Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions
Abstract
:1. Introduction
2. Experimental Part and Discussion of the Results
3. Modeling of C60(OH)24*18H2O Crystallization Branches in Ternary Systems REMCl3-C60(OH)24—H2O at 25 °C
3.1. Sechenov Equation of the Solubility of Nonelectrolyte in Electrolyte Solutions
3.2. Model Description of One-Parameter Sechenov Solubility Equation (SE-1)
3.3. Model Description of Modified Three-Parameter Sechenov Solubility Equation (SEM-3)
3.4. Model Description of Modified Three-Parameter Sechenov Solubility Equation for the Crystallization of Crystal Solvates of Non-Electrolyte (SEM(CS)-3)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keskinov, V.A.; Semenov, K.N.; Gol’cov, T.C.; Charykov, N.A.; Podol’skii, N.E.; Kurilenko, A.V.; Shaimardanov, Z.K.; Shaimardanova, B.K.; Kulenova, N.A. Phase diagrams of fullerenol-d–LaCl3–H2O and fullerenol-d–GdCl3–H2O Systems at 25 °C. Russ. J. Phys. Chem. A 2019, 93, 2555–2558. [Google Scholar] [CrossRef]
- Petrov, A.A.; Keskinov, V.A.; Semenov, K.N.; Charykov, N.A.; Letenko, D.G.; Nikitin, V.A. Formation of a new adduct based on fullerene tris-malonate samarium salt C60-[C60(=C(COO)2)3]Sm2. Russ. J. Phys. Chem. 2017, 91, 549–554. [Google Scholar] [CrossRef]
- Yuryev, G.O.; Keskinov, V.A.; Semenov, K.N.; Charykov, N.A. Phase equilibria in a ternary fullerenol-d(c60(OH)22–24)–Smcl3–H2O system at 25°C. Russ. J. Phys. Chem. A 2017, 91, 797–799. [Google Scholar] [CrossRef]
- Semenov, K.N.; A Charykov, N.; Postnov, V.N.; Sharoyko, V.V.; Murin, I.V. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials. Russ. Chem. Rev. 2016, 85, 38–59. [Google Scholar] [CrossRef]
- Semenov, K.N.; Kanterman, I.G.; Charykov, N.A.; Murin, I.V.; Kritchenkov, A.S. Solid-liquid phase equilibria in the fullerenol-d-CuCl2-H2O system at 25 °C. Russ. J. Phys. Chem. A 2014, 88, 1073–1075. [Google Scholar] [CrossRef]
- Semenov, K.N.; Kanterman, I.G.; Charykov, N.A.; Keskinov, V.A.; Kulenova, N.A. Solubility in the ternary system fullerenol-d-uranyl sulfate-water at 25 °C. Radiochemistry 2014, 56, 493–495. [Google Scholar] [CrossRef]
- Zolotarev, A.A.; Lushin, A.I.; Charykov, N.A.; Semenov, K.N.; Namazbaev, V.I.; Keskinov, V.A.; Kritchenkov, A.S. Impact Resistance of Cement and Gypsum Plaster Nanomodified by Water-Soluble Fullerenols. Ind. Eng. Chem. Res. 2013, 52, 14583–14591. [Google Scholar] [CrossRef]
- Semenov, K.N.; Charykov, N.A. Solubility Diagram of a Fullerenol-d-NaCl-H2O System at 25 °C. Russ. J. Phys. Chem. 2012, 86, 1636–1638. [Google Scholar] [CrossRef]
- Setschenov, I.M. Ueber die Absorbtion der Kohlensauren durch Salzlosungen, 6th ed.; Académie impériale des sciences: Petersb., Russia, 1886. [Google Scholar]
- Hermann, C.; Dewes, I.; Schumpe, A. The estimation of gas solubilities in salt solutions. Chem. Eng. Sci. 1995, 50, 1673–1675. [Google Scholar] [CrossRef]
- Sechenov, Ivan Mikhailovich (1829–1905); Autobiographical notes of Ivan Mikhailovich Sechenov; Scientific Word: Moscow, Russia, 1907; Volume XVI, 195p, Available online: https://dlib.rsl.ru/01003744204 (accessed on 1 July 2015). (In Russian)
- Charykova, M.V.; Charykov, N.A. Thermodynamic Modeling of the Process of Evaporite Sedimentation; Science: S-Petersburg, Russia, 2003. [Google Scholar]
- Charykov, N.A. St Petersburg State Institute of Technology (Technical University) different types of non-variant points and non-variant phase processes in the phase diagrams of binary, ternary and multicomponent systems. Bull. St. Petersburg State Inst. Technol. (Techn. Univ.) 2019, 3–20. [Google Scholar] [CrossRef]
- Charykov, N.A.; Charykova, M.V.; Semenov, K.N.; Keskinov, V.A.; Kurilenko, A.V.; Shaimardanov, Z.K.; Shaimardanova, B.K. Multiphase Open Phase Processes Differential Equations. Processes 2019, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Charykov, N.; Semenov, K.; Keskinov, V.; Kulenova, N.; Shaimardanov, Z.; Gerasimova, L.; Kanbar, A.; Letenko, D. Cryometry and excess thermodynamic functions in water soluble of the fullerenol C60(OH)24. Nanosyst. Phys. Chem. Math. 2020, 11, 205–213. [Google Scholar] [CrossRef]
- Sharoyko, V.V.; Ageev, S.V.; Meshcheriakov, A.A.; Akentiev, A.V.; Noskov, B.A.; Rakipov, I.T.; Charykov, N.A.; Kulenova, N.A.; Shaimardanova, B.K.; Podolsky, N.E.; et al. Physicochemical study of water-soluble C60(OH)24 fullerenol. J. Mol. Liq. 2020, 311, 113360. [Google Scholar] [CrossRef]
- Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Pitzer, K.S.; Kim, J.J. Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 1974, 96, 5701–5707. [Google Scholar] [CrossRef] [Green Version]
№ | Molality mC60(OH)24, (mole/kg H2O) | Molality mPrCl3, (mole/kg H2O) | Solid Phase |
1 | 0.0678 | 0.000 | C60(OH)24*18H2O |
2 | 0.0465 | 0.338 | C60(OH)24*18H2O |
3 | 0.0340 | 0.464 | C60(OH)24*18H2O |
4 | 0.0232 | 0.465 | C60(OH)24*18H2O |
5 | 0.0167 | 0.725 | C60(OH)24*18H2O |
6 | 0.0099 | 1.23 | C60(OH)24*18H2O |
7 | 0.0087 | 2.27 | C60(OH)24*18H2O |
8 | 0.0070 | 3.35 | C60(OH)24*18H2O |
9 | 0.0061 | 4.89 | C60(OH)24*18H2O |
10 | 0.0024 | 6.01 | C60(OH)24*18H2O |
11 | 0.0017 | 6.95 | C60(OH)24*18H2O |
12 | 0.0012 | 7.19 | PrCl3*7H2O+ C60(OH)24*18H2O |
13 | 0.00064 | 6.61 | PrCl3*7H2O |
14 | 0.000 | 6.10 | PrCl3*7H2O |
№ | Molality mC60(OH)24. (mole/kg H2O) | Molality mNdCl3. (mole/kg H2O) | Solid Phase |
1 | 0.0678 | 0.000 | C60(OH)24*18H2O |
2 | 0.0434 | 0.450 | C60(OH)24*18H2O |
3 | 0.0279 | 0.464 | C60(OH)24*18H2O |
4 | 0.0221 | 0.651 | C60(OH)24*18H2O |
5 | 0.0148 | 0.886 | C60(OH)24*18H2O |
6 | 0.0114 | 1.61 | C60(OH)24*18H2O |
7 | 0.0121 | 3.26 | C60(OH)24*18H2O |
8 | 0.0102 | 5.00 | C60(OH)24*18H2O |
9 | 0.0066 | 6.35 | C60(OH)24*18H2O |
10 | 0.0032 | 7.27 | C60(OH)24*18H2O |
11 | 0.0015 | 9.56 | C60(OH)24*18H2O |
12 | 0.00089 | 9.84 | NdCl3*6H2O+ C60(OH)24*18H2O |
13 | 0.00039 | 8.56 | NdCl3*6H2O |
14 | 0.000 | 7.48 | NdCl3*6H2O |
№ | Molality mC60(OH)24. (mole/kg H2O) | Molality mYCl3. (mole/kg H2O) | Solid Phase |
1 | 0.0678 | 0.000 | C60(OH)24*18H2O |
2 | 0.0577 | 0.421 | C60(OH)24*18H2O |
3 | 0.0488 | 0.759 | C60(OH)24*18H2O |
4 | 0.0283 | 1.51 | C60(OH)24*18H2O |
5 | 0.0204 | 1.77 | C60(OH)24*18H2O |
6 | 0.0107 | 2.39 | C60(OH)24*18H2O |
7 | 0.0052 | 3.13 | C60(OH)24*18H2O |
8 | 0.0029 | 4.17 | C60(OH)24*18H2O |
9 | 0.0021 | 4.43 | C60(OH)24*18H2O |
10 | 0.0019 | 5.12 | C60(OH)24*18H2O |
11 | 0.0017 | 5.38 | C60(OH)24*18H2O |
12 | 0.0015 | 5.69 | YCl3*7H2O+ C60(OH)24*18H2O |
13 | 0.00076 | 5.63 | YCl3*7H2O |
14 | 0.000 | 5.57 | YCl3*7H2O |
№ | Molality mC60(OH)24. (mole/kg H2O) | Molality mTbCl3. (mole/kg H2O) | Solid Phase |
1 | 0.0678 | 0.000 | C60(OH)24*18H2O |
2 | 0.0622 | 0.227 | C60(OH)24*18H2O |
3 | 0.0442 | 0.396 | C60(OH)24*18H2O |
4 | 0.0267 | 0.678 | C60(OH)24*18H2O |
5 | 0.0137 | 1.01 | C60(OH)24*18H2O |
6 | 0.0101 | 1.25 | C60(OH)24*18H2O |
7 | 0.0051 | 1.53 | C60(OH)24*18H2O |
8 | 0.0029 | 1.93 | C60(OH)24*18H2O |
9 | 0.0020 | 2.32 | C60(OH)24*18H2O |
10 | 0.0014 | 2.74 | C60(OH)24*18H2O |
11 | 0.0011 | 3.18 | C60(OH)24*18H2O |
12 | 0.00092 | 3.51 | TbCl3*6H2O+ C60(OH)24*18H2O |
13 | 0.00051 | 3.45 | TbCl3*6H2O |
14 | 0.000 | 3.40 | TbCl3*6H2O |
Ternary System | Parameters of Approximal Equation ln(m0C60(OH)24/mC60(OH)24) = AsmREMCl3 + BsmREMCl32 + DsmREMCl33 | χ2/DoF (a.u.) | R2 (a.u.) | ||
As (kg H2O/mole) | Bs (kg H2O/mole)2 | Ds (kg H2O/mole)3 | |||
C60(OH)24—PrCl3—H2O | 0.57222 | - | - | 0.39 | 0.77 |
C60(OH)24—PrCl3—H2O | 0.98671 | −0.06781 | - | 0.26 | 0.85 |
C60(OH)24—PrCl3—H2O | 0.78111 | - | −0.00531 | 0.32 | 0.82 |
C60(OH)24—PrCl3—H2O | 1.89358 | −0.49141 | 0.04272 | 0.06 | 0.97 |
C60(OH)24—NdCl3—H2O | 0.42558 | - | - | 0.38 | 0.78 |
C60(OH)24—NdCl3—H2O | 0.57683 | −0.01846 | - | 0.37 | 0.80 |
C60(OH)24—NdCl3—H2O | 0.48087 | - | −0.00078 | 0.40 | 0.79 |
C60(OH)24—NdCl3—H2O | 1.36942 | −0.27304 | 0.01814 | 0.14 | 0.93 |
C60(OH)24—YCl3—H2O | 0.71511 | - | - | 0.042 | 0.98 |
C60(OH)24—YCl3—H2O | 0.80001 | −0.01806 | - | 0.040 | 0.98 |
C60(OH)24—YCl3—H2O | 0.78864 | - | −0.00316 | 0.035 | 0.99 |
C60(OH)24—YCl3—H2O | 0.34620 | 0.24447 | −0.03352 | 0.0080 | 1.00 |
C60(OH)24—TbCl3—H2O | 1.38583 | - | - | 0.099 | 0.96 |
C60(OH)24—TbCl3—H2O | 1.83932 | −0.16512 | - | 0.038 | 0.99 |
C60(OH)24—TbCl3—H2O | 1.68419 | - | −0.03675 | 0.026 | 0.99 |
C60(OH)24—TbCl3—H2O | 1.23160 | 0.41114 | −0.12007 | 0.016 | 0.99 |
Ternary System | Parameters of Approximal Equation | χ2/DoF (a.u.) | 2 (a.u.) | ||
As-cs (kg H2O/mole) | Bs-cs (kg H2O/mole)2 | Ds-cs (kg H2O/mole)3 | |||
C60(OH)24—PrCl3—H2O | 1.90857 | −0.49325 | 0.04281 | 0.06 | 0.97 |
C60(OH)24—NdCl3—H2O | 1.38319 | −0.27557 | 0.01830 | 0.14 | 0.93 |
C60(OH)24—YCl3—H2O | 0.34351 | 0.24809 | −0.03396 | 0.0082 | 1.00 |
C60(OH)24—TbCl3—H2O | 1.23355 | 0.41812 | −0.12175 | 0.016 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charykov, N.A.; Keskinov, V.A.; Tsvetkov, K.A.; Kanbar, A.; Semenov, K.N.; Gerasimova, L.V.; Shaimardanov, Z.K.; Shaimardanova, B.K.; Kulenova, N.A. Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions. Processes 2021, 9, 349. https://doi.org/10.3390/pr9020349
Charykov NA, Keskinov VA, Tsvetkov KA, Kanbar A, Semenov KN, Gerasimova LV, Shaimardanov ZK, Shaimardanova BK, Kulenova NA. Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions. Processes. 2021; 9(2):349. https://doi.org/10.3390/pr9020349
Chicago/Turabian StyleCharykov, Nikolay A., Viktor A. Keskinov, Kirill A. Tsvetkov, Ayat Kanbar, Konstantin N. Semenov, Lubov’ V. Gerasimova, Zhassulan K. Shaimardanov, Botagoz K. Shaimardanova, and Natalia A. Kulenova. 2021. "Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions" Processes 9, no. 2: 349. https://doi.org/10.3390/pr9020349
APA StyleCharykov, N. A., Keskinov, V. A., Tsvetkov, K. A., Kanbar, A., Semenov, K. N., Gerasimova, L. V., Shaimardanov, Z. K., Shaimardanova, B. K., & Kulenova, N. A. (2021). Solubility of Rare Earth Chlorides in Ternary Water-Salt Systems in the Presence of a Fullerenol—C60(OH)24 Nanoclusters at 25 °C. Models of Nonelectrolyte Solubility in Electrolyte Solutions. Processes, 9(2), 349. https://doi.org/10.3390/pr9020349