Carbon-Based Coatings in Medical Textiles Surface Functionalisation: An Overview
Abstract
:1. Introduction
2. Technical Textiles
3. Surface Modification of Textiles
3.1. Current Research in the Textile Surface Modification
3.2. Magnetron Sputtering (MS) in Medical Textile Functionalization
3.3. Diamond-like Carbon in Medical Textile Functionalization
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chua, M.H.; Cheng, W.; Goh, S.S.; Kong, J.; Li, B.; Lim, J.Y.C.; Mao, L.; Wang, S.; Xue, K.; Yang, L.; et al. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. Research 2020, 2020, 7286735. [Google Scholar] [CrossRef]
- Karim, N.; Afroj, S.; Lloyd, K.; Oaten, L.C.; Andreeva, D.V.; Carr, C.; Farmery, A.D.; Kim, I.D.; Novoselov, K.S. Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS Nano 2020, 14, 12313–12340. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, K.; Nair, K.M.; Forouzandeh, P.; Mathew, S.; Grant, J.; Moran, R.; Bartlett, J.; Bird, J.; Pillai, S.C. Face Masks and Respirators in the Fight against the COVID-19 Pandemic: A Review of Current Materials, Advances and Future Perspectives. Materials 2020, 13, 3363. [Google Scholar] [CrossRef] [PubMed]
- Morais, D.; Guedes, R.; Lopes, M. Antimicrobial Approaches for Textiles: From Research to Market. Materials 2016, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Pinto, B.; Fonte, A.P.; Lopes, A.A.; Oliveira, B.; Fonseca, J.A.; Costa-Pereira, A.; Correia, O. Face masks for community use: An awareness call to the differences in materials. Respirology 2020, 25, 894–895. [Google Scholar] [CrossRef]
- Tcharkhtchi, A.; Abbasnezhad, N.; Zarbini Seydani, M.; Zirak, N.; Farzaneh, S.; Shirinbayan, M. An overview of filtration efficiency through the masks: Mechanisms of the aerosols penetration. Bioact. Mater. 2021, 6, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, H.; Li, T.; Wang, J. Surface modification and functionalization of silk fibroin fibers/fabric toward high performance applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 627–636. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Q.; Gao, W. Sputter Deposition of Antibacterial Nano-Silver on PLA Nonwoven Medical Dressings. AATCC Rev. 2009, 9, 34–36. [Google Scholar]
- Abd Jelil, R. A review of low-temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Shahidi, S.; Moazzenchi, B.; Ghoranneviss, M. A review-application of physical vapor deposition (PVD) and related methods in the textile industry. Eur. Phys. J. Appl. Phys. 2015, 71, 31302. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Zhao, L.; Lopez-Moreno, M.L.; de la Rosa, G.; Hong, J.; Gardea-Torresdey, J.L. Nanomaterials and the environment: A review for the biennium 2008–2010. J. Hazard. Mater. 2011, 186, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, N.; Sato, T.; Isogawa, H.; Ohgoe, Y.; Masuko, S.; Shizuku, F.; Hirakuri, K. Antibacterial property of DLC film coated on textile material. Diam. Relat. Mater. 2010, 19, 690–694. [Google Scholar] [CrossRef]
- Carvalho, I.; Curado, M.; Palacio, C.; Carvalho, S.; Cavaleiro, A. Ag release from sputtered Ag/a:C nanocomposite films after immersion in pure water and NaCl solution. Thin Solid Film. 2019, 671, 85–94. [Google Scholar] [CrossRef]
- Aldalbahi, A.; El-Naggar, M.E.; El-Newehy, M.H.; Rahaman, M.; Hatshan, M.R.; Khattab, T.A. Effects of Technical Textiles and Synthetic Nanofibers on Environmental Pollution. Polymers 2021, 13, 155. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, A. Classification of Technical Textiles. In Fibers for Technical Textiles; Ahmad, S., Rasheed, A., Nawab, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 49–64. [Google Scholar]
- Gorberg, B.L.; Ivanov, A.A.; Mamontov, O.V.; Stegnin, V.A.; Titov, V.A. Modification of textile materials by the deposition of nanocoatings by magnetron ion-plasma sputtering. Russ. J. Gen. Chem. 2013, 83, 157–163. [Google Scholar] [CrossRef]
- Rohani Shirvan, A.; Nouri, A. Medical textiles. In Advances in Functional and Protective Textiles; ul-Islam, S., Butola, B.S., Eds.; Woodhead Publishing: Sawston, UK, 2020; Chapter 13; pp. 291–333. [Google Scholar]
- Brozena, A.; Oldham, C.; Parsons, G. Atomic layer deposition on polymer fibers and fabrics for multifunctional and electronic textiles. J. Vac. Sci. Technol. A 2016, 34, 010801. [Google Scholar] [CrossRef]
- Peran, J.; Razic, S. Application of atmospheric pressure plasma technology for textile surface modification. Text. Res. J. 2020, 90, 1174–1197. [Google Scholar] [CrossRef]
- Azam Ali, M.; Shavandi, A. Medical textiles testing and quality assurance. In Performance Testing of Textiles; Wang, L., Ed.; Woodhead Publishing: Sawston, UK, 2016; Chapter 6; pp. 129–153. [Google Scholar]
- Girijappa, Y.; Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Nadi, A.; Boukhriss, A.; Bentis, A.; Jabrane, E.; Gmouh, S. Evolution in the surface modification of textiles: A review. Text. Prog. 2018, 50, 67–108. [Google Scholar] [CrossRef]
- Nurhan Onar Camlibel and Buket, A. Sol-Gel Applications in Textile Finishing Processes. In Recent Applications in Sol-Gel Synthesis; Usha, C., Ed.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Gowri, S.; Almeida, L.; Amorim, T.; Carneiro, N.; Souto, A.; Esteves, M. Polymer Nanocomposites for Multifunctional Finishing of Textiles—A Review. Text. Res. J. 2010, 80, 1290–1306. [Google Scholar] [CrossRef]
- Huang, Z.; Ghasemi, H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability. Adv. Colloid Interface Sci. 2020, 284, 102264. [Google Scholar] [CrossRef]
- Poshina, D.; Otsuka, I. Electrospun Polysaccharidic Textiles for Biomedical Applications. Textiles 2021, 1, 152–169. [Google Scholar] [CrossRef]
- Song, K.; Wu, Q.; Qi, Y.; Kärki, T. Electrospun nanofibers with antimicrobial properties. In Electrospun Nanofibers; Afshari, M., Ed.; Woodhead Publishing: Sawston, UK, 2017; Chapter 20; pp. 551–569. [Google Scholar]
- Liu, L.; Xu, W.; Ding, Y.; Agarwal, S.; Greiner, A.; Duan, G. A review of smart electrospun fibers toward textiles. Compos. Commun. 2020, 22, 100506. [Google Scholar] [CrossRef]
- Haoyi Li and Weimin, Y. Electrospinning Technology in Non-Woven Fabric Manufacturing. In Non-Woven Fabrics; Han-Yong, J., Ed.; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar]
- Vigneshwaran, N. Modification of textile surfaces using nanoparticles. In Surface Modification of Textiles; Wei, Q., Ed.; Woodhead Publishing: Sawston, UK, 2009; Chapter 8; pp. 164–184. [Google Scholar]
- Zhou, C.-E.; Kan, C.-W.; Matinlinna, J.P.; Tsoi, J.K. Regenerable Antibacterial Cotton Fabric by Plasma Treatment with Dimethylhydantoin: Antibacterial Activity against S. aureus. Coatings 2017, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Polonskyi, O.; Hinz, A.; Mollea, C.; Bosco, F.; Strunskus, T.; Balagna, C.; Perero, S.; Faupel, F.; Ferraris, M. Antibacterial, highly hydrophobic and semi transparent Ag/plasma polymer nanocomposite coating on cotton fabric obtained by plasma based co-deposition. Cellulose 2019, 26, 8877–8894. [Google Scholar] [CrossRef]
- Susan, A.I.; Widodo, M.; Nur, M. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics. IOP Conf. Ser. Mater. Sci. Eng. 2017, 214, 012031. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Shi, F. Introductory Chapter: Basic Theory of Magnetron Sputtering. In Magnetron Sputtering; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Ikeda, T.; Satoh, H. Phase formation and characterization of hard coatings in the ti-al-n system prepared by the cathodic arc ion plating method. Thin Solid Films 1991, 195, 99–110. [Google Scholar] [CrossRef]
- Hegemann, D.; Hossain, M.; Balazs, D.J. Nanostructured plasma coatings to obtain multifunctional textile surfaces. Prog. Org. Coat. 2007, 58, 237–240. [Google Scholar] [CrossRef]
- Wei, Q.; Xu, Y.; Wang, Y. Textile surface functionalization by physical vapor deposition (PVD). In Surface Modification of Textiles; Wei, Q., Ed.; Woodhead Publishing: Sawston, UK, 2009; Chapter 3; pp. 58–90. [Google Scholar]
- Ehiasarian, A.; Pulgarin, C.; Kiwi, J. Inactivation of bacteria under visible light and in the dark by Cu films. Advantages of Cu-HIPIMS-sputtered films. Environ. Sci. Pollut. Res. 2012, 19, 3791–3797. [Google Scholar] [CrossRef] [Green Version]
- Chodun, R.; Wicher, B.; Skowrński, Ł.; Nowakowska-Langier, K.; Okrasa, S.; Grabowski, A.; Minikayev, R.; Zdunek, K. Multi-sided metallization of textile fibres by using magnetron system with grounded cathode. Mater. Sci.-Pol. 2017, 35, 639–646. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-H.; Wu, G.-W.; He, J.-L. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering. Mater. Sci. Eng. C 2015, 48, 41–47. [Google Scholar] [CrossRef]
- Saffari, M.-R.; Kamali Miab, R. Antibacterial property of PLA textiles coated by nano-TiO2 through eco-friendly low-temperature plasma. Int. J. Cloth. Sci. Technol. 2016, 28, 830–840. [Google Scholar] [CrossRef]
- Depla, D.; Segers, S.; Leroy, W.; Van Hove, T.; Van Parys, M. Smart textiles: An explorative study of the use of magnetron sputter deposition. Text. Res. J. 2011, 81, 1808–1817. [Google Scholar] [CrossRef]
- Yuan, X.; Liang, S.; Ke, H.; Wei, Q.; Huang, Z.; Chen, D. Photocatalytic property of polyester fabrics coated with Ag/TiO2 composite films by magnetron sputtering. Vacuum 2020, 172, 109103. [Google Scholar] [CrossRef]
- Meng, L.; Wang, Y.; Wei, Q.; Huang, X.; Shen, J.; Chen, H. Study on the structure and properties of Ag/Cu nanocomposite film deposited on the surface of polyester substrates. J. Text. Inst. 2021, 112, 1671–1677. [Google Scholar] [CrossRef]
- Miedzińska, D.; Giełżecki, J.; Mania, R.; Marszalek, K.; Wolański, R. Influence of Ti-Si-N Nanocomposite Coating on Heat Radiation Resistance of Fireproof Fabrics. Materials 2021, 14, 3493. [Google Scholar] [CrossRef]
- Miśkiewicz, P.; Tokarska, M.; Frydrych, I.; Makówka, M. Assessment of Coating Quality Obtained on Flame-Retardant Fabrics by a Magnetron Sputtering Method. Materials 2021, 14, 1348. [Google Scholar] [CrossRef]
- Huang, M.-L.; Cai, Z.; Wu, Y.-Z.; Lu, S.-G.; Luo, B.-S.; Li, Y.-H. Metallic coloration on polyester fabric with sputtered copper and copper oxides films. Vacuum 2020, 178, 109489. [Google Scholar] [CrossRef]
- Huang, M.-L.; Lu, S.-G.; Zhou, J.-J.; Luo, B.-S.; Li, Y.-H. Metallic coloration with Cu/CuO coating on polypropylene nonwoven fabric via a physical vapor deposition method and its multifunctional properties. J. Text. Inst. 2021, 1–10. [Google Scholar] [CrossRef]
- Liu, Y.; Leng, J.; Wu, Q.; Zhang, S.; Teng, X. Investigation on the properties of nano copper matrix composite via vacuum arc melting method. Mater. Res. Express 2017, 4, 106512. [Google Scholar] [CrossRef]
- Scholz, J.; Nocke, G.; Hollstein, F.; Weissbach, A. Investigations on fabrics coated with precious metals using the magnetron sputter technique with regard to their anti-microbial properties. Surf. Coat. Technol. 2005, 192, 252–256. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Kaczmarek, A.; Mrozińska, Z.; Olczyk, J. Deposition of Copper on Polyester Knitwear Fibers by a Magnetron Sputtering System. Physical Properties and Evaluation of Antimicrobial Response of New Multi-Functional Composite Materials. Appl. Sci. 2020, 10, 6990. [Google Scholar] [CrossRef]
- Kudzin, M.H.; Mrozińska, Z.; Kaczmarek, A.; Lisiak-Kucińska, A. Deposition of Copper on Poly(Lactide) Non-Woven Fabrics by Magnetron Sputtering—Fabrication of New Multi-Functional, Antimicrobial Composite Materials. Materials 2020, 13, 3971. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Hu, X.; Yan, H.; Sun, Y. Surface functionalization of nanostructured Cu/Ag-deposited polypropylene fiber by magnetron sputtering. e-Polymers 2021, 21, 140–150. [Google Scholar] [CrossRef]
- Rtimi, S.; Baghriche, O.; Sanjinés, R.; Pulgarin, C.; Bensimon, M.; Kiwi, J. TiON and TiON-Ag sputtered surfaces leading to bacterial inactivation under indoor actinic light. J. Photochem. Photobiol. A-Chem. 2013, 256, 52–63. [Google Scholar] [CrossRef] [Green Version]
- Rtimi, S.; Baghriche, O.; Sanjines, R.; Pulgarin, C.; Ben-Simon, M.; Lavanchy, J.C.; Houas, A.; Kiwi, J. Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light. Appl. Catal. B Environ. 2012, 123–124, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, H.; Wei, Q.; Liu, H.; Deng, B. Structures and properties of the polyester nonwovens coated with titanium dioxide by reactive sputtering. J. Coat. Technol. Res. 2010, 7, 637–642. [Google Scholar] [CrossRef]
- Zgura, I.; Frunza, S.; Frunza, L.; Enculescu, M.; Florica, C.; Ganea, C.P.; Negrila, C.C.; Diamandescu, L. Titanium dioxide layer deposited at low temperature upon polyester fabrics. J. Optoelectron. Adv. Mater. 2015, 17, 1055–1063. [Google Scholar]
- Rtimi, S.; Baghriche, O.; Pulgarin, C.; Lavanchy, J.-C.; Kiwi, J. Growth of TiO2/Cu films by HiPIMS for accelerated bacterial loss of viability. Surf. Coat. Technol. 2013, 232, 804–813. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-L.; Wu, Y.-Z.; Fan, F.; Lu, S.-G.; Luo, B.-S.; Li, Y.-H. Antibacterial and ultraviolet protective neodymium-doped TiO2 film coated on polypropylene nonwoven fabric via a sputtering method. J. Eng. Fibers Fabr. 2021, 16, 15589250211025257. [Google Scholar] [CrossRef]
- Vihodceva, S.; Kukle, S.; Barloti, J.; Blūms, J. Metal Deposition on Textile Fabrics from Natural Fibres by Magnetron Sputtering. In Proceedings of the 6th International Textile Clothing and Design Conference “Magic World of Textiles” (ITC&DC): Book of Proceedings, Dubrovnik, Croatia, 7–10 October 2012. [Google Scholar]
- Shahidi, S. Plasma sputtering as a novel method for improving fastness and antibacterial properties of dyed cotton fabrics. J. Text. Inst. 2015, 106, 162–172. [Google Scholar] [CrossRef]
- Shahidi, S.; Ghoranneviss, M.; Moazzenchi, B.; Rashidi, A.; Mirjalili, M. Investigation of Antibacterial Activity on Cotton Fabrics with Cold Plasma in the Presence of a Magnetic Field. Plasma Process. Polym. 2007, 4, S1098–S1103. [Google Scholar] [CrossRef]
- Rtimi, S.; Pascu, M.; Sanjines, R.; Pulgarin, C.; Ben-Simon, M.; Houas, A.; Lavanchy, J.C.; Kiwi, J. ZrNO–Ag co-sputtered surfaces leading to E. coli inactivation under actinic light: Evidence for the oligodynamic effect. Appl. Catal. B Environ. 2013, 138–139, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, B.; Anu Priya, K.; Thanka Rajan, S.; Dhandapani, P.; Jayachandran, M. Antimicrobial activity of sputtered nanocrystalline CuO impregnated fabrics. Mater. Lett. 2014, 128, 1–4. [Google Scholar] [CrossRef]
- Rtimi, S.; Sanjines, R.; Bensimon, M.; Pulgarin, C.; Kiwi, J. Accelerated Escherichia coli inactivation in the dark on uniform copper flexible surfaces. Biointerphases 2014, 9, 029012. [Google Scholar] [CrossRef] [PubMed]
- Septiani, N.L.W.; Kaneti, Y.V.; Yuliarto, B.; Nugraha; Dipojono, H.K.; Takei, T.; You, J.; Yamauchi, Y. Hybrid nanoarchitecturing of hierarchical zinc oxide wool-ball-like nanostructures with multi-walled carbon nanotubes for achieving sensitive and selective detection of sulfur dioxide. Sens. Actuators B Chem. 2018, 261, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.A.M.; Mwankemwa, B.S.; Carleschi, E.; Doyle, B.P.; Meyer, W.E.; Nel, J.M. Effect of Sm doping ZnO nanorods on structural optical and electrical properties of Schottky diodes prepared by chemical bath deposition. Mater. Sci. Semicond. Process. 2018, 79, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Cui, F.; Gu, H. Studies of diamond-like carbon films coated on PMMA by ion beam assisted deposition. Appl. Surf. Sci. 1999, 137, 30–37. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.; Donnet, C.; Fontaine, J.; Belin, M.; Grill, A.; Patel, V.; Jahnes, C. Diamond-like carbon prepared by high density plasma. Diam. Relat. Mater. 2000, 9, 638–642. [Google Scholar] [CrossRef]
- Lee, C.; Lee, K.; Eun, K.; Yoon, K.; Han, J. Structure and properties of Si incorporated tetrahedral amorphous carbon films prepared by hybrid filtered vacuum arc process. Diam. Relat. Mater. 2002, 11, 198–203. [Google Scholar]
- Zou, Y.; Wang, W.; Song, G.; Du, H.; Gong, J.; Huang, R.; Wen, L. Influence of the gas atmosphere on the microstructure and mechanical properties of diamond-like carbon films by arc ion plating. Mater. Lett. 2004, 58, 3271–3275. [Google Scholar] [CrossRef]
- Thorwarth, G.; Hammerl, C.; Kuhn, M.; Assmann, W.; Schey, B.; Stritzker, B. Investigation of DLC synthesized by plasma immersion ion implantation and deposition. Surf. Coat. Technol. 2005, 193, 206–212. [Google Scholar] [CrossRef]
- Sanchez, N.; Rincon, C.; Zambrano, G.; Galindo, H.; Prieto, P. Characterization of diamond-like carbon (DLC) thin films prepared by r.f. magnetron sputtering. Thin Solid Films 2000, 373, 247–250. [Google Scholar] [CrossRef]
- Myllymaa, K.; Levon, J.; Tiainen, V.; Myllymaa, S.; Soininen, A.; Korhonen, H.; Kaivosoja, E.; Lappalainen, R.; Konttinen, Y. Formation and retention of staphylococcal biofilms on DLC and its hybrids compared to metals used as biomaterials. Colloids Surf. B-Biointerfaces 2013, 101, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, Q.; Liu, Y.; Wang, S.; Abel, E. Reduction of bacterial adhesion on modified DLC coatings. Colloids Surf. B-Biointerfaces 2008, 61, 182–187. [Google Scholar] [CrossRef]
- Wang, J.; Huang, N.; Pan, C.; Kwok, S.; Yang, P.; Leng, Y.; Chen, J.; Sun, H.; Wan, G.; Liu, Z.; et al. Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation-deposition. Surf. Coat. Technol. 2004, 186, 299–304. [Google Scholar] [CrossRef]
- Kinnari, T.; Soininen, A.; Esteban, J.; Zamora, N.; Alakoski, E.; Kouri, V.; Lappalainen, R.; Konttinen, Y.; Gomez-Barrena, E.; Tiainen, V. Adhesion of staphylococcal and Caco-2 cells on diamond-like carbon polymer hybrid coating. J. Biomed. Mater. Res. Part A 2008, 86A, 760–768. [Google Scholar] [CrossRef]
- Marciano, F.R.; Bonetti, L.F.; Santos, L.V.; Da-Silva, N.S.; Corat, E.J.; Trava-Airoldi, V.J. Antibacterial activity of DLC and Ag–DLC films produced by PECVD technique. Diam. Relat. Mater. 2009, 18, 1010–1014. [Google Scholar] [CrossRef]
- Zhou, H.; Xu, L.; Ogino, A.; Nagatsu, M. Investigation into the antibacterial property of carbon films. Diam. Relat. Mater. 2008, 17, 1416–1419. [Google Scholar] [CrossRef]
- Robertson, S.; Gibson, D.; MacKay, W.; Reid, S.; Williams, C.; Birney, R. Investigation of the antimicrobial properties of modified multilayer diamond-like carbon coatings on 316 stainless steel. Surf. Coat. Technol. 2017, 314, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Endrino, J.L.; Anders, A.; Albella, J.M.; Horton, J.A.; Horton, T.H.; Ayyalasomayajula, P.R.; Allen, M. Antibacterial efficacy of advanced silver-amorphous carbon coatings deposited using the pulsed dual cathodic arc technique. J. Phys. Conf. Ser. 2010, 252, 012012. [Google Scholar] [CrossRef]
- Almaguer-Flores, A.; Olivares-Navarrete, R.; Lechuga-Bernal, A.; Ximenez-Fyvie, L.; Rodil, S. Oral bacterial adhesion on amorphous carbon films. Diam. Relat. Mater. 2009, 18, 1179–1185. [Google Scholar] [CrossRef]
- Jelinek, M.; Voss, A.; Kocourek, T.; Mozafari, M.; Vymetalova, V.; Zezulova, M.; Pisarik, P.; Kotzianova, A.; Popov, C.; Miksovsky, J. Comparison of the surface properties of DLC and ultrananocrystalline diamond films with respect to their bio-applications. Phys. Status Solidi A Appl. Mater. Sci. 2013, 210, 2106–2110. [Google Scholar] [CrossRef]
- Maas, M. Carbon Nanomaterials as Antibacterial Colloids. Materials 2016, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Bendavid, A.; Martin, P.; Randeniya, L.; Amin, M. The properties of fluorine containing diamond-like carbon films prepared by plasma-enhanced chemical vapour deposition. Diam. Relat. Mater. 2009, 18, 66–71. [Google Scholar] [CrossRef]
- Nobili, L.; Guglielmini, A. Thermal stability and mechanical properties of fluorinated diamond-like carbon coatings. Surf. Coat. Technol. 2013, 219, 144–150. [Google Scholar] [CrossRef]
- Su, X.; Zhao, Q.; Wang, S.; Bendavid, A. Modification of diamond-like carbon coatings with fluorine to reduce biofouling adhesion. Surf. Coat. Technol. 2010, 204, 2454–2458. [Google Scholar] [CrossRef]
- Chan, Y.; Huang, C.; Ou, K.; Peng, P. Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surf. Coat. Technol. 2011, 206, 1037–1040. [Google Scholar] [CrossRef]
- Ji, L.; Li, H.; Zhao, F.; Chen, J.; Zhou, H. Microstructure and mechanical properties of Mo/DLC nanocomposite films. Diam. Relat. Mater. 2008, 17, 1949–1954. [Google Scholar] [CrossRef]
- Bociaga, D.; Jakubowski, W.; Komorowski, P.; Sobczyk-Guzenda, A.; Jedrzejczak, A.; Batory, D.; Olejnik, A. Surface characterization and biological evaluation of silver-incorporated DLC coatings fabricated by hybrid RF PACVD/MS method. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 462–474. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, P.; He, X.; Li, L.; Wang, A.; Li, H. Developing transparent copper-doped diamond-like carbon films for marine antifouling applications. Diam. Relat. Mater. 2016, 69, 144–151. [Google Scholar] [CrossRef]
- Love, C.; Cook, R.; Harvey, T.; Dearnley, P.; Wood, R. Diamond like carbon coatings for potential application in biological implants—A review. Tribol. Int. 2013, 63, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Lan, W.; Ou, S.; Lin, M.; Ou, K.; Tsai, M. Development of silver-containing diamond-like carbon for biomedical applications. Part I: Microstructure characteristics, mechanical properties and antibacterial mechanisms. Ceram. Int. 2013, 39, 4099–4104. [Google Scholar] [CrossRef]
- Cloutier, M.; Turgeon, S.; Busby, Y.; Tatoulian, M.; Pireaux, J.; Mantovani, D. Controlled Distribution and Clustering of Silver in Ag-DLC Nanocomposite Coatings Using a Hybrid Plasma Approach. Acs Appl. Mater. Interfaces 2016, 8, 21020–21027. [Google Scholar] [CrossRef]
- Crisan, C.; Mocan, T.; Manolea, M.; Lasca, L.; Tabaran, F.; Mocan, L. Review on Silver Nanoparticles as a Novel Class of Antibacterial Solutions. Appl. Sci. 2021, 11, 1120. [Google Scholar] [CrossRef]
- Sohbatzadeh, F.; Farhadi, M.; Shakerinasab, E. A new DBD apparatus for super-hydrophobic coating deposition on cotton fabric. Surf. Coat. Technol. 2019, 374, 944–956. [Google Scholar] [CrossRef]
- Schneider, G. Antimicrobial silver nanoparticles—Regulatory situation in the European Union. Mater. Today Proc. 2017, 4, S200–S207. [Google Scholar] [CrossRef]
- Manninen, N.; Galindo, R.; Carvalho, S.; Cavaleiro, A. Silver surface segregation in Ag-DLC nanocomposite coatings. Surf. Coat. Technol. 2015, 267, 90–97. [Google Scholar] [CrossRef]
- Juknius, T.; Ruzauskas, M.; Tamulevicius, T.; Siugzdiniene, R.; Jukniene, I.; Vasiliauskas, A.; Jurkeviciute, A.; Tamulevicius, S. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages. Materials 2016, 9, 371. [Google Scholar] [CrossRef] [Green Version]
- Manninen, N.; Calderon, S.; Carvalho, I.; Henriques, M.; Cavaleiro, A.; Carvalho, S. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates. Appl. Surf. Sci. 2016, 377, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, I.; Faraji, M.; Ramalho, A.; Carvalho, A.; Carvalho, S.; Cavaleiro, A. Ex-vivo studies on friction behaviour of ureteral stent coated with Ag clusters incorporated in a:C matrix. Diam. Relat. Mater. 2018, 86, 1–7. [Google Scholar] [CrossRef]
- Carvalho, I.; Dias, N.; Henriques, M.; Calderon, V.; Ferreira, P.; Cavaleiro, A.; Carvalho, S. Antibacterial Effects of Bimetallic Clusters Incorporated in Amorphous Carbon for Stent Application. ACS Appl. Mater. Interfaces 2020, 12, 24555–24563. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Rodrigues, L.; Lima, M.J.; Carvalho, S.; Cruz, S.M.A. Overview on the Antimicrobial Activity and Biocompatibility of Sputtered Carbon-Based Coatings. Processes 2021, 9, 1428. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, J.; Matos, K.; Carvalho, S.; Cavaleiro, A.; Cruz, S.M.A.; Ferreira, F. Carbon-Based Coatings in Medical Textiles Surface Functionalisation: An Overview. Processes 2021, 9, 1997. https://doi.org/10.3390/pr9111997
Antunes J, Matos K, Carvalho S, Cavaleiro A, Cruz SMA, Ferreira F. Carbon-Based Coatings in Medical Textiles Surface Functionalisation: An Overview. Processes. 2021; 9(11):1997. https://doi.org/10.3390/pr9111997
Chicago/Turabian StyleAntunes, José, Karim Matos, Sandra Carvalho, Albano Cavaleiro, Sandra M. A. Cruz, and Fábio Ferreira. 2021. "Carbon-Based Coatings in Medical Textiles Surface Functionalisation: An Overview" Processes 9, no. 11: 1997. https://doi.org/10.3390/pr9111997
APA StyleAntunes, J., Matos, K., Carvalho, S., Cavaleiro, A., Cruz, S. M. A., & Ferreira, F. (2021). Carbon-Based Coatings in Medical Textiles Surface Functionalisation: An Overview. Processes, 9(11), 1997. https://doi.org/10.3390/pr9111997