Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation
Abstract
:1. Introduction
2. The Germicidal Mechanisms
3. Disinfectant Based on EW in the Food Industry
3.1. Application of EW in Fruits and Vegetables
3.2. Application of EW in Poultry and Meat
3.3. Application of EW in Aquatic Product
3.4. Hurdle Enhancement of EW with Other Treatments
3.5. Clinical Application of EW in Hospitals
4. Role of EW in Functional Food Development
5. Future Trends on the Application of EW
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aworh, O.C. Food safety issues in fresh produce supply chain with particular reference to sub-Saharan Africa. Food Control 2021, 123, 107737. [Google Scholar] [CrossRef]
- Fung, F.; Wang, H.S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef]
- Grace, D.; Wu, F.; Havelaar, A.H. MILK Symposium review: Foodborne diseases from milk and milk products in developing countries-Review of causes and health and economic implications. J. Dairy Sci. 2020, 103, 9715–9729. [Google Scholar] [CrossRef]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases: Foodborne Disease Burden epidemiology Reference Group 2007–2015. Available online: https://apps.who.int/iris/handle/10665/199350 (accessed on 1 October 2021).
- Hoffmann, S.; Scallan, E. Epidemiology, cost, and risk analysis of foodborne disease. In Foodborne Diseases, 3rd ed.; Dodd, C.E.R., Aldsworth, T., Stein, R.A., Cliver, D.O., Riemann, H.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 31–63. [Google Scholar]
- Sedrakyan, A.M.; Ktsoyan, Z.A.; Arakelova, K.A.; Zakharyan, M.K.; Hovhannisyan, A.I.; Gevorgyan, Z.U.; Mnatsakanyan, A.A.; Kakabadze, E.G.; Makalatia, K.B.; Chanishvili, N.A.; et al. Extended-Spectrum beta-Lactamases in Human Isolates of Multidrug-Resistant Non-typhoidal Salmonella enterica. Front. Microbiol. 2020, 11, 592223. [Google Scholar] [CrossRef] [PubMed]
- Byun, K.H.; Han, S.H.; Yoon, J.W.; Park, S.H.; Ha, S.D. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control 2021, 123, 107838. [Google Scholar] [CrossRef]
- Brodowska, A.J.; Nowak, A.; Smigielski, K. Ozone in the food industry: Principles of ozone treatment, mechanisms of action, and applications: An overview. Crit. Rev. Food Sci. Nutr. 2018, 58, 2176–2201. [Google Scholar] [CrossRef] [PubMed]
- Moretro, T.; Fanebust, H.; Fagerlund, A.; Langsrud, S. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments. Int. J. Food Microbiol. 2019, 292, 118–125. [Google Scholar] [CrossRef]
- Korany, A.M.; Hua, Z.; Green, T.; Hanrahan, I.; El-Shinawy, S.H.; El-Kholy, A.; Hassan, G.; Zhu, M.J. Efficacy of Ozonated Water, Chlorine, Chlorine Dioxide, Quaternary Ammonium Compounds and Peroxyacetic Acid Against Listeria monocytogenes Biofilm on Polystyrene Surfaces. Front. Microbiol. 2018, 9, 2296. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of edible coating with essential oil in food preservation. Crit. Rev. Food Sci. Nutr. 2019, 59, 2467–2480. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, S.; Yang, H. Recent advances on research of electrolyzed water and its applications. Curr. Opin. Food Sci. 2021, 41, 180–188. [Google Scholar] [CrossRef]
- Yan, P.; Daliri, E.B.; Oh, D.H. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021, 9, 136. [Google Scholar] [CrossRef] [PubMed]
- Aider, M.; Gnatko, E.; Benali, M.; Plutakhin, G.; Kastyuchik, A. Electro-activated aqueous solutions: Theory and application in the food industry and biotechnology. Innov. Food Sci. Emerg. Technol. 2012, 15, 38–49. [Google Scholar] [CrossRef]
- Zheng, W.; Kang, R.; Wang, H.; Li, B.; Xu, C.; Wang, S. Airborne bacterial reduction by spraying slightly acidic electrolyzed water in a laying-hen house. J. Air Waste Manag. Assoc. 2013, 63, 1205–1211. [Google Scholar] [CrossRef] [Green Version]
- Phuvasate, S.; Su, Y.C. Effects of electrolyzed oxidizing water and ice treatments on reducing histamine-producing bacteria on fish skin and food contact surface. Food Control 2010, 21, 286–291. [Google Scholar] [CrossRef]
- Possas, A.; Perez-Rodriguez, F.; Tarlak, F.; Garcia-Gimeno, R.M. Quantifying and modelling the inactivation of Listeria monocytogenes by electrolyzed water on food contact surfaces. J. Food Eng. 2021, 290, 110287. [Google Scholar] [CrossRef]
- Pangloli, P.; Hung, Y.C. Efficacy of slightly acidic electrolyzed water in killing or reducing Escherichia coli O157:H7 on iceberg lettuce and tomatoes under simulated food service operation conditions. J. Food Sci. 2011, 76, M361–M366. [Google Scholar] [CrossRef]
- Afari, G.K.; Hung, Y.C. A meta-analysis on the effectiveness of electrolyzed water treatments in reducing foodborne pathogens on different foods. Food Control 2018, 93, 150–164. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Chen, L.; Zhao, L.; Yang, H.S. Effect of electrolysed water generated by sodium chloride combined with sodium bicarbonate solution against Listeria innocua in broth and on shrimp. Food Control 2021, 127, 108134. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Z.; Yang, G.; Shi, Y.; Zhang, Y.; Shi, C.; Xia, X. Effect of slightly acidic electrolyzed water on natural Enterobacteriaceae reduction and seed germination in the production of alfalfa sprouts. Food Microbiol. 2021, 97, 103414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Zhang, Y.Y.; Zhao, Z.Y.; Liu, W.F.; Chen, Y.Q.; Yang, G.J.; Xia, X.D.; Cao, Y.F. The application of slightly acidic electrolyzed water in pea sprout production to ensure food safety, biological and nutritional quality of the sprout. Food Control 2019, 104, 83–90. [Google Scholar] [CrossRef]
- Fransisca, L.; Zhou, B.; Park, H.; Feng, H. The effect of calcinated calcium and chlorine treatments on Escherichia coli O157:H7 87-23 population reduction in radish sprouts. J. Food Sci. 2011, 76, M404–M412. [Google Scholar] [CrossRef]
- Lu, Z.H.; Zhang, Y.; Li, L.T.; Curtis, R.B.; Kong, X.L.; Fulcher, R.G.; Zhang, G.; Cao, W. Inhibition of microbial growth and enrichment of gamma-aminobutyric acid during germination of brown rice by electrolyzed oxidizing water. J. Food Prot. 2010, 73, 483–487. [Google Scholar] [CrossRef]
- Hao, J.; Wang, Q. Application of electrolyzed water in fruits and vegetables industry. In Electrolyzed Water in Food: Fundamentals and Applications; Ding, T., Oh, D.H., Liu, D., Eds.; Springer: Singapore, 2019; pp. 67–111. [Google Scholar]
- Pou, K.R.J.; Raghavan, V. Recent Advances in the Application of High Pressure Processing-Based Hurdle Approach for Enhancement of Food Safety and Quality. J. Biosyst. Eng. 2020, 45, 175–187. [Google Scholar] [CrossRef]
- Jo, H.Y.; Tango, C.N.; Oh, D.H. Influence of different organic materials on chlorine concentration and sanitization of slightly acidic electrolyzed water. Lebensm. Wiss. Technol. 2018, 92, 187–194. [Google Scholar] [CrossRef]
- Deng, L.Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508. [Google Scholar] [CrossRef]
- Akbulut, M.B.; Eldeniz, A.Ü. In vitro antimicrobial activity of different electrochemicallyactivated solutions on enterococcus faecalis. Eur. Oral Res. 2019, 53, 44–50. [Google Scholar] [CrossRef]
- Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 2006, 11, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Tian, Y.; Zhao, C.; Qu, T.; Ma, C.; Liu, X.; Yu, Q. Bactericidal Effect of Strong Acid Electrolyzed Water against Flow Enterococcus faecalis Biofilms. J. Endod. 2016, 42, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Xuan, X.T.; Li, J.; Chen, S.G.; Liu, D.H.; Ye, X.Q.; Shi, J.; Xue, S.J. Disinfection efficacy and mechanism of slightly acidic electrolyzed water on Staphylococcus aureus in pure culture. Food Control 2016, 60, 505–510. [Google Scholar] [CrossRef]
- Tang, W.W.; Zeng, X.P.; Zhao, Y.S.; Ye, G.Q.; Gui, W.C.; Ni, Y.M. Disinfection Effect and Its Mechanism of Electrolyzed Oxidizing Water on Spores of Bacillus subtilis var. niger. Food Sci. Biotechnol. 2011, 20, 889–895. [Google Scholar] [CrossRef]
- Memar, M.Y.; Ghotaslou, R.; Samiei, M.; Adibkia, K. Antimicrobial use of reactive oxygen therapy: Current insights. Infect. Drug Resist. 2018, 11, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Chen, L.; Laserna, A.K.C.; He, Y.; Feng, X.; Yang, H.S. Synergistic action of electrolyzed water and mild heat for enhanced microbial inactivation of Escherichia coli O157:H7 revealed by metabolomics analysis. Food Control 2020, 110, 107026. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, J.; Lim, Z.Y.; Lai, S.; Lee, N.; Yang, H. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. Int. J. Food Microbiol. 2018, 271, 24–32. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Z.-L.; Sun, Y.-L.; Zhou, S.-M. The enzymatic browning reaction inhibition effect of strong acidic electrolyzed water on different parts of sweet potato slices. Food Biosci. 2021, 43, 101252. [Google Scholar] [CrossRef]
- Wu, S.; Nie, Y.; Zhao, J.; Fan, B.; Huang, X.; Li, X.; Sheng, J.; Meng, D.; Ding, Y.; Tang, X. The synergistic effects of low-concentration acidic electrolyzed water and ultrasound on the storage quality of fresh-sliced button mushrooms. Food Bioprocess Technol. 2018, 11, 314–323. [Google Scholar] [CrossRef]
- Li, H.; Ren, Y.; Hao, J.; Liu, H. Dual effects of acidic electrolyzed water treatments on the microbial reduction and control of enzymatic browning for fresh-cut lotus root. J. Food Saf. 2017, 37, e12333. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Mei, J.; Xie, J. Shelf-life extension of refrigerated turbot (Scophthalmus maximus) by using weakly acidic electrolyzed water and active coatings containing daphnetin emulsions. Front. Nutr. 2021, 8, 696212. [Google Scholar] [CrossRef] [PubMed]
- Puligundla, P.; Kim, J.W.; Mok, C. Broccoli sprout washing with electrolyzed water: Effects on microbiological and physicochemical characteristics. Lebensm. Wiss. Technol. 2018, 92, 600–606. [Google Scholar] [CrossRef]
- Hussain, M.S.; Kwon, M.; Park, E.J.; Seheli, K.; Huque, R.; Oh, D.H. Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat. Lebensm. Wiss. Technol. 2019, 116, 108582. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Q.F.; Zhao, D.D.; Han, X.; Hao, J.X. Systematic application of slightly acidic electrolyzed water (SAEW) for natural microbial reduction of buckwheat sprouts. Lebensm. Wiss. Technol. 2019, 108, 14–20. [Google Scholar] [CrossRef]
- Cap, M.; Rojas, D.; Fernandez, M.; Fulco, M.; Rodriguez, A.; Soteras, T.; Cristos, D.; Mozgovoj, M. Effectiveness of short exposure times to electrolyzed water in reducing Salmonella spp and Imidacloprid in lettuce. Lebensm. Wiss. Technol. 2020, 128, 109496. [Google Scholar] [CrossRef]
- Sheng, L.N.; Shen, X.Y.; Ulloa, O.; Suslow, T.V.; Hanrahan, I.; Zhu, M.J. Evaluation of JC9450 and Neutral Electrolyzed Water in Controlling Listeria monocytogenes on Fresh Apples and Preventing Cross-Contamination. Front. Microbiol. 2020, 10, 3128. [Google Scholar] [CrossRef]
- Ogunniyi, A.D.; Dandie, C.E.; Brunetti, G.; Drigo, B.; Aleer, S.; Hall, B.; Ferro, S.; Deo, P.; Venter, H.; Myers, B.; et al. Neutral electrolyzed oxidizing water is effective for pre-harvest decontamination of fresh produce. Food Microbiol. 2021, 93, 103610. [Google Scholar] [CrossRef]
- Ogunniyi, A.D.; Tenzin, S.; Ferro, S.; Venter, H.; Pi, H.F.; Amorico, T.; Deo, P.; Trott, D.J. A pH-neutral electrolyzed oxidizing water significantly reduces microbial contamination of fresh spinach leaves. Food Microbiol. 2021, 93, 103614. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Guo, X.N.; Xiang, J.J.; Sun, X.H.; Zhu, K.X. Effects of wheat tempering with slightly acidic electrolyzed water on the microbial, biological, and chemical characteristics of different flour streams. Lebensm. Wiss. Technol. 2020, 118, 108790. [Google Scholar] [CrossRef]
- Huang, L.C.; Luo, X.; Gao, J.W.; Matthews, K.R. Influence of water antimicrobials and storage conditions on inactivating MS2 bacteriophage on strawberries. Int. J. Food Microbiol. 2019, 291, 67–71. [Google Scholar] [CrossRef]
- Sheng, L.N.; Shen, X.Y.; Zhu, M.J. Screening of non-pathogenic surrogates of Listeria monocytogenes applicable for chemical antimicrobial interventions of fresh apples. Food Control 2020, 110, 106977. [Google Scholar] [CrossRef]
- Zhang, C.L.; Cao, W.; Hung, Y.C.; Li, B.M. Disinfection effect of slightly acidic electrolyzed water on celery and cilantro. Food Control 2016, 69, 147–152. [Google Scholar] [CrossRef]
- Song, H.; Lee, J.Y.; Lee, H.W.; Ha, J.H. Inactivation of bacteria causing soft rot disease in fresh cut cabbage using slightly acidic electrolyzed water. Food Control 2021, 128, 108217. [Google Scholar] [CrossRef]
- Tang, J.Y.; Chen, H.B.; Lin, H.T.; Hung, Y.C.; Xie, H.L.; Chen, Y.H. Acidic electrolyzed water treatment delayed fruit disease development of harvested longans through inducing the disease resistance and maintaining the ROS metabolism systems. Postharvest Biol. Technol. 2021, 171, 111349. [Google Scholar] [CrossRef]
- Chen, H.Q.; Zhong, Q.X. Antibacterial activity of acidified sodium benzoate against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in tryptic soy broth and on cherry tomatoes. Int. J. Food Microbiol. 2018, 274, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Abadias, M.; Usall, J.; Oliveira, M.; Alegre, I.; Vinas, I. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. Int. J. Food Microbiol. 2008, 123, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.M.E.; Khan, I.; Oh, D.H. Electrolyzed Water as a Novel Sanitizer in the Food Industry: Current Trends and Future Perspectives. Compr. Rev. Food Sci. Food Saf. 2016, 15, 471–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martin-Belloso, O. Control of Pathogenic and Spoilage Microorganisms in Fresh-cut Fruits and Fruit Juices by Traditional and Alternative Natural Antimicrobials. Compr. Rev. Food Sci. Food Saf. 2009, 8, 157–180. [Google Scholar] [CrossRef]
- Estell, M.; Hughes, J.; Grafenauer, S. Plant Protein and Plant-Based Meat Alternatives: Consumer and Nutrition Professional Attitudes and Perceptions. Sustainability 2021, 13, 1478. [Google Scholar] [CrossRef]
- Orejel, J.R.C.; Cano-Buendia, J.A. Applications of Electrolyzed Water as a Sanitizer in the Food and Animal-By Products Industry. Processes 2020, 8, 534. [Google Scholar] [CrossRef]
- Northcutt, J.; Smith, D.; Ingram, K.D.; Hinton, A.; Musgrove, M. Recovery of Bacteria from Broiler Carcasses after Spray Washing with Acidified Electrolyzed Water or Sodium Hypochlorite Solutions. Poult. Sci. 2007, 86, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Qi, J.; Duan, D.B.; Dong, Y.; Xu, X.L.; Zhou, G.Z. Combination of a novel designed spray cabinet and electrolyzed water to reduce microorganisms on chicken carcasses. Food Control 2018, 86, 200–206. [Google Scholar] [CrossRef]
- Al-Holy, M.A.; Rasco, B.A. The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control 2015, 54, 317–321. [Google Scholar] [CrossRef]
- Han, D.; Hung, Y.C.; Wang, L.X. Evaluation of the antimicrobial efficacy of neutral electrolyzed water on pork products and the formation of viable but nonculturable (VBNC) pathogens. Food Microbiol. 2018, 73, 227–236. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Park, J.; Song, K.B.; Al-Harbi, N.A.; Oh, D.H. Effects of Slightly Acidic Low Concentration Electrolyzed Water on Microbiological, Physicochemical, and Sensory Quality of Fresh Chicken Breast Meat. J. Food Sci. 2012, 77, M35–M41. [Google Scholar] [CrossRef]
- Medina-Gudiño, J.; Rivera-Garcia, A.; Santos-Ferro, L.; Ramirez-Orejel, J.C.; Agredano-Moreno, L.T.; Jimenez-Garcia, L.F.; Paez-Esquiliano, D.; Martinez-Vidal, S.; Andrade-Esquivel, E.; Cano-Buendia, J.A. Analysis of Neutral Electrolyzed Water anti-bacterial activity on contaminated eggshells with Salmonella enterica or Escherichia coli. Int. J. Food Microbiol. 2020, 320, 108538. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.W.; Shu, D.Q.; Tang, X.J.; Zang, Y.T. Effects of slightly acidic electrolyzed water on the microbial quality and shelf life extension of beef during refrigeration. Food Sci. Nutr. 2018, 6, 1975–1981. [Google Scholar] [CrossRef] [PubMed]
- Veasey, S.; Muriana, P.M. Evaluation of Electrolytically-Generated Hypochlorous Acid (“Electrolyzed Water”) for Sanitation of Meat and Meat-Contact Surfaces. Foods 2016, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Pimentel, V.M.; Regalado-Gonzalez, C.; Nava-Morales, G.M.; Meas-Vong, Y.; Castaneda-Serrano, M.P.; Garcia-Almendarez, B.E. Effect of neutral electrolyzed water as antimicrobial intervention treatment of chicken meat and on trihalomethanes formation. J. Appl. Poult. Res. 2020, 29, 622–635. [Google Scholar] [CrossRef]
- Brychcy, E.; Malik, M.; Drozdzewski, P.; Ulbin-Figlewicz, N.; Jarmoluk, A. Low-concentrated acidic electrolysed water treatment of pork: Inactivation of surface microbiota and changes in product quality. Int. J. Food Sci. Technol. 2015, 50, 2340–2350. [Google Scholar] [CrossRef]
- Arya, R.; Bryant, M.; Degala, H.L.; Mahapatra, A.K.; Kannan, G. Effectiveness of a low-cost household electrolyzed water generator in reducing the populations of Escherichia coli K12 on inoculated beef, chevon, and pork surfaces. J. Food Process. Preserv. 2018, 42, e13636. [Google Scholar] [CrossRef]
- Botta, C.; Ferrocino, I.; Cavallero, M.C.; Riva, S.; Giordano, M.; Cocolin, L. Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water. Int. J. Food Microbiol. 2018, 266, 337–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Rosales, E.; Rivera-Garcia, A.; Rosario-Perez, P.J.; Ramirez-Orejel, J.C.; Paez-Esquiliano, D.; Martinez-Vidal, S.; Guzman-Olea, E.; Cano-Buendia, J.A. Application of Neutral Electrolyzed Water on pork chops and its impact on meat quality. Sci. Rep. 2020, 10, 19910. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, X.; Chen, Y.; Lin, M.; Tang, J.; Lin, Q.; Fang, L.; Li, M.; Hung, Y.-C.; Lin, H. Recent trends and applications of electrolyzed oxidizing water in fresh foodstuff preservation and safety control. Food Chem. 2022, 369, 130873. [Google Scholar] [CrossRef] [PubMed]
- Al-Qadiri, H.M.; Al-Holy, M.A.; Shiroodi, S.G.; Ovissipour, M.; Govindan, B.N.; Al-Alami, N.; Sablani, S.S.; Rasco, B. Effect of acidic electrolyzed water-induced bacterial inhibition and injury in live clam (Venerupis philippinarum) and mussel (Mytilus edulis). Int. J. Food Microbiol. 2016, 231, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, X.-T.; Fan, Y.-F.; Ling, J.-G.; Hu, Y.-Q.; Liu, D.-H.; Chen, S.-G.; Ye, X.-Q.; Ding, T. Preservation of squid by slightly acidic electrolyzed water ice. Food Control 2017, 73, 1483–1489. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.; Wang, M.; Sun, J.; Li, H.; Malakar, P.K.; Liu, H.; Pan, Y.; Zhao, Y. New insights into the changes of the proteome and microbiome of shrimp (litopenaeus vannamei) stored in acidic electrolyzed water ice. J. Agric. Food Chem. 2018, 66, 4966–4976. [Google Scholar] [CrossRef]
- Jung, S.; Ko, B.S.; Jang, H.-J.; Park, H.J.; Oh, S.-W. Effects of slightly acidic electrolyzed water ice and grapefruit seed extract ice on shelf life of brown sole (Pleuronectes herzensteini). Food Sci. Biotechnol. 2018, 27, 261–267. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, Y.; Yang, R.; Zhao, W. Combined effect of slightly acidic electrolyzed water and ascorbic acid to improve quality of whole chilled freshwater prawn (Macrobrachium rosenbergii). Food Control 2020, 108, 106820. [Google Scholar] [CrossRef]
- Tantratian, S.; Kaephen, K. Shelf-life of shucked oyster in epigallocatechin-3-gallate with slightly acidic electrolyzed water washing under refrigeration temperature. LWT 2020, 118, 108733. [Google Scholar] [CrossRef]
- Liu, D.; Lv, R. Safety evaluation of electrolyzed water. In Electrolyzed Water in Food: Fundamentals and Applications; Ding, T., Oh, D.H., Liu, D., Eds.; Springer: Singapore, 2019; pp. 261–267. [Google Scholar]
- Hricova, D.; Stephan, R.; Zweifel, C. Electrolyzed water and its application in the food industry. J. Food Prot. 2008, 71, 1934–1947. [Google Scholar] [CrossRef]
- Khan, I.; Tango, C.N.; Miskeen, S.; Lee, B.H.; Oh, D.H. Hurdle technology: A novel approach for enhanced food quality and safety—A review. Food Control 2017, 73, 1426–1444. [Google Scholar] [CrossRef]
- Mohammad, Z.; Kalbasi-Ashtari, A.; Riskowski, G.; Juneja, V.; Castillo, A. Inactivation of Salmonella and Shiga toxin-producing Escherichia coli (STEC) from the surface of alfalfa seeds and sprouts by combined antimicrobial treatments using ozone and electrolyzed water. Food Res. Int. 2020, 136, 109488. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, M.Y.; Phey, C.P.; Yang, H.S. Efficacy of low concentration acidic electrolysed water and levulinic acid combination on fresh organic lettuce (Lactuca sativa Var. Crispa L.) and its antimicrobial mechanism. Food Control 2019, 101, 241–250. [Google Scholar] [CrossRef]
- Mansur, A.R.; Tango, C.N.; Kim, G.H.; Oh, D.H. Combined effects of slightly acidic electrolyzed water and fumaric acid on the reduction of foodborne pathogens and shelf life extension of fresh pork. Food Control 2015, 47, 277–284. [Google Scholar] [CrossRef]
- Hussain, M.S.; Tango, C.N.; Oh, D.H. Inactivation kinetics of slightly acidic electrolyzed water combined with benzalkonium chloride and mild heat treatment on vegetative cells, spores, and biofilms of Bacillus cereus. Food Res. Int. 2019, 116, 157–167. [Google Scholar] [CrossRef]
- Park, S.Y.; Ha, S.D. Reduction of Escherichia coli and Vibrio parahaemolyticus Counts on Freshly Sliced Shad (Konosirus punctatus) by Combined Treatment of Slightly Acidic Electrolyzed Water and Ultrasound Using Response Surface Methodology. Food Bioproc. Tech. 2015, 8, 1762–1770. [Google Scholar] [CrossRef]
- Xuan, X.T.; Ding, T.; Li, J.; Ahn, J.H.; Zhao, Y.; Chen, S.G.; Ye, X.Q.; Liu, D.H. Estimation of growth parameters of Listeria monocytogenes after sublethal heat and slightly acidic electrolyzed water (SAEW) treatment. Food Control 2017, 71, 17–25. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Wang, J.; Oh, D.H. Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control 2013, 30, 176–183. [Google Scholar] [CrossRef]
- Cichoski, A.J.; Flores, D.R.M.; De Menezes, C.R.; Jacob-Lopes, E.; Zepka, L.Q.; Wagner, R.; Barin, J.S.; Flores, E.M.D.; Fernandes, M.D.; Campagnol, P.C.B. Ultrasound and slightly acid electrolyzed water application: An efficient combination to reduce the bacterial counts of chicken breast during pre-chilling. Int. J. Food Microbiol. 2019, 301, 27–33. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Jin, Y.G.; Oh, D.H. Combined Effects of Alkaline Electrolyzed Water and Citric Acid with Mild Heat to Control Microorganisms on Cabbage. J. Food Sci. 2010, 75, M111–M115. [Google Scholar] [CrossRef] [PubMed]
- Mansur, A.R.; Oh, D.H. Modeling the Growth of Epiphytic Bacteria on Kale Treated by Thermosonication Combined with Slightly Acidic Electrolyzed Water and Stored under Dynamic Temperature Conditions. J. Food Sci. 2016, 81, M2021–M2030. [Google Scholar] [CrossRef]
- Lv, R.L.; Muhammad, A.I.; Zou, M.; Yu, Y.; Fan, L.H.; Zhou, J.W.; Ding, T.; Ye, X.Q.; Guo, M.M.; Liu, D.H. Hurdle enhancement of acidic electrolyzed water antimicrobial efficacy on Bacillus cereus spores using ultrasonication. Appl. Microbiol. Biotechnol. 2020, 104, 4505–4513. [Google Scholar] [CrossRef]
- Jiang, Y.R.; Ai, C.M.; Liao, X.Y.; Liu, D.H.; Ding, T. Effect of slightly acidic electrolyzed water (SAEW) and ultraviolet light illumination pretreatment on microflora inactivation of coriander. Lebensm. Wiss. Technol. 2020, 132, 109898. [Google Scholar] [CrossRef]
- Lv, R.L.; Mingming, Z.; Chen, W.J.; Wang, D.L.; Zhou, J.W.; Ding, T.; Ye, X.Q.; Liu, D.H. A hurdle approach of acidic electrolyzed water simultaneous with ultrasound to inactivate Bacillus cereus. J. Food Process. Preserv. 2019, 43, e14148. [Google Scholar] [CrossRef]
- Shao, L.T.; Dong, Y.; Chen, X.J.; Xu, X.L.; Wang, H.H. Modeling the elimination of mature biofilms formed by Staphylococcus aureus and Salmonella spp. Using combined ultrasound and disinfectants. Ultrason. Sonochem. 2020, 69, 105269. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jin, X.X.; Feng, X.; Yang, H.S.; Fu, C.L. Inactivation kinetics of Escherichia coli O157:H7 and Salmonella Typhimurium on organic carrot (Daucus carota L.) treated with low concentration electrolyzed water combined with short-time heat treatment. Food Control 2019, 106, 106702. [Google Scholar] [CrossRef]
- Ovissipour, M.; Shiroodi, S.G.; Rasco, B.; Tang, J.M.; Sablani, S.S. Electrolyzed water and mild-thermal processing of Atlantic salmon (Salmo salar): Reduction of Listeria monocytogenes and changes in protein structure. Int. J. Food Microbiol. 2018, 276, 10–19. [Google Scholar] [CrossRef]
- Du, S.P.; Zhang, Z.H.; Xiao, L.L.; Lou, Y.; Pan, Y.J.; Zhao, Y. Acidic Electrolyzed Water as a Novel Transmitting Medium for High Hydrostatic Pressure Reduction of Bacterial Loads on Shelled Fresh Shrimp. Front. Microbiol. 2016, 7, 305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Xu, B.; Deng, S.G.; Huang, Y.T. Effect of Combined Pretreatment with Slightly Acidic Electrolyzed Water and Botanic Biopreservative on Quality and Shelf Life of Bombay Duck (Harpadon nehereus). J. Food Qual. 2016, 39, 116–125. [Google Scholar] [CrossRef]
- Athayde, D.R.; Flores, D.R.M.; da Silva, J.S.; Genro, A.L.G.; Silva, M.S.; Klein, B.; Mello, R.; Campagnol, P.C.B.; Wagner, R.; de Menezes, C.R.; et al. Application of electrolyzed water for improving pork meat quality. Food Res. Int. 2017, 100, 757–763. [Google Scholar] [CrossRef]
- Miks-Krajnik, M.; Feng, L.X.J.; Bang, W.S.; Yuk, H.G. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Palotas, P.; Palotas, P.; Jonas, G.; Lehel, J.; Friedrich, L. Preservative Effect of Novel Combined Treatment with Electrolyzed Active Water and Lysozyme Enzyme to Increase the Storage Life of Vacuum-Packaged Carp. J. Food Qual. 2020, 2020, 4861471. [Google Scholar] [CrossRef] [Green Version]
- Tango, C.N.; Khan, I.; Kounkeu, P.F.N.; Momna, R.; Hussain, M.S.; Oh, D.H. Slightly acidic electrolyzed water combined with chemical and physical treatments to decontaminate bacteria on fresh fruits. Food Microbiol. 2017, 67, 97–105. [Google Scholar] [CrossRef]
- Ben-Nakhi, M.E.; Eltayeb, H.I. First Middle East Experience with Novel Foam Dressing Together with Negative Pressure Wound Therapy and Instillation. Cureus 2018, 10, e3415. [Google Scholar] [CrossRef] [Green Version]
- Fadriquela, A.; Sajo, M.E.J.; Bajgai, J.; Kim, D.H.; Kim, C.S.; Kim, S.K.; Lee, K.J. Effects of Strong Acidic Electrolyzed Water in Wound Healing via Inflammatory and Oxidative Stress Response. Oxid. Med. Cell. Longev. 2020, 2020, 2459826. [Google Scholar] [CrossRef]
- Gomez-Garcia, M.; Sol, C.; de Nova, P.J.G.; Puyalto, M.; Mesas, L.; Puente, H.; Mencia-Ares, O.; Miranda, R.; Arguello, H.; Rubio, P.; et al. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Manag. 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Lopez, L.; Rincon-Fontan, M.; Vecino, X.; Cruz, J.M.; Moldes, A.B. Preservative and Irritant Capacity of Biosurfactants From Different Sources: A Comparative Study. J. Pharm. Sci. 2019, 108, 2296–2304. [Google Scholar] [CrossRef]
- Sheng, X.W.; Bing, S.; Lu, C.Q.; Yuan, X.Y.; Zang, Y.T.; Zhan, Z.W.; Shu, D.Q.; Li, Y.J.; Li, M.T.; Wu, B.Q. A combined approach using slightly acidic electrolyzed water and UV exposure to improve egg internal quality during storage. Poult. Sci. 2020, 99, 6007–6012. [Google Scholar] [CrossRef] [PubMed]
- Giarratana, N.; Rajan, B.; Kamala, K.; Mendenhall, M.; Reiner, G. A sprayable Acid-Oxidizing solution containing hypochlorous acid (AOS2020) efficiently and safely inactivates SARS-Cov-2: A new potential solution for upper respiratory tract hygiene. Eur. Arch. Otorhinolaryngol. 2021, 278, 3099–3103. [Google Scholar] [CrossRef]
- Zmuda, H.M.; Mohamed, A.; Raval, Y.S.; Call, D.R.; Schuetz, A.N.; Patel, R.; Beyenal, H. Hypochlorous acid-generating electrochemical scaffold eliminates Candida albicans biofilms. J. Appl. Microbiol. 2020, 129, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Fukuyama, T.; Martel, B.C.; Linder, K.E.; Ehling, S.; Ganchingco, J.R.; Baumer, W. Hypochlorous acid is antipruritic and anti-inflammatory in a mouse model of atopic dermatitis. Clin. Exp. Allergy 2018, 48, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.L.; Yao, J.C.; Hsieh, S.C.; Teng, N.C.; Chu, Y.T.; Yu, W.X.; Chen, C.H.; Chang, L.Y.; Huang, C.S.; Lee, T.H.; et al. The In Vivo Toxicity and Antimicrobial Properties for Electrolyzed Oxidizing (EO) Water-Based Mouthwashes. Materials 2020, 13, 4299. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.; Sipahi, H.; Dinc, O.; Kavaz, T.; Charehsaz, M.; Dimoglo, A.; Aydin, A. Toxicity, mutagenicity and stability assessment of simply produced electrolyzed water as a wound healing agent in vitro. Hum. Exp. Toxicol. 2021, 40, 452–463. [Google Scholar] [CrossRef]
- Sipahi, H.; Reis, R.; Dinc, O.; Kavaz, T.; Dimoglo, A.; Aydin, A. In vitro biocompatibility study approaches to evaluate the safety profile of electrolyzed water for skin and eye. Hum. Exp. Toxicol. 2019, 38, 1314–1326. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “baby leaf” vegetables. In Minimally Processed Refrigerated Fruits and Vegetables. Food Engineering Series; Yildiz, F., Wiley, R., Eds.; Springer: Boston, MA, USA, 2017; pp. 403–432. [Google Scholar]
- Chen, Y.H.; Pouillot, R.; Farakos, S.M.S.; Duret, S.; Spungen, J.; Fu, T.J.; Shakir, F.; Homola, P.A.; Dennis, S.; Van Doren, J.M. Risk Assessment of Salmonellosis from Consumption of Alfalfa Sprouts and Evaluation of the Public Health Impact of Sprout Seed Treatment and Spent Irrigation Water Testing. Risk Anal. 2018, 38, 1738–1757. [Google Scholar] [CrossRef] [Green Version]
- Phua, L.K.; Neo, S.Y.; Khoo, G.H.; Yuk, H.G. Comparison of the efficacy of various sanitizers and hot water treatment in inactivating inoculated foodborne pathogens and natural microflora on mung bean sprouts. Food Control 2014, 42, 270–276. [Google Scholar] [CrossRef]
- Ngnitcho, P.F.K.; Khan, I.; Tango, C.N.; Hussain, M.S.; Oh, D.H. Inactivation of bacterial pathogens on lettuce, sprouts, and spinach using hurdle technology. Innov. Food Sci. Emerg. Technol. 2017, 43, 68–76. [Google Scholar] [CrossRef]
- Hao, J.X.; Li, J.X.; Zhao, D.D. Effect of slightly acidic electrolysed water on functional components, antioxidant and alpha-glucosidase inhibitory ability of buckwheat sprouts. Int. J. Food Sci. Technol. 2021, 56, 3463–3473. [Google Scholar] [CrossRef]
- Hao, J.X.; Wu, T.J.; Li, H.Y.; Wang, W.; Liu, H.J. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of gamma-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chem. 2016, 201, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Xia, X.D.; Li, B.M.; Hung, Y.C. Disinfection efficacy of electrolyzed oxidizing water on brown rice soaking and germination. Food Control 2018, 89, 38–45. [Google Scholar] [CrossRef]
- Yu, Z.L.; Liu, R. Effect of electrolyzed water on enzyme activities of triticale malt during germination. J. Food Sci. Technol. 2019, 56, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.B.; Wang, Q.F.; Han, X.; Hao, J.X. Effect of pH and chlorine concentration of slightly acidic electrolyzed water on the buckwheat sprouts during germination. J. Food Process. Preserv. 2019, 43, e14175. [Google Scholar] [CrossRef]
- Li, L.Z.; Hao, J.X.; Song, S.H.; Nirasawa, S.; Jiang, Z.Q.; Liu, H.J. Effect of slightly acidic electrolyzed water on bioactive compounds and morphology of broccoli sprouts. Food Res. Int. 2018, 105, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Li, L.Z.; Song, S.H.; Nirasawa, S.; Hung, Y.C.; Jiang, Z.Q.; Liu, H.J. Slightly Acidic Electrolyzed Water Treatment Enhances the Main Bioactive Phytochemicals Content in Broccoli Sprouts via Changing Metabolism. J. Agric. Food Chem. 2019, 67, 606–614. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Z.L. Application of electrolyzed water on reducing the microbial populations on commercial mung bean sprouts. J. Food Sci. Technol. 2017, 54, 995–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.L.; Cao, W.; Hung, Y.C.; Li, B.M. Application of electrolyzed oxidizing water in production of radish sprouts to reduce natural microbiota. Food Control 2016, 67, 177–182. [Google Scholar] [CrossRef]
- Li, X.; Hao, J.; Liu, X.; Liu, H.; Ning, Y.; Cheng, R.; Tan, B.; Jia, Y. Effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in germinated brown millet. Food Chem. 2015, 186, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Hao, J.X.; Liu, H.J.; Li, L.T. Application of electrolyzed functional water on producing mung bean sprouts. Food Control 2011, 22, 1311–1315. [Google Scholar] [CrossRef]
- Cao, W.; Zhang, C.; Li, B. Effect of spraying subacidic electrolyzed water on buckwheat sprouts growth. Trans. Chin. Soc. Agric. Eng. 2012, 28, 159–164. [Google Scholar]
- Liu, R.; He, X.; Shi, J.; Nirasawa, S.; Tatsumi, E.; Li, L.; Liu, H. The effect of electrolyzed water on decontamination, germination and γ-aminobutyric acid accumulation of brown rice. Food Control 2013, 33, 1–5. [Google Scholar] [CrossRef]
- Wojdylo, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In vitro Bioactive Properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef]
- Marton, M.; Mandoki, Z.S.; Csapo-Kiss, Z.S.; Csapo, J. The role of sprouts in human nutrition. A review. Acta Univ. Sapientiae 2010, 3, 81–117. [Google Scholar]
- Abellan, A.; Dominguez-Perles, R.; Moreno, D.A.; Garcia-Viguera, C. Sorting out the Value of Cruciferous Sprouts as Sources of Bioactive Compounds for Nutrition and Health. Nutrients 2019, 11, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, I.; Sharma, R.K. Production of secondary metabolites in plants under abiotic stress: An overview. Significances Bioeng. Biosci. 2018, 2, 196–200. [Google Scholar] [CrossRef]
EW Type | Food Commodities | Microorganisms | Log Reduction (log CFU/g) | Exposure Time (min) | Free Chlorine Concentration (ppm) | pH | ORP | Reference |
---|---|---|---|---|---|---|---|---|
SAEW | Pea sprout | Total bacteria count | 1.58 | 24 h | 70 | 5.46 | 927 | [23] |
Coliform | 1.02 | |||||||
Yeast and mold | 1.22 | |||||||
SAEW | Spinach | B. cereus | 2.7 | 15 | 80 | 5.74 | 832–855 | [43] |
Beet | 3.0 | |||||||
Lettuce leaves | 2.91 | |||||||
SAEW | Buckwheat sprouts | Escherichia coli O78 | 2.74 | 5 | 91.96 | 6.26 | 831 | [44] |
L.monocytogenes | 2.46 | |||||||
EW | Lettuce | Salmonella spp. | 4 | 45 s | 50 | - | - | [45] |
NEW | Apples | L. monocytogenes | 1.0 | 2 | 110 | 6.88 | 883.7 | [46] |
EOW | Lettuce | E. coli | 1.2 | 10 | 50 | 6.8 | 855 | [47] |
Salmonella enteritidis | 1.0 | |||||||
L. innocua | 1.3 | |||||||
Spinach | E.coli | 1.5 | ||||||
S. Enteritidis | 1.8 | |||||||
NEW | Spinach leaves | E. coli | 0.3 | 1 | 85 | 7.0 | 857 | [48] |
SAEW | Wheat grains | Total plate count | 0.65 | 1.5 | 70 | - | - | [49] |
straight flour | 0.72 | |||||||
clear flour | 0.91 | |||||||
bran | 0.93 | |||||||
NEW | Strawberries | MS2 bacteriophage | 0.9 | 1.5 | 50–55 | - | - | [50] |
NEW | Apple | L. monocytogenes | 1.1 | 2 | 110 | 6.9 | 883.7 | [51] |
L. plantarum | 2.1 | |||||||
P. acidilactici | 1.3 | |||||||
L. innocua | 1.2 | |||||||
E. faecium | 1.1 | |||||||
SAEW | Celery | Total aerobic bacteria | 4.63 | 7 | 25 | - | - | [52] |
Yeast and mold | 4.17 | |||||||
Cilantro | Total aerobic bacteria | 4.66 | ||||||
Yeast and mold | 3.86 | |||||||
SAEW | Cut cabbage | Pectobacterium carotovorum subsp. carotovorum | 5.94 | 180 s | 22.17 | 5.0 | 950–980 | [53] |
EW Type | Food Commodities | Microorganisms | Log Reduction (log CFU/g) | Exposure Time (min) | ACC (ppm) | pH | ORP | Reference |
---|---|---|---|---|---|---|---|---|
SAEW | Beef | Total viable count | 2.7 | 10 | 29–30 | 856–875 | 5.47–5.50 | [28] |
Chicken | 3.1 | |||||||
Pork | 2.7 | |||||||
NEW | Pork skin | E. coli O157:H7 | 2.12 | 2 | 74 | 7.64 | 818 | [64] |
2.59 | 10 | |||||||
S. enteritidis | 2.22 | 2 | ||||||
2.37 | 10 | |||||||
Yersinia-inoculated | 1.74 | 2 | ||||||
1.81 | 10 | |||||||
NEW | Eggshells | S. enterica | 99.99% | 0.5 | 60.85 | 7.12 | 907.27 | [66] |
E. coli | 97.34% | |||||||
SAEW | Beef | Total viable count | 1.43 | 3 | 30 | 6.29 | 870–900 | [67] |
SAEW | Slicing Blades | L. monocytogenes | 1.4 | 30 s spray | 5 | 6.4–6.6 | - | [68] |
3.6 | 25 | |||||||
NEW | Chicken meat | Total viable count | 1.2 | 90 min | 50 | - | - | [69] |
LCAEW | Pork | Total number of microorganisms | 3.25 | spray | 16.6 | 2.15 | 1159.32 | [70] |
Yeast and moulds | 2.68/cm2 | |||||||
Psychrotrophs | 3.10 | |||||||
AEW | Beef | E. coli K12 | 1.16 | 4 | 34.3 | 759.9 | 3.03 | [71] |
Chevon | 1.22 | 12 | ||||||
Pork | 1.3 | 10 | ||||||
SAEW | Beef steaks | Total viable count | 2.35 | 1.5 | 30 | 8 | 5.85 | [72] |
NEW | Pork chops | L. monocytogenes | 99.98% | 1.0 | 58 | 820 | 6.92 | [73] |
EW Type | Food Commodities | Microorganisms | Log Reduction (log CFU/g) | Exposure Time (min) | ACC (ppm) | pH | ORP | Reference |
---|---|---|---|---|---|---|---|---|
AEW | Clam (Venerupis philippinarum) Mussel (Mytilus edulis) | Escherichia coli O104:H4 | 1.4 | 1 h | 20 | 3.1 | 1150 | [75] |
Listeria monocytogenes | 1.0 | |||||||
Aeromonas hydrophila | 1.4 | |||||||
Vibrio parahaemolyticus | 1.3 | |||||||
Campylobacter jejuni | 1.5 | |||||||
AEW | Clam (Venerupis philippinarum) Mussel (Mytilus edulis) | Escherichia coli O104:H4 | 1.6 | 1 h | 20 | 3.1 | 1150 | [75] |
Listeria monocytogenes | 1.3 | |||||||
Aeromonas hydrophila | 1.3 | |||||||
Vibrio parahaemolyticus | 1.0 | |||||||
Campylobacter jejuni | 2.1 | |||||||
SAEW ice | Squid | TVC | 1.48 | 1 day | 25 | 6.48 | 882 | [76] |
SAEW ice | Brown sole | Total bacterial count Pseudomonas spp. | Extend the shelf life | 11 days | 45 | 5.07 | - | [78] |
SAEW | Prawn | Total viable counts | 1.09 | 5 min | 20 | 5.92 | 810 | [79] |
SAEW | Oyster | TVC | 1.35 | 30 min | 60 | 6.14 | - | [80] |
S. aureus | 1.01 | |||||||
V. parahaemolyticus | 3.00 |
Combination Type | ACC | pH | mV | Food Product | Microorganisms | Reduction (log CFU/g) | Reference |
---|---|---|---|---|---|---|---|
LCEW (3 min) + US (3 min) | 16.85 | 5.5 | 513.6 | Mushroom | Total bacterium counts | 1.1 | [39] |
Yeasts and molds | 1.87 | ||||||
SAEW + US at 60 °C | 80 | 5.74 | 832–855 | Spinach | B. cereus ATCC 10987 biofilms | 2.7 log/cm2 | [43] |
B. cereus ATCC 14579 biofilms | 3.45 log/cm2 | ||||||
Beet leaf | B. cereus ATCC 10987 biofilms | 3.0 log/cm2 | |||||
B. cereus ATCC 14579 biofilms | 3.38 log/cm2 | ||||||
Beet leaf | B. cereus ATCC 10987 biofilms | 2.91 log/cm2 | |||||
B. cereus ATCC 14579 biofilms | 3.41 log/cm2 | ||||||
Spray + SAEW | 30 | 6.0 | 845 | Chicken | Total bacterial count | 1.0 log CFU/cm2 | [62] |
Ozone + EW | 10 | 3 | 663 | Alfalfa seeds | S. enterica | 3.6 | [84] |
Shiga toxin-producing E. coli | 2.9 | ||||||
Alfalfa sprouts | S. enterica | 3.1 | |||||
Shiga toxin-producing E. coli | 3.0 | ||||||
AEW + levulinic acid (3% v/v) for 7 min | 4 | 3.84 | 920.5 | Lettuces | E. coli ATCC 25922 | 3.5–4 | [85] |
L. innocua Seeliger ATCC 33090 | 3.5–4 | ||||||
Aerobic mesophilic counts | 4.0 | ||||||
Yeasts and moulds | 4.5 | ||||||
SAEW + 0.5% fumaric acid at 40 °C for 3 min | 15 | 2.95 | 1091 | Pork | E.coli O157:H7 | 2.59 | [86] |
L. monocytogenes | 2.69 | ||||||
S. aureus | 2.38 | ||||||
S. Typhimurium | 2.99 | ||||||
SAEW + BAC + 60 °C for 10 min | 40 | - | - | Pure culture | Bacillus cereus ATCC 10987 | 1.91 log CFU/mL | [87] |
B. cereus ATCC 14579 | 1.98 log CFU/mL | ||||||
ATCC 10987 biofilms | 2.62 log CFU/cm2 | ||||||
SAEW (5 min) + US (100 min) | 30 | 5.8 | 810 | Sliced shad | E. coli 10536 V. parahaemolyticus KCTC 2471 | 1.86 1.42 | [88] |
Heat treatment (55 °C for 10 min) + SAEW (30 s) | 30 | 6.3 | 867.4 | Pure culture | L. monocytogenes | 2.91 log CFU/mL | [89] |
LCEW + 3% calcium lactate for 5 min | 10 | 6.8 | 700 | Pork | Microbial load | 2.20 | [90] |
Yeasts and molds | 1.57 | ||||||
L. monocytogenes | 3.1 | ||||||
E. coli O157:H7 | 2.97 | ||||||
SAEW + US (25 khz) | 25 | 7.0 | 130–140 | Chicken breast | Psychrotrophic bacteria | 0.76 | [91] |
Mesophilic bacteria | 0.98 | ||||||
AkEW + 1% citric acid at 50 °C for 10 min | 50 | 11–11.2 | −830 to −850 | Cabbage | Total count | 3.98 | [92] |
Yeast and mold | 3.45 | ||||||
L. Monocytogenes | 3.99 | ||||||
E. coli O157:H7 | 4.19 | ||||||
SAEW + thermosonication | 5 | 6.3 | 890 | Kale | Aerobic mesophilic bacteria | 2.84 | [93] |
Pseudomonas spp. | 2.52 | ||||||
AEW + ultrasonic | 31.7 | 3.2 | 943 | Pure culture | B.cereus ATCC 14579 | 2.29 log CFU/mL | [94] |
SAEW (5 min) + UV-LED (30 min) | 60 | - | - | Coriander leaves | Salmonella Typhimurium strains | 2.72 | [95] |
E. coli O157:H7 strains | 2.42 | ||||||
AEW (10 min) + US | 2 | 4.95 | 746 | Pure culture | B. cereus ATCC 14579 | 1.98 log CFU/mL | [96] |
AEW + US | 30 | 2.66 | 1076 | Pure culture | Salmonella spp. biofilm | 4.8 log CFU/cm2 | [97] |
EW + heat treatment | 4 | 4.02 | 956.8 | Organic carrot | E. coli O157:H7 | 3.5 | [98] |
NEW+ heating (65 °C) for 10 min | 60 | 6.8 | 786 | Atlantic salmon fillets | L. monocytogenes | 5.0 | [99] |
AEW+ heating (65 °C) for 10 min | 60 | 2.7 | 1150 | Atlantic salmon fillets | L. monocytogenes | 5.6 | |
AEW-HHP (400mpa) | 36–73 | 2.28–2.39 | 1077–1168 | Shrimp | V. parahaemolyticus | 6.08 | [100] |
L. monocytogenes | 5.71 | ||||||
SAEW + Bamoon extracts | 27.37 | 5.5 | 836 | Bombay duck | Total viable count | Prolong 12 days of shelf life compared to untreatment | [101] |
BEW (20 s) + AEW (20 s) | 23 | 2.6 | 1185 | Pork loin | Mesophilic microorganisms | 0.46 | [102] |
Psychrotrophs microorganisms | 0.82 | ||||||
UV (5 min) + US (1min) + AEW (1 min) | 65 | 2.6 | 1140 | Salmon fillets | L. monocytogenes | 0.75 | [103] |
Total viable count | 0.64 | ||||||
AEW (washing) + 0.5% lysozyme enzyme solution | 100 | 2.5 | - | Scaly common carps | Total viable count | 2.88 | [104] |
Enterobacteriaceae count | 1.43 | ||||||
Anaerobic mesophilic count | 2.98 |
Application | Target | EW Type (Product) | Exposure Time | Observation (log CFU) | ACC (ppm) | pH | ORP (Mv) | Reference |
---|---|---|---|---|---|---|---|---|
Upper respiratory tract hygiene | SARS-CoV-2 | AEW | 1 min | >99.8% virucidal efficacy non-irritant on oral | 95% | 2.5–3 | 1000–1200 | [111] |
Chronic wounds | Candida albicans biofilms | HOCl-generating electrochemical | 24 h | 5·28 log10 (CFU cm−2) | - | - | - | [112] |
Atopic dermatitis | NC/Nga mouse model of Atopic dermatitis | EW | Twice a day | Nontoxicity less skin lesions prevent scratching bouts | 500 | 6.0 | - | [113] |
Mouthwash | S. mutans | EW | 1 min | >99.9% little in vivo toxicity | 12.5 | - | - | [114] |
Types of se | Types of EW | ACC | pH | ORP | Disinfection Condition | Reduction (log CFU/g) | Length, Fresh Weight and Nutrition Effect | Germination Time (Day) | Reference |
---|---|---|---|---|---|---|---|---|---|
Alfalfa | SAEW | 45 | 5.7 | 863 | Enterobacteriaceae counts | 1.50 | - | - | [22] |
Buckwheat | SAEW | 10.94 | - | 5.05 | - | - | Total phenolic content: 32.27 g/kg Total flavonoid content: 23.97 g/kg Rutin content: 19.96 g/kg Quercetin content >1.0 g/kg | 9 | [26] |
Buckwheat | SAEW | 28 | 6.05 | 845 | Moulds and yeasts | 2.06 | No adverse effect on the water germination | 8 | [44] |
total bacteria | 0.91 | ||||||||
Buckwheat | SAEW | 10.94 | 5.05 | - | - | - | Length: 69.40 mm Quercetin content: 1.11 g/kg ABTS: 89.80% α-glucosidase inhibitory activity: 78.88% | 7 | [121] |
Buck-wheat | SAEW | 20.3 | 5.83 | - | Total bacterial | 1.12 | Length: 73.36 mm GABA contents: 143.20 mg/100 g Rutin contents: 739.9 mg/100 g | 8 | [122] |
Brown rice | SAEW | 100 | 5.92–6.04 | 938–970 | B. cereus | 3.61 | Sprout length: 5.25 mm | 1 | [123] |
Triticale malt | SAEW | 30.14 | 5.32 | 977 | - | - | a-amylase activity: 0.11units/mg protein Phytase activity: 1.13 × 10−4 units/mg protein Lipase activity: 0.49 units/mg protein | 4 | [124] |
Buckwheat | SAEW | 19.94 | 5.71 | - | - | - | Length: 81.52 mm Weight: 8.08 g GABA content: 55.7–113.5 mg/100 g | 9 | [125] |
Broccoli | SAEW | 40.8 | 5.47 | - | Total bacterial count | Reduced to <6.5 log CFU/g | Sulforaphane content: 96% increased compared to tap water Glucoerucin content: 32.11 μmol/g | 8 | [126] |
Broccoli | SAEW | 50 | 5.52 | - | - | - | Sulforaphane: 11.49 mg/g in dry weight Glucosinolates content: 142.25 μmol/g in dry weight | 8 | [127] |
Mung bean | AEW | 46.09 | - | 4.47 | Total bacterial | 1.23 | - | - | [128] |
Coliform | 1.42 | ||||||||
Yeast and mold | 1.25 | ||||||||
Radish | EW | 50 | - | 6.5 | Total aerobic bacteria | 1.39 | Length: 12.41 cm | 7 | [129] |
Yeast and mold | 1.58 | Weight: 13.89 g | |||||||
Brown millet | SAEW | 30.35 | 834 | 5.96 | Total bacterial counts | 0.91 | Length: 2.2 cm GABA content: 30.9 mg/100 g | 3 | [130] |
Mung bean | SAEW | 18.87 | - | 5.79 | Total bacterial counts | 1.06 | Length >8 cm Catalase activity: 10.37% | 6.5 | [131] |
Buckwheat | SAEW | 40 | - | 5.0 | Total bacterial | >1 | Fresh weight: 25.96 g Day weight: 0.23 g Rutin content: 42.50 mg/g | 7 | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Chelliah, R.; Jo, K.h.; Oh, D.H. Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes 2021, 9, 2240. https://doi.org/10.3390/pr9122240
Yan P, Chelliah R, Jo Kh, Oh DH. Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes. 2021; 9(12):2240. https://doi.org/10.3390/pr9122240
Chicago/Turabian StyleYan, Pianpian, Ramachandran Chelliah, Kyoung hee Jo, and Deog Hwan Oh. 2021. "Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation" Processes 9, no. 12: 2240. https://doi.org/10.3390/pr9122240
APA StyleYan, P., Chelliah, R., Jo, K. h., & Oh, D. H. (2021). Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes, 9(12), 2240. https://doi.org/10.3390/pr9122240