Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice
Abstract
:1. Introduction
2. Sources of Persistent Pollutants and Contamination
2.1. Heavy Metals
2.2. Persistent Organic Pollutants (POPs)
- -
- They persist and remain unchanged in the environment for very long periods of time (many years);
- -
- They are widely distributed throughout the environment (in soil, water and, mostly, in air);
- -
- They accumulate in the fatty tissue of living organisms and are detected in higher amounts at upper-trophic levels in the food chain;
- -
- They are toxic to both humans and wildlife.
2.3. Transport and Routes of Persistent Pollutants in the Environment
3. Bioremediation of Heavy Metals Contaminated Wastewaters by Microorganisms
3.1. Mechanisms of Heavy Metals Removal by Microorganisms
- bioaccumulation (I),
- surface complexation (II),
- bioprecipitation (III),
- ion exchange (IV),
- electrostatic interactions (V) and
- cell surface adsorption (VI).
3.2. Factors Affecting Microbial Remediation of Heavy Metals in Wastewaters
3.3. Heavy Metals Removal Performance
4. Bioremediation of Persistent Organic Pollutants Contaminated Wastewaters by Microorganisms
4.1. Mechanisms of Persistent Organic Pollutants Removal by Microorganisms
- biosorption (I),
- bioaccumulation (II),
- cometabolism (III),
- biotransformation (IV),
- biomineralization (V) and
- extracellular biodegradation (VI).
POPs | Genes Encoding Enzymes | POPs-Metabolizing Enzymes |
---|---|---|
Polychlorinated dibenzo-p-dioxins | dxnA1, dxnA2, fdx1 and redA2 [169] | Dioxygenase, cytochrome P450, lignin peroxidase, dehalogenase [170], 2-haloacid dehalogenase [171], carbazole 1,9a-dioxygenase, aromatic ring hydroxylating dioxygenase [169] |
Lindane | Lin genes [172,173] | Permease, ATPase, periplasmic protein and lipoprotein [172], dehydrochlorinase, halidohydrolase, dehydrogenase, dechlorinase, ring-cleavage dioxygenase, maleylacetate reductase, phosphoesterases and catechol 1,2-dioxygenase [173], lindane dechlorinase, lindane dehalogenase, DCHQ reductive dechlorinase, Mn peroxidase and lignin peroxidase [174] |
Endosulfan | Ese gene [175] | Esd monooxygenase [175] |
Pentachlorophenol | pcpA, pcpB, pcpC, pcpD and pcpE [176,177] | PCP hydroxylase (PcpB) and PcpD (TCBQ reductase), TCHQ dehalogenase, 2,6-dichloro-hydroquinone dioxygenase, maleylacetate reductase [176,177] |
Hexabromocyclododecane | LysR, GST, Cyt C, p450, HADH, RegA, CcoN, CcoO, CcoP and CcoQ [147] | Haloalkane dehalogenases linA2 and linB [178], fluoroacetate dehalogenase, protocatechuate 4,5-dioxygenase, dioxygenase, peroxidase, P450 monooxygenase and dehalogenase [147] |
Decabromodiphenyl ether (BDE 209) | Alcohol dehydrogenase genes, COG0625 (Glutathione S-transferase gene), COG2124 (Cytochrome P450 enzymes gene), COG0778 (nitroreductase gene) COG3805 (aromatic ring-cleaving dioxygenase gene) and COG0596 (predicted hydrolases or acyltransferases (alpha/beta hydrolase superfamily gene)) [179] | Biphenyl 2,3-dioxygenase, catechol 2,3- dioxygenase, cytochrome P450/NADPH-cytochrome P450 reductase, glutathione S-transferase and nitroreductase/dihydropteridine reductase [179] |
1,1,1-Trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) | ProtID g128, ProtID g8100,ProtID g3303, ProtID g1796 and g8655, ProtID g8027, ProtID g5890, ProtID g1645, ProtID g3541 [161] | Dioxygenase and lignin peroxidase [180], epoxide hydrolases, FAD-dependent monooxygenases, glycosyl- and glutathione-transferases, cytochrome P450 monooxygenase sdnT, cytochrome P450 monooxygenase, superoxide dismutase, DyP-type peroxidase, putative secreted hydrolase [161] |
4.2. Factors Affecting Microbial Remediation of POPs in Wastewaters
4.3. Persistent Organic Pollutants Removal Performance
5. Key Considerations and Future Perspectives for Process Scale-Up
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández, P.M.; Viñarta, S.C.; Bernal, A.R.; Cruz, E.L.; Figueroa, L.I. Bioremediation strategies for chromium removal: Current research, scale-up approach and future perspectives. Chemosphere 2018, 208, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Rajaei, V.; Glass, J.B.; Hud, N.V.; Williams, L.D. Water and life: The medium is the message. J. Mol. Evol. 2021, 89, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Ayangbenro, A.S.; Babalola, O.O. A new strategy for heavy metal polluted environments: A review of microbial biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Karaouzas, I.; Kapetanaki, N.; Mentzafou, A.; Kanellopoulos, T.D.; Skoulikidis, N. Heavy metal contamination status in Greek surface waters: A review with application and evaluation of pollution indices. Chemosphere 2021, 263, 128192. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.L. (Ed.) Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; ISBN 978-981-10-1865-7. [Google Scholar]
- Vallero, D.A. Persistent, Bioaccumulative, and Toxic Pollutants; McGraw-Hill Professional: National Exposure Research Laboratory, U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 2015. [Google Scholar]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef] [Green Version]
- Cara, I.G.; Topa, D.; Calistru, A.E.; Motrescu, I.; Bulgariu, L.; Jitareanu, G. Agri-wastes as a low-cost adsorbent for nico-sulfuron herbicide. Environ. Eng. Manag. J. 2020, 19, 335–343. [Google Scholar]
- Rigét, F.; Bignert, A.; Braune, B.; Stow, J.; Wilson, S. Temporal trends of legacy POPs in Arctic biota, an update. Sci. Total Environ. 2010, 408, 2874–2884. [Google Scholar] [CrossRef]
- Carlsson, P.; Herzke, D.; Kallenborn, R. Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and perfluorinated alkylated substances (PFASs) in traditional seafood items from western Greenland. Environ. Sci. Pollut. Res. 2013, 21, 4741–4750. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environ. Pollut. 2011, 159, 2575–2585. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarkar, P.; Banerjee, S. Application of statistical design of experiments for optimization of As(V) biosorption by immobilized bacterial biomass. Ecol. Eng. 2016, 86, 13–23. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Pandita, S.; Bhardwaj, R.; Thukral, A.; Cerda, A. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res. 2020, 35, 516–526. [Google Scholar] [CrossRef]
- Barletta, M.; Lima, A.R.A.; Costa, M.F. Distribution, sources and consequences of nutrients, persistent organic pollutants, metals and microplastics in South American estuaries. Sci. Total Environ. 2019, 651, 1199–1218. [Google Scholar] [CrossRef]
- WHO. Persistent Organic Pollutants (POPs) Training Module; World Health Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Gavrilescu, M.; Diaconu, M.; Bulgariu, L.; Volf, I.; Catrinescu, C.; Smaranda, C.; Cozma, P.; Hlihor, R.-M.; Ghinea, C.; Apostol, L.C.; et al. Exploring and Exploiting the Abilities of Microorganisms and Plants and Their Interactions for Environmental Bioremediation (in Romanian); Performantica Publishing House: Iasi, Romania, 2019. [Google Scholar]
- Ungureanu, C.V.; Favier, L.; Bahrim, G.E. Improving Biodegradation of Clofibric Acid by Trametes pubescens through the Design of Experimental Tools. Microorganisms 2020, 8, 1243. [Google Scholar] [CrossRef]
- Favier, L.; Ungureanu, C.V.; Simion, A.I.; Bahrim, G.; Vial, C. Enhancing the biodegradation efficiency of a emergent refractory water pollutant by a bacterial isolate through a statistical process optimization approach. Process. Saf. Environ. Prot. 2021, 148, 1133–1145. [Google Scholar] [CrossRef]
- Ibrahim, W.M. Biosorption of heavy metal ions from aqueous solution by red macroalgae. J. Hazard. Mater. 2011, 192, 1827–1835. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef]
- Liao, C.; Liu, Y.-P.; Ren, H.; Jiang, X.-Y.; Yu, J.-G.; Chen, X.-Q. Rational assembly of GO-based heterocyclic sulfur- and nitrogen-containing aerogels and their adsorption properties toward rare earth elementals. J. Hazard. Mater. 2021, 419, 126484. [Google Scholar] [CrossRef] [PubMed]
- Timková, I.; Sedláková-Kaduková, J.; Pristaš, P. Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations 2018, 5, 54. [Google Scholar] [CrossRef] [Green Version]
- Derco, J.; Vrana, B. (Eds.) Introductory Chapter: Biosorption; InTech: Rijeka, Croatia, 2018; ISBN 978-1-78923-472-5. [Google Scholar]
- Sandrin, T.R.; Maier, R. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspect. 2003, 111, 1093–1101. [Google Scholar] [CrossRef]
- Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O. Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in eastern cape province, South Africa. Water 2020, 12, 2746. [Google Scholar] [CrossRef]
- Kamashwaran, S.R.; Crawford, D.L. Anaerobic biodegradation of pentachlorophenol in mixtures containing cadmium by two physiologically distinct microbial enrichment cultures. J. Ind. Microbiol. Biotechnol. 2001, 27, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent chromium removal from water by microalgal-based materials: Adsorption, desorption and recovery studies. Bioresour. Technol. 2019, 293, 122064. [Google Scholar] [CrossRef]
- Brandt, S.; Zeng, A.-P.; Deckwer, W.-D. Adsorption and desorption of pentachlorophenol on cells of mycobacterium chloro-phenolicum PCP-1. Biotechnol. Bioeng. 1997, 55, 480–489. [Google Scholar]
- DalCorso, G.; Manara, A.; Piasentin, S.; Furini, A. Nutrient metal elements in plants. Metallomics 2014, 6, 1770–1788. [Google Scholar] [CrossRef] [PubMed]
- Hansda, A.; Kumar, V. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J. Microbiol. Biotechnol. 2016, 32, 170. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Salam, K.A. Towards sustainable development of microalgal biosorption for treating effluents containing heavy metals. Biofuel Res. J. 2019, 6, 948–961. [Google Scholar] [CrossRef]
- Torres, E. Biosorption: A review of the latest advances. Processes 2020, 8, 1584. [Google Scholar] [CrossRef]
- Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 2018, 198, 1602–1631. [Google Scholar] [CrossRef]
- Bajaj, S.; Singh, D.K. Biodegradation of persistent organic pollutants in soil, water and pristine sites by cold-adapted microorganisms: Mini review. Int. Biodeterior. Biodegrad. 2015, 100, 98–105. [Google Scholar] [CrossRef]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.N.; Unachukwu, M. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-83880-785-6. [Google Scholar]
- Masindi, V.; Muedi, K.L. Environmental contamination by heavy metals. In Heavy Metals; Saleh, H.E.D.M., Aglan, R., Eds.; InTech: Rijeka, Croatia, 2018; ISBN 978-1-78923-360-5. [Google Scholar]
- Diganta, M.T.M.; Sharmi, T.T.; Saifullah, A.; Uddin, M.J.; Sajib, A.M. Appraisal of heavy metal contamination in road dust and human health risk in a municipality of Bangladesh. Environ. Eng. Manag. J. 2020, 19, 2165–2177. [Google Scholar] [CrossRef]
- Wood, J.L.; Liu, W.; Tang, C.; Franks, A.E. Microorganisms in heavy metal bioremediation: Strategies for applying microbial-community engineering to remediate soils. AIMS Bioeng. 2016, 3, 211–229. [Google Scholar] [CrossRef]
- Shang, D.; Geissler, B.; Mew, M.; Satalkina, L.; Zenk, L.; Tulsidas, H.; Barker, L.; El-Yahyaoui, A.; Hussein, A.; Taha, M.; et al. Unconventional uranium in China’s phosphate rock: Review and outlook. Renew. Sustain. Energy Rev. 2021, 140, 110740. [Google Scholar] [CrossRef]
- Unesco (Ed.) Wastewater: The Untapped Resource; The United Nations World Water Development Report; UNESCO: Paris, France, 2017; ISBN 978-92-3-100201-4. [Google Scholar]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef] [PubMed]
- Gabrielyan, A.V.; Shahnazaryan, G.A.; Minasyan, S.H. Distribution and identification of sources of heavy metals in the Voghji River basin impacted by mining activities (Armenia). J. Chem. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Popoola, L.T.; Yusuff, A.S.; Adeoye, B.K.; Aderibigbe, T.A. Cd (II) biosorption using bacterial isolates from sawdust: Optimization via orthogonal array Taguchi method. Water SA 2020, 46, 4. [Google Scholar] [CrossRef]
- Kumar, A.; Maleva, M.; Borisova, G.; Chukina, N.; Morozova, M.; Kiseleva, I. Nickel and copper accumulation strategies in Odontarrhena obovata growing on copper smelter-influenced and non-influenced serpentine soils: A comparative field study. Environ. Geochem. Health 2021, 43, 1401–1413. [Google Scholar] [CrossRef]
- Fargašová, A. Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil Environ. 2004, 50, 33–38. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. Chemicals in European waters. In Knowledge Developments; Publications Office: Luxembourg, 2018. [Google Scholar]
- E-PRTR-European Pollutant Release and Transfer Register; European Environment Agency. 2020. Available online: https://prtr.eea.europa.eu/#/home (accessed on 22 November 2020).
- EEA Environmental Pressures of Heavy Metals Releases from Europe’s Industry; European Environment Agency. 2016. Available online: https://www.eea.europa.eu/themes/industry/industrial-pollution-in-europe/heavy-metal-pollution (accessed on 20 November 2020).
- Smaranda, C.; Hlihor, R.-M.; Apostol, L.C.; Bulgariu, L.; Diaconu, M.; Fortuna, M.E.; Gavrilescu, M. Chapter 2. biosorption and bioaccumulation: Principles and potential applications in bioremediation. In Biosorption and Bioaccumulation: Principles and applications in environmental bioremediation; Politehnium Publishing House: Iasi, Romania, 2016. [Google Scholar]
- Rosca, M.; Hlihor, R.-M.; Gavrilescu, M. Bioremediation of persistent toxic substances: From conventional to new approaches in using microorganisms and plants. In Microbial Technology for the Welfare of Society. Microorganisms for Sustainability; Arora, P.K., Ed.; Springer Singapore: Singapore, 2019; Volume 17, pp. 289–312. ISBN 9789811388439. [Google Scholar]
- Dos Santos Junior, S.G.; da Rocha Santana, R.M.; de Mendonca Gomes, R.K.; de Moraes, N.F.S.; da Silva, P.M.; Paiva PM, G.; Napoleao, D.C. Treatment of persistent organic pollutants in LED reactor using ferrous sulfate and iron waste for fenton process. Environ. Eng. Manag. J. 2021, 20, 883–893. [Google Scholar]
- Miniero, R.; Iamiceli, A.L.; De Felip, E. Persistent Organic Pollutants. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: London, UK, 2015; ISBN 978-0-12-409548-9. [Google Scholar]
- All POPs Listed in the Stockholm Convention. Available online: http://www.pops.int/ (accessed on 15 August 2021).
- The Convention and Its Achievements. A Common Framework for Transboundary Cooperation on Air Pollution. Available online: https://unece.org/convention-and-its-achievements (accessed on 15 August 2021).
- Zacharia, T.; Degradation, J. Pathways of Persistent Organic Pollutants (POPs) in the environment. In Persistent Organic Pollutants; Donyinah, S.K., Ed.; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78985-807-5. [Google Scholar]
- Ashraf, M.A. Persistent organic pollutants (POPs): A global issue, a global challenge. Environ. Sci. Pollut. Res. 2017, 24, 4223–4227. [Google Scholar] [CrossRef]
- Jaspers, V.; Megson, D.; O’Sullivan, G. POPs in the Terrestrial Environment. In Environmental Forensics for Persistent Organic Pollutants; Elsevier BV: Amsterdam, The Netherlands, 2013; pp. 291–356. [Google Scholar]
- Lohmann, R.; Breivik, K.; Dachs, J.; Muir, D. Global fate of POPs: Current and future research directions. Environ. Pollut. 2007, 150, 150–165. [Google Scholar] [CrossRef]
- El-Kilani, R.M.; Belal, M.H. Modelling an environmental pollutant transport from the stacks to and through the soil. J. Adv. Res. 2010, 1, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Cara, I.; Filip, M.; Bulgariu, L.; Raus, L.; Topa, D.; Jitareanu, G. Environmental Remediation of Metribuzin Herbicide by Mesoporous Carbon—Rich from Wheat Straw. Appl. Sci. 2021, 11, 4935. [Google Scholar] [CrossRef]
- Filote, C.; Roșca, M.; Hlihor, R.-M. Overview of using living and non-living microorganisms for the removal of heavy metals from wastewaters. Res. J. Agric. Sci. 2020, 52, 22–31. [Google Scholar]
- Rosca, M.; Hlihor, R.-M.; Cozma, P.; Comanita, E.-D.; Simion, I.M.; Gavrilescu, M. Potential of biosorption and bioaccumula-tion processes for heavy metals removal in bioreactors. In Proceedings of the 2015 E-Health and Bioengineering Conference (EHB), IEEE, Iasi, Romania, 19–21 November 2015; pp. 1–4. [Google Scholar]
- Kurniati, E.; Arfarita, N.; Imai, T.; Higuchi, T.; Kanno, A.; Yamamoto, K.; Sekine, M. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J. Environ. Sci. Chin. 2014, 26, 1223–1231. [Google Scholar] [CrossRef]
- Ge, W.; Zamri, D.; Mineyama, H.; Valix, M. Bioaccumulation of heavy metals on adapted Aspergillus foetidus. Adsorption 2011, 17, 901–910. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the Art for the Biosorption Process—A Review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Kuila, A. Bioremediation of heavy metals by microbial process. Environ. Technol. Innov. 2019, 14, 100369. [Google Scholar] [CrossRef]
- Igiri, B.E.; Okoduwa, S.; Idoko, G.O.; Akabuogu, E.P.; Adeyi, A.O.; Ejiogu, I.K. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater: A Review. J. Toxicol. 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Fazli, M.M.; Soleimani, N.; Mehrasbi, M.; Darabian, S.; Mohammadi, J.; Ramazani, A. Highly cadmium tolerant fungi: Their tolerance and removal potential. J. Environ. Health Sci. Eng. 2015, 13, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rzymski, P.; Poniedziałek, B.; Niedzielski, P.; Tabaczewski, P.; Wiktorowicz, K. Cadmium and lead toxicity and bioaccumulation in Microcystis aeruginosa. Front. Environ. Sci. Eng. 2014, 8, 427–432. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Xing, G.; Yuan, H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015, 175, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Joshi, S.R.; Mandal, T.; Halder, G. Insight into Cr6+ reduction efficiency of Rhodococcus erythropolis isolated from coalmine waste water. Chemosphere 2017, 167, 269–281. [Google Scholar] [CrossRef]
- Manasi; Rajesh, V.; Kumar, S.K.; Rajesh, N. Biosorption of cadmium using a novel bacterium isolated from an electronic industry effluent. Chem. Eng. J. 2014, 235, 176–185. [Google Scholar] [CrossRef]
- Masoudzadeh, N.; Zakeri, F.; Lotfabad, T.B.; Sharafi, H.; Masoomi, F.; Zahiri, H.S.; Ahmadian, G.; Noghabi, K.A. Biosorption of cadmium by Brevundimonas sp. ZF12 strain, a novel biosorbent isolated from hot-spring waters in high background radiation areas. J. Hazard. Mater. 2011, 197, 190–198. [Google Scholar] [CrossRef]
- Zeng, Q.; Hu, Y.; Yang, Y.; Hu, L.; Zhong, H.; He, Z. Cell envelop is the key site for Cr(Ⅵ) reduction by Oceanobacillus oncorhynchi W4, a newly isolated Cr(Ⅵ) reducing bacterium. J. Hazard. Mater. 2019, 368, 149–155. [Google Scholar] [CrossRef]
- Yaghoubian, Y.; Siadat, S.A.; Telavat, M.R.M.; Pirdashti, H.; Yaghoubian, I. Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environ. Sci. Pollut. Res. 2019, 26, 7863–7872. [Google Scholar] [CrossRef]
- Iskandar, N.L.; Zainudin, N.A.I.M.; Tan, S. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J. Environ. Sci. 2011, 23, 824–830. [Google Scholar] [CrossRef]
- Mohanty, K.; Murugavelh, S. MECHANISM OF Cr(VI) BIOACCUMULATION BY Phanerochaete chrysosporium. Environ. Eng. Manag. J. 2014, 13, 281–287. [Google Scholar] [CrossRef]
- Jayanthi, M.; Kanchana, D.; Saranraj, P.; Sujitha, D. Bioadsorption of chromium by penicillium chrysogenum and aspergillus niger isolated from tannery effluent. Int. J. Microbiol. Res. 2014, 5, 40–47. [Google Scholar]
- Mishra, A.; Malik, A. Novel fungal consortium for bioremediation of metals and dyes from mixed waste stream. Bioresour. Technol. 2014, 171, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Chellaiah, E.R. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Appl. Water Sci. 2018, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, M.; Rosca, M.; Cozma, P.; Minut, M.; Smaranda, C.; Hlihor, R.-M.; Gavrilescu, M. Toxicity and microbial bioreme-diation of chromium contaminated effluents. In Proceedings of the 2020 International Conference on e-Health and Bioengi-neering (EHB), IEEE, Iasi, Romania, 29–30 October 2020; pp. 1–4. [Google Scholar]
- Vendruscolo, F.; Ferreira, G.L.D.R.; Filho, N.R.A. Biosorption of hexavalent chromium by microorganisms. Int. Biodeterior. Biodegrad. 2017, 119, 87–95. [Google Scholar] [CrossRef]
- Dey, S.; Paul, A. Optimization of cultural conditions for growth associated chromate reduction by Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. J. Hazard. Mater. 2012, 213–214, 200–206. [Google Scholar] [CrossRef]
- Poljsak, B.; Pócsi, I.; Raspor, P.; Pesti, M. Interference of chromium with biological systems in yeasts and fungi: A review: Effects of chromium on yeast and fungi. J. Basic Microbiol. 2009, 50, 21–36. [Google Scholar] [CrossRef]
- Wilde, E.W.; Benemann, J.R. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 1993, 11, 781–812. [Google Scholar] [CrossRef] [PubMed]
- Folgar, S.; Torres, E.; Pérez-Rama, M.; Cid, A.; Herrero, C.; Abalde, J. Dunaliella salina as marine microalga highly tolerant to but a poor remover of cadmium. J. Hazard. Mater. 2009, 165, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, F.; Liu, Y.; Huang, F.; Zhang, C. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Sci. Total Environ. 2020, 704, 135368. [Google Scholar] [CrossRef]
- Priyadarshani, I.; Sahu, D.; Rath, B. Microalgal bioremediation: Current practices and perspectives. J. Biochem. Tech. 2011, 3, 299–304. [Google Scholar]
- Sağ, Y. Biosorption of heavy metals by fungal biomass and modeling of fungal biosorption: A review. Sep. Purif. Methods 2001, 30, 1–48. [Google Scholar] [CrossRef]
- Sher, S.; Rehman, A. Use of heavy metals resistant bacteria—A strategy for arsenic bioremediation. Appl. Microbiol. Biotechnol. 2019, 103, 6007–6021. [Google Scholar] [PubMed]
- Hlihor, R.M.; Figueiredo, H.; Tavares, T.; Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr (VI): Batch and column studies. Process. Saf. Environ. Prot. 2017, 108, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Mirghaffari, N.; Moeini, E.; Farhadian, O. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. Scenedesmus Quadricauda. J. Appl. Phycol. 2015, 27, 311–320. [Google Scholar] [CrossRef]
- Giovanella, P.; Cabral, L.; Bento, F.M.; Gianello, C.; Camargo, F.A.O. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A. New Biotechnol. 2016, 33, 216–223. [Google Scholar] [CrossRef]
- Bowman, N.; Patel, D.; Sanchez, A.; Xu, W.; Alsaffar, A.; Tiquia-Arashiro, S.M. Lead-resistant bacteria from Saint Clair River sediments and Pb removal in aqueous solutions. Appl. Microbiol. Biotechnol. 2018, 102, 2391–2398. [Google Scholar] [CrossRef]
- Paul, M.L.; Samuel, J.; Chandrasekaran, N.; Mukherjee, A. Comparative kinetics, equilibrium, thermodynamic and mechanistic studies on biosorption of hexavalent chromium by live and heat killed biomass of Acinetobacter junii VITSUKMW2, an indigenous chromite mine isolate. Chem. Eng. J. 2012, 187, 104–113. [Google Scholar] [CrossRef]
- Huang, F.; Dang, Z.; Guo, C.-L.; Lu, G.-N.; Gu, R.R.; Liu, H.-J.; Zhang, H. Biosorption of Cd (II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil. Colloids Surf. B Biointerfaces 2013, 107, 11–18. [Google Scholar] [CrossRef]
- Wu, H.; Wu, Q.; Wu, G.; Gu, Q.; Wei, L. Cd-resistant strains of B. cereus S5 with endurance capacity and their capacities for cadmium removal from cadmium-polluted water. PLoS ONE 2016, 11, e0151479. [Google Scholar] [CrossRef]
- Xing, S.-C.; Chen, J.-Y.; Lv, N.; Mi, J.-D.; Chen, W.L.; Liang, J.B.; Liao, X.-D. Biosorption of lead (Pb2+) by the vegetative and decay cells and spores of Bacillus coagulans R11 isolated from lead mine soil. Chemosphere 2018, 211, 804–816. [Google Scholar] [CrossRef] [PubMed]
- Aslam, F.; Yasmin, A.; Sohail, S. Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. Int. Microbiol. 2020, 23, 253–261. [Google Scholar] [CrossRef]
- Priyadarshanee, M.; Das, S. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 104686. [Google Scholar] [CrossRef]
- Rudakiya, D.M.; Iyer, V.; Shah, D.; Gupte, A.; Nath, K. Biosorption Potential of Phanerochaete chrysosporium for Arsenic, Cadmium, and Chromium Removal from Aqueous Solutions. Glob. Chall. 2018, 2, 1800064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Singh, A.; Bishnoi, N.R.; Gupta, A. Biosorption of Cu (II) using free and immobilized biomass of Penicillium citrinum. Ecol. Eng. 2013, 61, 486–490. [Google Scholar] [CrossRef]
- Onalo, J.I.; Matias-peralta, H.M.; Sunar, N.M. Growth of freshwater microalga, botryococcus sp. in heavy metal contaminated industrial wastewater. J. Sci. Technol. 2014, 6, 29–40. [Google Scholar]
- Huang, R.; Huo, G.; Song, S.; Li, Y.; Xia, L.; Gaillard, J.-F. Immobilization of mercury using high-phosphate culture-modified microalgae. Environ. Pollut. 2019, 254, 112966. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, X.; Wan, C.; Chen, B.; Bai, F. Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res. 2016, 16, 427–433. [Google Scholar] [CrossRef]
- Wang, N.; Qiu, Y.; Xiao, T.; Wang, J.; Chen, Y.; Xu, X.; Kang, Z.; Fan, L.; Yu, H. Comparative studies on Pb(II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. J. Hazard. Mater. 2019, 373, 39–49. [Google Scholar] [CrossRef]
- Peng, Y.; Deng, A.; Gong, X.; Li, X.; Zhang, Y. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae. Bioresour. Technol. 2017, 243, 628–633. [Google Scholar] [CrossRef]
- Ahmad, N.; Mounsef, J.R.; Tayeh, J.A.; Lteif, R. Bioremediation of Ni, Al and Pb by the living cells of a resistant strain of microalga. Water Sci. Technol. 2020, 82, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, R.K.; Parhi, P.K.; Pandey, S.; Bindhani, B.K.; Thatoi, H.; Panda, C.R. Active and passive biosorption of Pb(II)using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies. J. Environ. Manag. 2019, 247, 121–134. [Google Scholar] [CrossRef]
- Hadiani, M.R.; Khosravi-Darani, K.; Rahimifard, N.; Younesi, H. Assessment of Mercury biosorption by Saccharomyces cerevisiae: Response surface methodology for optimization of low Hg (II) concentrations. J. Environ. Chem. Eng. 2018, 6, 4980–4987. [Google Scholar] [CrossRef]
- Talukdar, D.; Jasrotia, T.; Sharma, R.; Jaglan, S.; Kumar, R.; Vats, R.; Kumar, R.; Mahnashi, M.H.; Umar, A. Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ. Technol. Innov. 2020, 20, 101050. [Google Scholar] [CrossRef]
- Ting, A.S.Y.; Choong, C.C. Bioaccumulation and biosorption efficacy of Trichoderma isolate SP2F1 in removing copper (Cu(II)) from aqueous solutions. World J. Microbiol. Biotechnol. 2009, 25, 1431–1437. [Google Scholar] [CrossRef]
- Sepehr, M.N.; Nasseri, S.; Zarrabi, M.; Samarghandi, M.R.; Amrane, A. Removal of Cr (III) from tanning effluent by Aspergillus niger in airlift bioreactor. Sep. Purif. Technol. 2012, 96, 256–262. [Google Scholar] [CrossRef]
- Sharma, S.; Malaviya, P. Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecol. Eng. 2016, 91, 419–425. [Google Scholar] [CrossRef]
- Dey, P.; Gola, D.; Mishra, A.; Malik, A.; Kumar, P.; Singh, D.K.; Patel, N.; von Bergen, M.; Jehmlich, N. Comparative performance evaluation of multi-metal resistant fungal strains for simultaneous removal of multiple hazardous metals. J. Hazard. Mater. 2016, 318, 679–685. [Google Scholar] [CrossRef]
- Iram, S.; Shabbir, R.; Zafar, H.; Javaid, M. Biosorption and Bioaccumulation of Copper and Lead by Heavy Metal-Resistant Fungal Isolates. Arab. J. Sci. Eng. 2015, 40, 1867–1873. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Chang, H.-W.; Kao, P.-C.; Pan, J.-L.; Chang, J.-S. Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 105, 74–80. [Google Scholar] [CrossRef]
- Nithya, K.; Sathish, A.; Pradeep, K.; Baalaji, S.K. Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies. J. Environ. Chem. Eng. 2019, 7, 103273. [Google Scholar] [CrossRef]
- Pradhan, D.; Sukla, L.B.; Mishra, B.B.; Devi, N. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J. Clean. Prod. 2019, 209, 617–629. [Google Scholar] [CrossRef]
- Upadhyay, K.H.; Vaishnav, A.M.; Tipre, D.R.; Patel, B.C.; Dave, S.R. Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate bacillus licheniformis. 3 Biotech 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Wen, X.; Du, C.; Zeng, G.; Huang, D.; Zhang, J.; Yin, L.; Tan, S.; Huang, L.; Chen, H.; Yu, G.; et al. A novel biosorbent prepared by immobilized Bacillus licheniformis for lead removal from wastewater. Chemosphere 2018, 200, 173–179. [Google Scholar] [CrossRef]
- Arivalagan, P.; Singaraj, D.; Haridass, V.; Kaliannan, T. Removal of cadmium from aqueous solution by batch studies using Bacillus cereus. Ecol. Eng. 2014, 71, 728–735. [Google Scholar] [CrossRef]
- Roşca, M.; Hlihor, R.-M.; Cozma, P.; Drăgoi, E.N.; Diaconu, M.; Silva, B.; Tavares, T.; Gavrilescu, M. Comparison of Rhodotorula sp. and Bacillus megaterium in the removal of cadmium ions from liquid effluents. Green Process. Synth. 2018, 7, 74–88. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Li, M.; Luo, D.; Chen, Y.; Chen, D.; Luo, H.; Chen, Z.; Li, K. Immobilizing Metal-Resistant Sulfate-Reducing Bacteria for Cadmium Removal from Aqueous Solutions. Pol. J. Environ. Stud. 2018, 27, 2851–2860. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, R.; Shetty, K.V.; Srinikethan, G. Cadmium (II) and nickel (II) biosorption by Bacillus laterosporus (MTCC 1628). J. Taiwan Inst. Chem. Eng. 2014, 45, 1628–1635. [Google Scholar] [CrossRef]
- Dang, C.; Yang, Z.; Liu, W.; Du, P.; Cui, F.; He, K. Role of extracellular polymeric substances in biosorption of Pb2+ by a high metal ion tolerant fungal strain Aspergillus niger PTN31. J. Environ. Chem. Eng. 2018, 6, 2733–2742. [Google Scholar] [CrossRef]
- Long, J.; Yuvaraja, G.; Zhou, S.; Mo, J.; Li, H.; Luo, D.; Chen, D.Y.; Kong, L.; Subbaiah, M.V.; Reddy, G.M. Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. J. Ind. Eng. Chem. 2019, 72, 442–452. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Diaconu, M.; Gavrilescu, M. A Comparison of kinetic models applied for Cd (II) removal by S. cerevisiae. Bull. Polytech. Inst. Jassy 2011, LVII, 163–171. [Google Scholar]
- Samuel, M.S.; Chidambaram, R. Hexavalent chromium biosorption studies using Penicillium griseofulvum MSR1 a novel isolate from tannery effluent site: Box–Behnken optimization, equilibrium, kinetics and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 2015, 49, 156–164. [Google Scholar] [CrossRef]
- Verma, J.P.; Jaiswal, D.K.; Sagar, R. Pesticide relevance and their microbial degradation: A-state-of-art. Rev. Environ. Sci. Bio/Technol. 2014, 13, 429–466. [Google Scholar] [CrossRef]
- Savoca, D.; Pace, A. Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms. Int. J. Mol. Sci. 2021, 22, 6276. [Google Scholar] [CrossRef]
- Al-Mamun, A. Pesticide degradations, residues and environmental concerns. In Pesticide Residue in Foods; Khan, M.S., Rahman, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 87–102. ISBN 978-3-319-52681-2. [Google Scholar]
- Srivastava, J.; Naraian, R.; Kalra, S.J.S.; Chandra, H. Advances in microbial bioremediation and the factors influencing the process. Int. J. Environ. Sci. Technol. 2014, 11, 1787–1800. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Q.; Hu, L.-X.; Liu, Y.-S.; Zhao, J.-L.; He, L.-Y.; Ying, G.-G. Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environ. Int. 2021, 155, 106594. [Google Scholar] [CrossRef] [PubMed]
- Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process. Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Ju, Y.-H.; Chen, T.-C.; Liu, J. A study on the biosorption of lindane. Colloids Surf. B Biointerfaces 1997, 9, 187–196. [Google Scholar] [CrossRef]
- Bell, J.P.; Tsezos, M. Removal of Hazardous Organic Pollutants by Adsorption on Microbial Biomass. Water Sci. Technol. 1987, 19, 409–416. [Google Scholar] [CrossRef]
- Young, E.; Banks, C. The Removal of Lindane from Aqueous Solution using a Fungal Biosorbent: The Influence of pH, Temperature, Biomass Concentration, and Culture Age. Environ. Technol. 1998, 19, 619–625. [Google Scholar] [CrossRef]
- Hong, H.-B.; Hwang, S.; Chang, Y.-S. Biosorption of 1,2,3,4-tetrachlorodibenzo-p-dioxin and polychlorinated dibenzofurans by Bacillus pumilus. Water Res. 2000, 34, 349–353. [Google Scholar] [CrossRef]
- Benoit, P.; Barriuso, E.; Calvet, R. Biosorption characterization of herbicides, 2,4-D and atrazine, and two chlorophenols on fungal mycelium. Chemosphere 1998, 37, 1271–1282. [Google Scholar] [CrossRef]
- Nayak, S.K.; Dash, B.; Baliyarsingh, B. Microbial remediation of persistent agro-chemicals by soil bacteria: An overview. In Microbial Biotechnology; Springer Science and Business Media LLC: New York, NY, USA, 2018; ISBN 9789811071409. [Google Scholar]
- Huang, L.; Wang, W.; Shah, S.B.; Hu, H.; Xu, P.; Tang, H. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation. J. Hazard. Mater. 2019, 380, 120833. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Wang, R.; Lin, C.-Y.; Chen, S.-H.; Chuang, C.-H.; Chou, T.-H.; Ko, C.-F.; Chou, P.-H.; Liu, C.-T.; Shih, Y.-H. The degradation mechanisms of Rhodopseudomonas palustris toward hexabromocyclododecane by time-course transcriptome analysis. Chem. Eng. J. 2021, 425, 130489. [Google Scholar] [CrossRef]
- Guillén-Jiménez, F.D.M.; Cristiani-Urbina, E.; Cancino-Díaz, J.C.; Flores-Moreno, J.L.; Barragán-Huerta, B.E. Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: Kinetic study and identification of metabolites. Int. Biodeterior. Biodegrad. 2012, 74, 36–47. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, M.; Li, Y.; Gao, G.; Bartlam, M.; Wang, Y. Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area. AMB Express 2018, 8, 27. [Google Scholar] [CrossRef]
- Shi, G.; Yin, H.; Ye, J.; Peng, H.; Li, J.; Luo, C. Aerobic biotransformation of decabromodiphenyl ether (PBDE-209) by Pseudomonas aeruginosa. Chemosphere 2013, 93, 1487–1493. [Google Scholar] [CrossRef]
- Ozdal, M.; Ozdal, O.G.; Algur, O.F.; Kurbanoglu, E.B. Biodegradation of α-endosulfan via hydrolysis pathway by Stenotrophomonas maltophilia OG2. 3 Biotech 2017, 7, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silambarasan, S.; Abraham, J. Mycoremediation of Endosulfan and Its Metabolites in Aqueous Medium and Soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS ONE 2013, 8, e77170. [Google Scholar] [CrossRef] [Green Version]
- Mano, D.M.; Buff, K.; Clausen, E.; Langenbach, T. Bioaccumulation and enhanced persistence of the acaricide Dicofol by Azospirillum lipoferum. Chemosphere 1996, 33, 1609–1619. [Google Scholar] [CrossRef]
- Gianfreda, L.; Mora, M.L.; Diez, M.C. Restoration of polluted soils by means of microbial and enzymatic processes. Azospirillum Lipoferum. Chemosphere 2006, 6, 20–40. [Google Scholar] [CrossRef]
- Bhandari, S.; Poudel, D.K.; Marahatha, R.; Dawadi, S.; Khadayat, K.; Phuyal, S.; Shrestha, S.; Gaire, S.; Basnet, K.; Khadka, U.; et al. Microbial Enzymes Used in Bioremediation. J. Chem. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Bhatt, P.; Verma, A.; Gangola, S.; Bhandari, G.; Chen, S. Microbial glycoconjugates in organic pollutant bioremediation: Recent advances and applications. Microb. Cell Factories 2021, 20, 72. [Google Scholar] [CrossRef]
- Karigar, C.S.; Rao, S.S. Role of Microbial Enzymes in the Bioremediation of Pollutants: A Review. Enzyme Res. 2011, 2011, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Zhang, X.; Wu, S.; Xu, N.; Huang, Y.; Yan, X.; Zhou, J.; Cui, Z.; Dong, W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021, 26, 4751. [Google Scholar] [CrossRef]
- Katarína, D.; Slavomíra, M.; Hana, D.; Katarína, L.; Hana, H. The adaptation mechanisms of bacteria applied in bioreme-diation of hydrophobic toxic environmental pollutants: How indigenous and introduced bacteria can respond to persistent organic pollutants-induced stress. In Persistent Organic Pollutants; Donyinah, S.K., Ed.; IntechOpen: Rijeka, Croatia, 2019; ISBN 978-1-78985-807-5. [Google Scholar]
- Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Overview on the biochemical potential of filamentous fungi to degrade pharmaceutical compounds. Front. Microbiol. 2017, 8, 1792. [Google Scholar] [CrossRef]
- Davolos, D.; Russo, F.; Canfora, L.; Malusà, E.; Tartanus, M.; Furmanczyk, E.; Ceci, A.; Maggi, O.; Persiani, A. A Genomic and transcriptomic study on the DDT-resistant Trichoderma hamatum FBL 587: First Genetic Data into Mycoremediation Strategies for DDT-Polluted Sites. Microorganisms 2021, 9, 1680. [Google Scholar] [CrossRef]
- Dalton, H.; Stirling, D.I.; Quayle, J.R. Co-metabolism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1982, 297, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Nzila, A. Update on the cometabolism of organic pollutants by bacteria. Environ. Pollut. 2013, 178, 474–482. [Google Scholar] [CrossRef]
- Alvarez, A.; Benimeli, C.S.; Saez, J.M.; Fuentes, M.S.; Cuozzo, S.A.; Polti, M.A.; Amoroso, M.J. Bacterial bio-resources for remediation of hexachlorocyclohexane. Int. J. Mol. Sci. 2012, 13, 15086–15106. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Wang, L.; Liang, B.; Chen, K.; Li, S.; Jiang, J. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax. Braz. J. Microbiol. 2010, 41, 431–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dey, A.; Sarkar, P.; Das, A. Studies on biodegradation of 4-chlorophenol and 4-nitrophenol by isolated pure cultures. Eur. J. Sustain. Dev. 2019, 8, 281. [Google Scholar] [CrossRef]
- Khessairi, A.; Fhoula, I.; Jaouani, A.; Turki, Y.; Cherif, A.; Boudabous, A.; Hassen, A.; Ouzari, H. Pentachlorophenol degradation by Janibactersp., a new actinobacterium isolated from saline sediment of arid land. BioMed Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Abdul Salam, J.; Lakshmi, V.; Das, D.; Das, N. Biodegradation of lindane using a novel yeast strain, rhodotorula sp. VITJzN03 isolated from agricultural soil. World J. Microbiol. Biotechnol. 2013, 29, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.-S. Recent developments in microbial biotransformation and biodegradation of dioxins. J. Mol. Microbiol. Biotechnol. 2008, 15, 152–171. [Google Scholar] [CrossRef] [PubMed]
- Sakaki, T.; Munetsuna, E. Enzyme systems for biodegradation of polychlorinated dibenzo-p-dioxins. Appl. Microbiol. Biotechnol. 2010, 88, 23–30. [Google Scholar] [CrossRef]
- Nguyen, B.-A.T.; Hsieh, J.-L.; Lo, S.-C.; Wang, S.-Y.; Hung, C.-H.; Huang, E.; Hung, S.-H.; Chin, W.-C.; Huang, C.-C. Biodegradation of dioxins by Burkholderia cenocepacia strain 869T2: Role of 2-haloacid dehalogenase. J. Hazard. Mater. 2021, 401, 123347. [Google Scholar] [CrossRef] [PubMed]
- Nagata, Y.; Kato, H.; Ohtsubo, Y.; Tsuda, M. Lessons from the genomes of lindane-degrading sphingomonads. Environ. Microbiol. Rep. 2019, 11, 630–644. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Ahmad, R.; Jonathan, S.G. Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action. PLoS ONE 2017, 12, e0183373. [Google Scholar] [CrossRef] [Green Version]
- Salam, J.A.; Das, N. Lindane degradation by Candida VITJzN04, a newly isolated yeast strain from contaminated soil: Kinetic study, enzyme analysis and biodegradation pathway. World J. Microbiol. Biotechnol. 2014, 30, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Weir, K.M.; Sutherland, T.D.; Horne, I.; Russell, R.J.; Oakeshott, J.G. A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl. Environ. Microbiol. 2006, 72, 3524–3530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copley, S.D.; Rokicki, J.; Turner, P.; Daligault, H.; Nolan, M.; Land, M. The whole genome sequence of sphingobium chlorophenolicum L-1: Insights into the evolution of the pentachlorophenol degradation pathway. Genome Biol. Evol. 2012, 4, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Echartea, E.; Macek, T.; Demnerova, K.; Uhlik, O. Bacterial biotransformation of pentachlorophenol and micropollutants formed during its production process. Int. J. Environ. Res. Public Health 2016, 13, 1146. [Google Scholar] [CrossRef]
- Shah, S.B.; Ali, F.; Huang, L.; Wang, W.; Xu, P.; Tang, H. Complete genome sequence of Bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3 Biotech 2018, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yin, H.; Peng, H.; Lu, G.; Dang, Z. Biodegradation of decabromodiphenyl ether (BDE-209) using a novel microbial consortium GY1: Cells viability, pathway, toxicity assessment, and microbial function prediction. Sci. Total Environ. 2019, 668, 958–965. [Google Scholar] [CrossRef]
- Suman, S.; Tanuja. Isolation and characterization of a bacterial strain enterobacter cloacae (Accession No. KX438060.1) capable of degrading DDTs under aerobic conditions and its use in bioremediation of contaminated soil. Microbiol. Insights 2021, 14. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Fortuna, M.E.; Simion, I.M. Sustainability in environmental remediation. Environ. Eng. Manag. J. 2011, 10, 1987–1996. [Google Scholar] [CrossRef]
- Tahri, N.; Bahafid, W.; Sayel, H.; El Ghachtouli, N. Biodegradation: Involved microorganisms. In Biodegradation-Life of Science; Chamy, R., Ed.; InTech: Rijeka, Croatia, 2013; pp. 1–7. ISBN 978-953-51-1154-2. [Google Scholar]
- Doolotkeldieva, T.; Bobusheva, S.; Konurbaeva, M. The improving conditions for the aerobic bacteria performing the degradation of obsolete pesticides in polluted soils. Air Soil Water Res. 2021, 14. [Google Scholar] [CrossRef]
- Osman, K.A.; Ibrahim, G.H.; Askar, A.I.; Alkhail, A.R.A.A. Biodegradation kinetics of dicofol by selected microorganisms. Pestic. Biochem. Physiol. 2008, 91, 180–185. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, A.; Sharma, J. Degradation study of lindane by novel strains Kocuria sp. DAB-1Y and Staphylococcus sp. DAB-1W. Bioresour. Bioprocess. 2016, 3, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, T.; Singh, D.K. Lindane degradation by root epiphytic bacteriumAchromobactersp. strain A3 fromAcorus calamusand characterization of associated proteins. Int. J. Phytoremediation 2019, 21, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Singh, D.K. Rhizospheric microbacterium sp. P27 showing potential of lindane degradation and plant growth promoting traits. Curr. Microbiol. 2019, 76, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.; Ningthoujam, R.; Chaudhuri, S. Isolation and characterization of a lindane degrading bacteria Paracoccus sp. NITDBR1 and evaluation of its plant growth promoting traits. Int. Microbiol. 2019, 22, 155–167. [Google Scholar] [CrossRef]
- Ahmad, K.S. Remedial potential of bacterial and fungal strains (Bacillus subtilis, Aspergillus niger, Aspergillus flavus and Penicillium chrysogenum) against organochlorine insecticide Endosulfan. Folia Microbiol. 2020, 65, 801–810. [Google Scholar] [CrossRef]
- Yamada, T.; Takahama, Y.; Yamada, Y. Isolation of Pseudomonassp. Strain HB01 which degrades the persistent brominated flame retardant γ-hexabromocyclododecane. Biosci. Biotechnol. Biochem. 2009, 73, 1674–1678. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Liu, H.-M.; Liu, A.-M. Biodegradation of dicofol by Microbacterium sp. D-2 isolated from pesticide-contaminated agricultural soil. Appl. Biol. Chem. 2019, 62, 72. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Pannu, R. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: A review. Bioresour. Bioprocess. 2018, 5, 29. [Google Scholar] [CrossRef]
- Cao, H.; Wang, C.; Liu, H.; Jia, W.; Sun, H. Enzyme activities during Benzo[a]pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Sci. Rep. 2020, 10, 865. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Zhao, L.; Ojekunle, Z.O.; Tan, X. Isolation and preliminary characterization of a 3-chlorobenzoate degrading bacteria. J. Environ. Sci. 2007, 19, 332–337. [Google Scholar] [CrossRef]
- Kataoka, R. Biodegradability and biodegradation pathways of chlorinated cyclodiene insecticides by soil fungi. J. Pestic. Sci. 2018, 43, 314–320. [Google Scholar] [CrossRef]
- Sandhibigraha, S.; Chakraborty, S.; Bandyopadhyay, T.; Bhunia, B. A kinetic study of 4-chlorophenol biodegradation by the novel isolated Bacillus subtilis in batch shake flask. Environ. Eng. Res. 2019, 25, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Sing, N.N.; Zulkharnain, A.; Roslan, H.A.; Assim, Z.; Husaini, A. Bioremediation of PCP by Trichoderma and Cunninghamella Strains Isolated from Sawdust. Braz. Arch. Biol. Technol. 2014, 57, 811–820. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Huang, T.; Tao, X.; Li, H.; Duan, X.; Zou, M.; Lu, G. Rapid biodegradation of 2,2’,4,4’-tetrabromodiphenyl ether (BDE-47) by Achromobacter xylosoxidans GYP4. Desalination Water Treat. 2019, 162, 353–363. [Google Scholar] [CrossRef]
- Ammeri, R.W.; Mehri, I.; Badi, S.; Hassen, W.; Hassen, A. Pentachlorophenol degradation by Pseudomonas fluorescens. Water Qual. Res. J. 2017, 52, 99–108. [Google Scholar] [CrossRef]
- Mandal, S.K.; Das, N. Biodegradation of benzo [a] pyrene by Rhodotorula sp. NS01 strain isolated from contaminated soil sample. Res. J. Pharm. Technol. 2017, 10, 1751. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Liu, S.; Sun, P.; Fan, P.; Xia, C. Biodegradation of Phenol and 4-Chlorophenol by Candida tropicalis W1. Procedia Environ. Sci. 2012, 16, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Ahn, T.-S.; Lee, G.-H.; Song, H.-G. Biodegradation of phenanthrene by psychrotrophic bacteria from Lake Baikal. J. Microbiol. Biotechnol. 2005, 15, 1135–1139. [Google Scholar]
- Zheng, G.; Selvam, A.; Wong, J.W. Rapid degradation of lindane (γ-hexachlorocyclohexane) at low temperature by Sphingobium strains. Int. Biodeterior. Biodegrad. 2011, 65, 612–618. [Google Scholar] [CrossRef]
- Michaud, L.; Di Marco, G.; Bruni, V.; Giudice, A.L. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Mar. Pollut. Bull. 2007, 54, 1754–1761. [Google Scholar] [CrossRef]
- Eltoukhy, A.; Jia, Y.; Nahurira, R.; Abo-Kadoum, M.A.; Khokhar, I.; Wang, J.; Yan, Y. Biodegradation of endocrine disruptor Bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong, China. BMC Microbiol. 2020, 20, 11. [Google Scholar] [CrossRef] [Green Version]
- Grewal, J.; Bhattacharya, A.; Kumar, S.; Singh, D.K.; Khare, S.K. Biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) by usingSerratia marcescensNCIM 2919. J. Environ. Sci. Health Part B 2016, 51, 809–816. [Google Scholar] [CrossRef]
- Li, G.; Zu, L.; Wong, P.-K.; Hui, X.; Lu, Y.; Xiong, J.; An, T. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresour. Technol. 2012, 114, 224–230. [Google Scholar] [CrossRef]
- Kumar, A.; Bhoot, N.; Soni, I.; John, P.J. Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech 2014, 4, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Das, S.K.; Guha, A.K.; Sanyal, A.K. Adsorption behavior of lindane on Rhizopus oryzae biomass: Physico-chemical studies. J. Hazard. Mater. 2009, 172, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Lièvremont, D.; Seigle-Murandi, F.; Benoit-Guyod, J.-L. Removal of PCNB from aqueous solution by a fungal adsorption process. Water Res. 1998, 32, 3601–3606. [Google Scholar] [CrossRef]
- De, J.; Ramaiah, N.; Vardanyan, L. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Mar. Biotechnol. 2008, 10, 471–477. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Bioremediation Options for Heavy Metal Pollution. J. Health Pollut. 2019, 9, 191203. [Google Scholar] [CrossRef] [Green Version]
- Javaid, A.; Bajwa, R.; Shafique, U.; Anwar, J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass- Bioenergy 2011, 35, 1675–1682. [Google Scholar] [CrossRef]
- Kanamarlapudi, S.L.R.K.; Chintalpudi, V.K.; Muddada, S. Application of biosorption for removal of heavy metals from wastewater. In Biosorption; Derco, J., Vrana, B., Eds.; InTech: Rijeka, Croatia, 2018; ISBN 978-1-78923-472-5. [Google Scholar]
- Qamouche, K.; Chetaine, A.; El Yahyaoui, A.; Moussaif, A.; Fröhlich, P.; Bertau, M.; Haneklaus, N. Uranium and other heavy metal sorption from Moroccan phosphoric acid with argan nutshell sawdust. Miner. Eng. 2021, 171, 107085. [Google Scholar] [CrossRef]
- Piccinno, F.; Hischier, R.; Seeger, S.; Som, C. Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste. ACS Sustain. Chem. Eng. 2015, 3, 1047–1055. [Google Scholar] [CrossRef]
- Crater, J.S.; Lievense, J.C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 2018, 365, fny138. [Google Scholar] [CrossRef]
- Dumpala, R.; Bhavsar, J.; Patil, C. Scaleup factors with an industrial perspective. Int. J. Univers. Pharm. Bio Sci. 2020, 9, 1–13. [Google Scholar]
- Tsoy, N.; Steubing, B.; Van Der Giesen, C.; Guinée, J. Upscaling methods used in ex ante life cycle assessment of emerging technologies: A review. Int. J. Life Cycle Assess. 2020, 25, 1680–1692. [Google Scholar] [CrossRef]
- Shibasaki, M.; Warburg, N.; Eyerer, P. Upscaling Effect and Life Cycle Assessment. Proceedings of 13th CIRP International Conference of Life Cycle Engineering (LCE 2006), Leuven, Belgium, 31 May–2 June 2006; pp. 61–64. [Google Scholar]
- Von Drachenfels, N.; Engels, P.; Husmann, J.; Cerdas, F.; Herrmann, C. Scale-Up of pilot line battery cell manufacturing life cycle inventory models for life cycle assessment. Procedia CIRP 2021, 98, 13–18. [Google Scholar] [CrossRef]
- Ghiron, L.; Shillingi, L.; Kabiswa, C.; Ogonda, G.; Omimo, A.; Ntabona, A.; Simmons, R.; Fajans, P. Beginning with sustainable scale up in mind: Initial results from a population, health and environment project in East Africa. Reprod. Health Matters 2014, 22, 84–92. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Metal | Optimal Conditions | Efficiency/Sorption Capacity | Ref. |
---|---|---|---|---|
MICROALGAE | ||||
Chlorella vulgaris | Hg(II) | Ci = 10 µg/L, pH = 5.0 ± 0.2, t = 5 days | 62.85% | [110] |
- | ||||
Phacus sp. | Pb(II) | Ci = 1 mg/L, 10% (v/v) Phacus strain inoculum, culture concentration = 1.03 × 106 cells/mL, room temperature (25 °C), t = 1 week | 96.8% | [111] |
3.90 ± 0.09 mg/g | ||||
Phacus sp. | Al(II) | Ci = 9.94 mg/L, 10% (v/v) Phacus strain inoculum, culture concentration = 1.03 × 106 cells/mL, T = 25 °C, t = 1 week | 19% | [111] |
12.32 ± 0.13 mg/g | ||||
Phacus sp. | Ni(II) | Ci = 9.94 mg/L, 10% (v/v) Phacus strain inoculum, culture concentration = 1.03 × 106 cells/mL, room temperature (25 °C), t = 1 week | 75.17% | [111] |
30.8 ± 0.16 mg/g | ||||
BACTERIA | ||||
Pseudomonas sp. B50A | Hg(II) | Ci = 350 mM; Cell concentration = 2 × 107 CFU mL−1, T = 30 °C; pH = 8; t = 8 h | 93% | [96] |
- | ||||
Stenotrophomonas sp. | Pb(II) | Ci = 200 mg/L; pH = 7; T = 37 °C; Agitation speed (rpm) = 150 | 85.3% | [102] |
- | ||||
Bacillus coagulans | Ci = 50 mg/L; pH = 5; T = 23 °C; D = 1 g/L; t = 6 min; Agitation speed (rpm): 160 | - | [101] | |
17.53 mg/g | ||||
Bacillus xiamenensis | Ci = 100–200 mg/L; pH = 6; T = 35 °C; D = 1 g/L; t = 144 h; Agitation speed (rpm) = 140 | 99.19% | [112] | |
216.75 mg/g | ||||
Acinetobacter junii | Cr(VI) | Ci = 100 mg/L; pH = 2; T = 27 °C; D (g/L) = 2; t = 120 min | 44.4% (logarithmic phase), 27.7% (stationary phase) | [98] |
22.22 mg/g (logarithmic phase), 13.88 mg/g (stationary phase) | ||||
Stenotrophomonas sp. | Ci = 100 mg/L; pH = 8; T = 37 °C; Agitation speed (rpm) = 150 | 68.54% | [102] | |
- | ||||
Klebsiellapneumoniae | 65.98% | |||
- | ||||
Staphylococcus sp. | 71.45% | |||
- | ||||
Stenotrophomonas sp. | Ni(II) | Ci = 200 mg/L; pH = 7; T = 37 °C; Agitation speed (rpm) = 150 | 48.78% | [102] |
- | ||||
FUNGI | ||||
Saccharomyces cerevisiae | Hg(II) | Ci = 79.8 μg/L; pH = 5.45 D = 47.7 × 107 CFU; | 99.4% | [113] |
- | ||||
Aspergillus flavus | Hg(II) | Ci = 10 mg/L; T = 30 °C; pH = 4.13 (shaken system), respectively 4.01 (static system); D = 108 spore/mL fungal spore suspension; dry mass = 14.9 g/L (shaken system), respectively 14.3 g/L (static system) | 97.50% (shaken system); 98.73% (static system) | [66] |
6.55 Hg (mg/L)/g dry weight (shaken system); 6.91 Hg (mg/L)/g dry weight (static system) | ||||
Aspergillus fumigatus and Aspergillus flavus (consortium) | Cd(II) | Ci = 100 mg/L; pH = 5; T = 30 °C; D = 6%; t = 144 h Agitation speed (rpm) = 120; | 82.21 ± 1.00% | [114] |
5.51 ± 1.23 mg/g | ||||
Trichoderma sp. | Cu(II) | Temperature (°C): 27 ± 3 °C; pH: 6.5; Agitation speed: 200 rev.min−1; Contact time (h): 144 | 80% | [115] |
19.6 mg/g | ||||
Aspergillus niger | Cr(III) | Ci = 240 mg/L; pH = 5.3, respectively 5.5; T = 30 °C; D = 0.3 g/100 mL; Optimum nutrients dose = 1 g/L urea; Agitation speed = 150 rpm | 72% | [116] |
185 mg/g | ||||
Aspergillus oryzae | 67% | |||
208 mg/g | ||||
Cladosporeum perangustumm, Penicillium commune, Paecilomyces lilacinus, Fusarium equiseti (consortium) | Cr(VI) | pH = 4; T = 28 °C; t = 48 h | 73.73% | [117] |
- | ||||
Aspergillus flavus and Aspergillus fumigatus (consortium) | Ci = 100 mg/L; pH = 5; T = 30 °C; Optimum inoculum size = 6%; Agitation speed = 120 rpm; t = 144 h | 81.25 ± 0.25% | [114] | |
5.78 ± 1.17 mg/g |
Microorganism | Metal | Optimal Conditions | Efficiency/ Sorption Capacity | Ref. |
---|---|---|---|---|
MICROALGAE | ||||
Scenedesmus obtusus | Hg(II) | Ci = 20–200 mg/L; pH = 5; T = 25 °C; D = 0.125 g/L; t = 3 h | - | [107] |
95 mg/g | ||||
Scenedesmus quadricauda | Pb(II) | Ci = 10 mg/L; pH = 5; room temperature; D = 0.2 g/L; t = 1 h | 82% | [95] |
- | ||||
Scenedesmus quadricauda | Cd(II) | Ci = 10 mg/L; pH = 5; room temperature; D = 0.2 g/L; t = 1 h | 66% | [95] |
- | ||||
Scenedesmus obliquus | Ci = 50 mg/L; pH = 6; T = 30 °C; D = 1 g/L | - | [120] | |
68.6 mg/g | ||||
Spirulina platensis (raw biomass) | Cr(VI) | Ci = 50 mg/L; pH = 1; T = 60 °C; D = 0.2 g/L; t = 1.5 h | 93% | [121] |
- | ||||
Spirulina platensis (biodiesel production waste) | 70% | |||
45.5 mg/g | ||||
Scenedesmus quadricauda (powder) | Ci = 1 mg/L; pH = 2; T = 22 °C; D = 2 g/L; t = 3 h | 96.62% | [28] | |
- | ||||
Scenedesmus quadricauda (biochar) | Ci = 1 mg/L; pH = 2; T = 22 °C; D = 2 g/L; t = 3 h | 100% | [28] | |
25.19 mg/g | ||||
Scenedesmus sp. | Ci = 10 mg/L; pH = 1; T = 30 °C; D = 10% (w/v); t = 2 h; Particle size = 60 µm; Agitation speed = 300 rpm | 92.89% | [122] | |
- | ||||
BACTERIA | ||||
Bacillus licheniformis | Hg(II) | Ci = 50 mg/L; pH = 7; T = 30 °C; D = 0.5 g/L; t = 1 h | 70% | [123] |
- | ||||
Bacillus licheniformis | Pb(II) | Ci = 200 mg/L; pH = 6; T = 20–22 °C; D = 0.7 g/L; t = 12 h | 98% | [124] |
113.84 mg/g | ||||
Pseudomonas putida I3 | Ci = 100 mg/L; pH = 5; T = 25 °C; D = 0.2 g/L; t = 1 h | - | [109] | |
345.02 mg/g | ||||
Bacillus xiamenensis | Ci = 100–200 mg/L; pH = 6; T = 35 °C; D = 1 g/L; t = 6 h; Agitation speed (rpm) = 140 | 97.18% | [112] | |
207.4 mg/g | ||||
Bacillus cereus | Cd(II) | Ci = 200 mg/L; pH = 6; T = 35 °C; t = 20 h | 82% | [125] |
- | ||||
Bacillus megaterium | Ci = 100 mg/L; pH = 4; T = 30 °C; D = 3 g/L; t = 2 h | 90% | [126] | |
15.1 mg/g | ||||
Brevundimonas sp. ZF12 | Ci = 50 ppm; pH = 6; T = 30 °C; t = 1 h | 60% | [76] | |
49.01 mg/g | ||||
Sulphate reducing bacteria | Cd(II) | pH = 8; T = 35 °C; t = 24 h 0.015 g SRB (dry weight)/g beads (dry weight) | - | [127] |
160 mg/g | ||||
Bacillus laterosporus | Ni(II) | Ci = 10–20 mg/L; pH = 7; T = 30 °C; D = 40 g/L; t = 2 h | - | [128] |
44.44 mg/g | ||||
Acinetobacter junii | Cr(VI) | Ci = 100 mg/L; pH = 2; T = 27 °C; D = 2 g/L; t = 120 min | - | [98] |
6.94 mg/g | ||||
FUNGI | ||||
Aspergillus niger | Pb(II) | Ci = 200–1400 ppm; pH = 4–5.4; T = 37 °C | - | [119] |
3.25 to 172.25 mg/g | ||||
Ci = 10, 50,100 mg/L; pH = 5; T = 30 °C; D = 70 g/L; t = 1.5 h | - | [129] | ||
137.3 mg/g; 398.3 mg/g; 564 mg/g | ||||
Fusarium sp. (two strains) | Ci = 90 mg/L; pH = 6; T = 49,85 °C; D = 1 g/L; t = 1 h; Agitation speed (rpm) = 150 | - | [130] | |
232.56 (ZSY strain), 263.16 mg/g (MJY strain) | ||||
Saccharomyces cerevisiae | Cd(II) | Ci = 50 mg/L; pH = 6; T = 40 °C; D = 5 g/L; Agitation speed (rpm): 150 | - | [131] |
7.252 mg/g | ||||
Trichoderma sp. | Cu(II) | T = 27 ± 3 °C; D = 3 g/L; t = 4 h Agitation speed = 200 rev.min−1 | - | [115] |
23.01 mg/g | ||||
Penicillium griseofulvum | Cr(VI) | Ci = 67.8 mg/L; pH = 2; T = 27 °C; D = 2 g/L; t = 37.5 min | 79.9% | [132] |
75.1 mg/g |
Microorganism | POPs | Optimal Conditions | Efficiency/ Sorption Capacity | Ref. |
---|---|---|---|---|
BACTERIA | ||||
Bacillus subtilis MF447840.1 | 4-chlorophenol | pH = 7.4, Ci = 1000 mg/L, t = 40 h, T = 37 °C, agitation speed = 150 rpm | 100% | [196] |
- | ||||
Azospirillium barasilense | Dicofol | pH = 7, Ci = 100 mg/L, t = 28 days, T = 27 ± 1 °C | 75% | [184] |
- | ||||
Azotobacter chroococcum | 94% | |||
- | ||||
Klebsilense pneumoneae | 88% | |||
- | ||||
Pseudomonas cepacia | 87% | |||
- | ||||
Bacillus subtilis | 85% | |||
- | ||||
Pseudomonas fluorescens | 82% | |||
- | ||||
Bacillus polymyxa | 84% | |||
- | ||||
Microbacterium sp. D-2 | Dicofol | pH = 7, Ci = 50 mg/L, t = 24 h, T = 30 °C, agitation speed = 180 rpm | 85.1% | [191] |
- | ||||
Kocuria sp. DAB-1Y | Lindane | pH = 7, Ci = 10 mg/L, t = 8 days, T = 30 °C, agitation speed = 120 rpm | 94% | [185] |
Staphylococcus sp. DAB-1W | 98% | |||
Sphingobium japonicum | 98% | |||
Achromobacter sp. A3 | Lindane | pH = 7, Ci = 50 mg/L, t = 15 days, T = 30 °C, agitation speed = 150 rpm | 88.7 ± 1.24% | [186] |
- | ||||
Microbacterium sp. P27 | Lindane | pH = 7, Ci = 50 mg/L, t = 15 days, T = 30 °C, agitation speed = 150 rpm | 82.7 ± 1.79% | [187] |
- | ||||
Paracoccus sp. NITDBR1 | Lindane | pH = 7, Ci = 100 mg/L, t = 8 days, T = 30 °C, agitation speed = 120 rpm | 90.6% | [188] |
- | ||||
Bacillus subtilis | Endosulfan | pH = 6.5, Ci = 50 mg/L, t = 7 days, T = 30 °C, agitation speed = 130 rpm | 94.2% | [208] |
- | ||||
Bacillus subtilis | Endosulfan | pH = 7, Ci = 10 mg/L, t = 35 days, T = 30 °C, agitation speed = 130 rpm | 94.5% | [189] |
- | ||||
Stenotrophomonas sp. strain WZN-1 | decabromodiphenyl ether (BDE 209) | pH = 5, Ci = 65 μg/L, t = 30 days, T = 25 °C, | 55.15% | [149] |
- | ||||
Pseudomonas aeruginosa | decabromodiphenyl ether (BDE 209) | pH = 7.5, Ci = 1 mg/L, t = 7 days, T = 30 °C, agitation speed = 150 rpm | 56% | [150] |
- | ||||
Pseudomonas sp. strain HB01 | γ-hexabromocyclododecane | pH = 7, Ci = 1 mM, t = 5 days, T = 28 °C, agitation speed = 150 rpm | 81% | [190] |
- | ||||
Pseudoxanthomonas sp. | 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) | pH = 7.5, Ci = 20 mg/L, t = 72 h, T = 30 °C, agitation speed = 150 rpm | 95% | [165] |
- | ||||
Achromobacter xylosoxidans GYP4 | 2,2,4,4 -tetrabromodiphenyl ether (BDE-47) | pH = 4, Ci = 1 mg/L, t = 4 days, T = 30 °C, agitation speed = 150 rpm | 90.8% | [198] |
- | ||||
Pseudomonas fluorescens | Pentachlorophenol | pH = 8.5, Ci = 250 mg/L, t = 7 days, T = 30 °C, agitation speed = 160 rpm | 99.9% | [199] |
- | ||||
Janibacter sp. FAS23 | Pentachlorophenol | pH = 6.9, Ci = 20 mg/L, t = 144 h, T = 30 °C | 99.06% | [167] |
- | ||||
Bacillus cereus HWB1 | 4-Chlorophenol | pH = 7, Ci 4-chlorophenol = 150 mg/L, Ci 4-nitrophenol = 85 mg/L, t = 5 and 3 days, T = 30 °C, agitation speed = 150 rpm | 100% | [166] |
- | ||||
4-Nitrophenol | 78% | |||
- | ||||
Pseudomonas taiwanensis ECAe22 | 4-Chlorophenol | pH = 8.5, Ci 4-chlorophenol = 150 mg/L, Ci 4-nitrophenol = 85 mg/L, t = 5 and 3 days, T = 30 °C, agitation speed = 150 rpm | 61% | |
- | ||||
4-Nitrophenol | 100% | |||
- | ||||
Pseudomonas aeruginosa HS9 | Hexabromocyclododecanes | pH = 8, Ci = 1.7 mg/L, t = 14 days, T = 30 °C | 69% | [146] |
- | ||||
Stenotrophomonas maltophilia OG2 | Endosulfan | pH = 8, Ci = 100 mg/L, t = 10 days, T = 30 °C, agitation speed = 150 rpm | 81.53% | [151] |
- | ||||
FUNGI | ||||
Candida sp. VITJzN04 | Lindane | pH = 7, Ci = 600 mg/L, t = 6 days, T = 30 °C, agitation speed 120 rpm | 100% | [174] |
- | ||||
Rhodotorula sp. VITJzN03 | Lindane | pH = 6, Ci = 600 mg/L, t = 10 days, T = 30 °C, agitation speed 120 rpm | 100% | [168] |
- | ||||
Fusarium verticillioides AT-100 | Lindane | pH = 7, Ci = 100 mg/L, t = 264 h, T = 30 ± 2 °C, agitation speed = 120 rpm | 86% | [148] |
- | ||||
Mucor racemosus strain DDF | Dieldrin | Ci = 13.2 µM, t = 10 days, T = 25 °C | 90% | [195] |
- | ||||
Mortierella sp. strain W8 | α-endosulfan | Ci = 8.2 µM, t = 14 days, T = 25 °C | 53.3% | |
- | ||||
β-endosulfan | 11.1% | |||
- | ||||
Mortierella sp. strain Cm1-45 | α-endosulfan | 47.2% | ||
- | ||||
β-endosulfan | 25.1% | |||
- | ||||
Trichoderma viride | Dicofol | pH = 7, Ci = 100 mg/L, t = 28 days, T = 27 ± 1 °C | 92% | [184] |
- | ||||
Trichoderma harzianum | 96% | |||
- | ||||
Penicillium chrysogenum | Endosulfan | pH = 5.6 ± 0.2, Ci = 10 mg/L, t = 35 days, T = 30 °C, agitation speed = 130 rpm | 69.4% | [189] |
- | ||||
Aspergillus flavus | 72.3% | |||
- | ||||
Aspergillus niger | 77.2% | |||
- | ||||
Rhodotorula sp. NS01 | Benzo[a]pyrene | Ci = 10 mg/L, t = 7 days, T = 30 °C, agitation speed 120 rpm | 52% | [200] |
- | ||||
Candida tropicalis W1 | 4-chlorophenol | Ci = 150 mg/L, t = 20 h, T = 30 °C | 100% | [201] |
- | ||||
Lasiodiplodia theobromae | Benzo[a]pyrene | Ci = 100 mg/L, t = 10 days, T = 30 °C, agitation speed 150 rpm | 53.0 ± 0.9% | [193] |
- | ||||
Cunninghamella sp. UMAS SD12 | Pentachlorophenol | pH = 5.5, Ci = 20 mg/L, t = 15 days, T = 28 °C | 51.7% | [197] |
- |
Microorganism | POPs | Optimal Conditions | Efficiency/ Sorption Capacity | Ref. |
---|---|---|---|---|
Escherichia coli | Lindane | Ci = 4 mg/L, T = 20 °C, D = 4 g/L, t = 4 h, agitation speeed = 250 rpm | - | [140] |
0.5 mg/g | ||||
Zoogloea ramigera | - | |||
2.8 mg/g | ||||
Bacillus megaterium | - | |||
0.7 mg/g | ||||
Bacillus subtilis | - | |||
0.6 mg/g | ||||
Emericella nidulans Penicillium miczynskii | 2,4-Dichlorophenoxyacetic acid | Ci = 0.12,0.25,0.5 and 1 mM, T = 20 °C, D = 10 g/L, t = 3 h | 70% | [144] |
- | ||||
2,4-Dichlorophenol | 70% | |||
- | ||||
4-Chlorophenol | 50% | |||
- | ||||
130Rhizopus oryzae | Lindane | pH = 7, Ci = 0.1 mg/L, T = 18 °C, t = 250 min, D = 8 g/L, biomass age = 1–7 days | 90.2% | [142] |
- | ||||
pH = 7, Ci = 200 μg/L, T = 30 °C, agitation speed = 120 rpm, t = 5 h, D = 1.67 g/L, biomass age = 1–7 days | 107.5 µg/g | [209] | ||
- | ||||
Rhizopus arrhizu | Lindane | Ci = 1 mg/L, T = 20 °C, D = 4 g/L, t = 3 days, agitation speeed = 250 rpm | 2.7 mg/g | [141] |
- | ||||
2-Chlorobiphenyl | 11.1 mg/g | |||
- | ||||
Pentachlorophenol | 14.9 mg/g | |||
- | ||||
Mucor racemosus | Pentachloronitrobenzene | Ci = 250 mg/L, T = 21 °C, D = 10 g/L, t = 6 h, agitation speeed = 180 rpm | 5.1 mg/g | [210] |
- | ||||
Rhizopus arrhizus | 4.6 mg/g | |||
- | ||||
Sporothrix cyanescens | 2.6 mg/g | |||
- | ||||
Mycobacterium chlorophenolicum PCP-1 | Pentachlorophenol | pH = 7, Ci = 50 mg/L, T = 30 °C, agitation speed = 120 rpm, t = 1.5 min, D = 0.12 g/L | ~90 µmol/g | [29] |
- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filote, C.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Simion, I.M.; Apostol, M.; Gavrilescu, M. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes 2021, 9, 1696. https://doi.org/10.3390/pr9101696
Filote C, Roșca M, Hlihor RM, Cozma P, Simion IM, Apostol M, Gavrilescu M. Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes. 2021; 9(10):1696. https://doi.org/10.3390/pr9101696
Chicago/Turabian StyleFilote, Cătălina, Mihaela Roșca, Raluca Maria Hlihor, Petronela Cozma, Isabela Maria Simion, Maria Apostol, and Maria Gavrilescu. 2021. "Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice" Processes 9, no. 10: 1696. https://doi.org/10.3390/pr9101696
APA StyleFilote, C., Roșca, M., Hlihor, R. M., Cozma, P., Simion, I. M., Apostol, M., & Gavrilescu, M. (2021). Sustainable Application of Biosorption and Bioaccumulation of Persistent Pollutants in Wastewater Treatment: Current Practice. Processes, 9(10), 1696. https://doi.org/10.3390/pr9101696