ionic Liquids—An MCDA Based Approach. Processes, 9(9), 1524. https://doi.org/10.3390/pr9091524