Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedures
3. Results
3.1. Pure Feedstocks Pyrolysis
3.2. Blended Feedstocks Pyrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
LHSV | h−1 | Liquid hourly space velocity |
p | kPa, MPa | absolute pressure |
T | °C | temperature |
w(i) | wt.% | mass content of component i |
Y(i) | wt.% | yield (in the sense process yield of product i) |
AGO | atmospheric gas oil | |
HCVD | hydrocracked vacuum distillate | |
HVO | hydrotreated vegetable oil | |
RSO | rapeseed oil | |
SFO | sunflower oil | |
SIMDIS | simulated gas chromatography distillation | |
UCO | used cooking oil |
References
- Mittelbach, M. Fuels from oils and fats: Recent developments and perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1832–1846. [Google Scholar] [CrossRef]
- Bezergianni, S.; Dimitriadis, A. Comparison between different types of renewable diesel. Renew. Sustain. Energy Rev. 2013, 21, 110–116. [Google Scholar] [CrossRef]
- Donnis, B.; Egeberg, R.G.; Blom, P.; Knudsen, K.G. Hydroprocessing of Bio-Oils and Oxygenates to Hydrocarbons. Understanding the Reaction Routes. Top. Catal. 2009, 52, 229–240. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; Hernandez, J.J.; Tsolakis, A. Potential for reducing emissions in a diesel engine by fuelling with conventional biodiesel and Fischer-Tropsch diesel. Fuel 2010, 89, 3106–3113. [Google Scholar] [CrossRef]
- Kubicka, D.; Lederer, J.; Belohlav, Z. Catalytic Transformation of Triglycerides in Refineries—A Promising Route to Clean Fuels and Feedstocks for Petrochemicals. Oil Gas-Eur. Mag. 2009, 35, 40–43. [Google Scholar]
- Han, Y.L.; Gholizadeh, M.; Tran, C.C.; Kaliaguine, S.; Li, C.Z.; Olarte, M.; Garcia-Perez, M. Hydrotreatment of pyrolysis bio-oil: A review. Fuel Process. Technol. 2019, 195, 106140. [Google Scholar] [CrossRef]
- Bagnato, G.; Sanna, A.; Paone, E.; Catizzone, E. Recent Catalytic Advances in Hydrotreatment Processes of Pyrolysis Bio-Oil. Catalysts 2021, 11, 157. [Google Scholar] [CrossRef]
- Alleman, T.L.; Iisa, K.; Franz, J.A.; Elliott, D.C.; McCormick, R.L. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions. Energy Fuels 2011, 25, 5462–5471. [Google Scholar] [CrossRef]
- Sanchez-Borrego, F.J.; Alvarez-Mateos, P.; Garcia-Martin, J.F. Biodiesel and Other Value-Added Products from Bio-Oil Obtained from Agrifood Waste. Processes 2021, 9, 797. [Google Scholar] [CrossRef]
- Ochoa, A.; Vicente, H.; Sierra, I.; Arandes, J.M.; Castano, P. Implications of feeding or cofeeding bio-oil in the fluid catalytic cracker (FCC) in terms of regeneration kinetics and energy balance. Energy 2020, 209, 118467. [Google Scholar] [CrossRef]
- Jaroenkhasemmeesuk, C.; Diego, M.E.; Tippayawong, N.; Ingham, D.B.; Pourkashanian, M. Simulation analysis of the catalytic cracking process of biomass pyrolysis oil with mixed catalysts: Optimization using the simplex lattice design. Int. J. Energy Res. 2018, 42, 2983–2996. [Google Scholar] [CrossRef]
- Zamostny, P.; Belohlav, Z.; Smidrkal, J. Production of olefins via steam cracking of vegetable oils. Resour. Conserv. Recycl. 2011, 59, 47–51. [Google Scholar] [CrossRef]
- Bartekova, E.; Bajus, M. Pyrolysis of hexadecane. Collect. Czech. Chem. Commun. 1997, 62, 1057–1069. [Google Scholar] [CrossRef]
- Depeyre, D.; Flicoteaux, C.; Chardaire, C. Pure normal-hexadecane thermal steam cracking. Ind. Eng. Chem. Process Des. Dev. 1985, 24, 1251–1258. [Google Scholar] [CrossRef]
- Depeyre, D.; Flicoteaux, C. Modeling of thermal steam cracking of n-hexadecane. Ind. Eng. Chem. Res. 1991, 30, 1116–1130. [Google Scholar] [CrossRef]
- Billaud, F.; Freund, E. Pyrolysis of a mixture of n-alkanes (chiefly C12-C18) atCA. 1053 K: Kinetic study. J. Anal. Appl. Pyrolysis 1984, 6, 341–361. [Google Scholar] [CrossRef]
- Karaba, A.; Rozhon, J.; Patera, J.; Hajek, J.; Zamostny, P. Fischer-Tropsch Wax from Renewable Resources as an Excellent Feedstock for the Steam-Cracking Process. Chem. Eng. Technol. 2021, 44, 329–338. [Google Scholar] [CrossRef]
- Karaba, A.; Dvorakova, V.; Patera, J.; Zamostny, P. Improving the steam-cracking efficiency of naphtha feedstocks by mixed/separate processing. J. Anal. Appl. Pyrolysis 2020, 146, 104768. [Google Scholar] [CrossRef]
- Zamostny, P.; Belohlav, Z.; Starkbaumova, L.; Patera, J. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products. J. Anal. Appl. Pyrolysis 2010, 87, 207–216. [Google Scholar] [CrossRef]
- Herink, T.; Belohlav, Z.; Zamostny, P.; Doskocil, J. Application of hydrocarbon cracking experiments to ethylene unit control and optimization. Pet. Chem. 2006, 46, 237–245. [Google Scholar] [CrossRef]
- de Paz Carmona, H.; Svobodova, E.; Tisler, Z.; Akhmetzyanova, U.; Strejcova, K. Hydrotreating of Atmospheric Gas Oil and Co-Processing with Rapeseed Oil Using Sulfur-Free PMoCx/Al2O3 Catalysts. ACS Omega 2021, 6, 7680–7692. [Google Scholar] [CrossRef] [PubMed]
- Belohlav, Z.; Herink, T.; Lederer, J.; Marek, J.; Rachova, N.; Svoboda, P.; Zamostny, P.; Vojtova, D. Evaluation of pyrolysis feedstock by pyrolysis gas chromatography. Pet. Chem. 2005, 45, 118–125. [Google Scholar]
- Zamostny, Z.; Karaba, A.; Olahova, N.; Petru, J.; Patera, J.; Hajekova, E.; Bajus, M.; Belohlav, Z. Generalized model of n-heptane pyrolysis and steam cracking kinetics based on automated reaction network generation. J. Anal. App. Pyrol. 2014, 109, 159–161. [Google Scholar] [CrossRef]
- Ren, T.; Patel, M.; Blok, K. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. Energy 2006, 31, 425–451. [Google Scholar] [CrossRef] [Green Version]
- Karaba, A.; Zamostny, P.; Herink, T.; Kelbichova, V. Semi-mechanistic Model Applied to the Search for Economically Optimal Conditions and Blending of Gasoline Feedstock for Steam-cracking Process. In Proceedings of the 3rd International Conference on Chemical and Food Engineering, Tokyo, Japan, 8–9 April 2016; Park, C.J., Khan, M.R., Eds.; EDP Sciences: Lyss, France; p. 04004. [Google Scholar] [CrossRef] [Green Version]
Feedstock | UCO | SFO | RSO |
---|---|---|---|
Density at 1, kg/m3 | 918.3 | 920.8 | 920.8 |
Ref-index 1 | 1.4732 | 1.4750 | 1.4749 |
Acid number 2, mg/g | 1.13 | 0.75 | 0.19 |
Br-index 2, mg/g | 55,384 | 47,243 | 42,113 |
Elemental analysis | |||
C content, wt.% | 76.9 | 77.6 | 76.2 |
H content, wt.% | 11.7 | 11.7 | 11.7 |
S content, ppm | 4.3 | 2.1 | 2.3 |
N content, ppm | 22.3 | 4.3 | 2.1 |
Simdis 3, °C | |||
10 wt.% | 596.20 | 595.84 | 596.40 |
30 wt.% | 606.06 | 605.17 | 605.90 |
50 wt.% | 609.55 | 608.83 | 609.14 |
70 wt.% | 611.83 | 611.04 | 611.32 |
90 wt.% | 613.77 | 612.84 | 613.08 |
95 wt.% | 616.17 | 614.76 | 615.28 |
Feedstock | T, °C | LHSV, h−1 | H2:Feed, Nm3/m3 | p, MPa | Catalyst 1 | HVO Sample |
---|---|---|---|---|---|---|
Rapeseed oil | 340 | 1 | 4150 | 12.5 | CoMoS | HRSO1 |
Rapeseed oil | 340 | 1 | 4150 | 12.5 | CoMoS | HRSO2 |
Rapeseed oil | 320 | 2 | 2400 | 5.5 | NiMoS | HRSO3 |
Sunflower oil | 330 | 2 | 2400 | 5.5 | NiMoS | HSFO |
Used cooking oil | 335 | 2 | 2400 | 5.5 | NiMoS | HUCO |
Variable | HCVD | AGO | HRSO1 | HRSO2 | HRSO3 | HSFO | HUCO |
---|---|---|---|---|---|---|---|
Density 1, kg/m3 | - | 852.6 | 753.0 | 752.9 | 761.3 | 761.0 | 762.0 |
Ref-index 1 | - | 1.4759 | 1.4203 | 1.4204 | 1.4264 | 1.4263 | 1.4267 |
Acid number 2 | - | 0.04 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Br-index 2 | - | 8534 | - | - | 4486 | 4834 | 3532 |
Elemental | |||||||
C, wt.% | - | 86.1 | 85.0 | 84.9 | 84.0 | 85.0 | 85.1 |
H, wt.% | - | 13.3 | 15.0 | 15.1 | 15.0 | 14.6 | 15.0 |
S, ppm | - | 12000 | 2.5 | 2.5 | 21.8 | 41.0 | 26.3 |
N, ppm | - | 232 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Simdis 3, °C | |||||||
10 wt.% | 345.1 | 206.1 | 295.6 | 295.8 | 300.4 | 300.0 | 299.7 |
30 wt.% | 390.8 | 256.8 | 305.4 | 306.1 | 304.6 | 304.3 | 304.2 |
50 wt.% | 419.0 | 289.5 | 310.2 | 311.6 | 310.5 | 315.1 | 308.2 |
70 wt.% | 448.8 | 318.0 | 320.5 | 321.4 | 319.6 | 319.8 | 319.3 |
90 wt.% | 494.3 | 359.7 | 323.1 | 324.3 | 323.4 | 327.6 | 324.9 |
95 wt.% | 512.5 | 378.2 | 330.3 | 330.9 | 352.6 | 355.5 | 365.4 |
Paraffins | |||||||
n-C15, wt.% | - | - | 2.09 | 2.03 | 2.56 | 2.56 | 3.33 |
n-C16, wt.% | - | - | 2.65 | 2.65 | 2.39 | 2.77 | 3.04 |
n-C17, wt.% | - | - | 36.97 | 36.57 | 47.53 | 43.33 | 47.77 |
n-C18, wt.% | - | - | 42.24 | 42.97 | 41.75 | 44.62 | 41.10 |
Feedstock | HCVD | AGO | HRSO1 | HRSO2 | HRSO3 | HSFO | HUCO | HRSO1 +HCVD | HRSO2 +HCVD | HRSO1 +AGO | HRSO2 +AGO |
---|---|---|---|---|---|---|---|---|---|---|---|
Methane | 5.2 | 6.3 | 4.9 | 6.1 | 7.1 | 7.2 | 7.0 | 5.5 | 5.4 | 6.1 | 5.9 |
Ethane | 1.5 | 1.8 | 1.5 | 1.9 | 2.7 | 2.9 | 2.9 | 1.6 | 1.7 | 1.6 | 1.5 |
Ethylene | 30.0 | 19.8 | 45.6 | 41.4 | 41.3 | 40.4 | 39.9 | 29.9 | 30.4 | 22.2 | 22.2 |
Acetylene | 0.6 | 0.2 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 | 0.4 | 0.4 | 0.2 | 0.2 |
Propane | 0.6 | 0.3 | 0.4 | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 | 0.3 | 0.3 |
Propylene | 15.3 | 11.3 | 18.8 | 18.7 | 19.2 | 19.1 | 19.1 | 15.5 | 15.4 | 12.1 | 12.1 |
Propa-1,3-diene | 0.2 | 0.0 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 |
Propyne | 0.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.4 | 0.4 | 0.3 | 0.3 |
i-butane | 0.2 | 0.0 | 0.4 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
n-butane | 0.3 | 0.2 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | 0.5 | 0.2 | 0.2 |
trans-but-2-ene | 0.0 | 0.3 | 0.2 | 0.0 | 0.3 | 0.3 | 0.3 | 0.0 | 0.0 | 0.3 | 0.1 |
But-1-ene | 4.8 | 1.9 | 10.0 | 8.2 | 6.6 | 6.4 | 6.8 | 5.9 | 5.7 | 3.0 | 3.4 |
i-butene | 1.3 | 0.9 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 1.6 | 1.6 | 1.4 | 1.4 |
cis-but-2-ene | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 0.4 | 0.4 | 0.4 | 0.3 | 0.3 |
Buta-1,3-diene | 7.9 | 4.7 | 6.9 | 7.7 | 7.9 | 7.9 | 7.8 | 7.6 | 7.5 | 5.1 | 5.1 |
CPD | 2.4 | 1.3 | 0.7 | 1.5 | 1.5 | 1.6 | 1.5 | 3.0 | 2.7 | 2.2 | 2.2 |
C5–C7 non-id. | 7.3 | 7.2 | 3.4 | 4.9 | 4.5 | 4.8 | 5.4 | 4.6 | 4.0 | 3.2 | 3.4 |
Benzene | 3.9 | 2.7 | 1.3 | 2.1 | 3.1 | 3.4 | 3.1 | 4.7 | 4.7 | 4.4 | 4.1 |
Toluene | 2.7 | 3.3 | 0.3 | 0.0 | 0.9 | 1.0 | 1.0 | 2.7 | 1.6 | 2.9 | 2.7 |
EB | 0.2 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
m+p-xylenes | 0.7 | 1.3 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.9 | 0.9 | 1.2 | 1.2 |
Styrene | 1.0 | 1.5 | 0.3 | 0.0 | 0.5 | 0.5 | 0.5 | 1.0 | 1.0 | 1.3 | 1.3 |
Naphthalene | 0.4 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.3 | 1.0 | 0.9 |
C7–C12 non-id. | 2.8 | 5.3 | 1.2 | 1.8 | 1.0 | 1.0 | 1.2 | 3.2 | 3.6 | 4.9 | 5.1 |
Oil (C11+) | 9.7 | 28.1 | 2.7 | 3.6 | 1.6 | 1.5 | 1.7 | 9.7 | 11.2 | 25.6 | 26.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaba, A.; Patera, J.; Ruskayova, P.D.; Carmona, H.d.P.; Zamostny, P. Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process. Processes 2021, 9, 1504. https://doi.org/10.3390/pr9091504
Karaba A, Patera J, Ruskayova PD, Carmona HdP, Zamostny P. Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process. Processes. 2021; 9(9):1504. https://doi.org/10.3390/pr9091504
Chicago/Turabian StyleKaraba, Adam, Jan Patera, Petra Dvorakova Ruskayova, Héctor de Paz Carmona, and Petr Zamostny. 2021. "Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process" Processes 9, no. 9: 1504. https://doi.org/10.3390/pr9091504
APA StyleKaraba, A., Patera, J., Ruskayova, P. D., Carmona, H. d. P., & Zamostny, P. (2021). Experimental Evaluation of Hydrotreated Vegetable Oils as Novel Feedstocks for Steam-Cracking Process. Processes, 9(9), 1504. https://doi.org/10.3390/pr9091504