Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals and Reagents
2.3. Preparation of SGJD Aqueous Extract
2.4. Preparation of Samples and Standard Solutions for LC–MS/MS MRM Analysis
2.5. LC–MS/MS Equipment and Operating Conditions for Quantification of the Compounds 1–11
2.6. Validation of the LC–MS/MS Analysis Method
3. Results and Discussion
3.1. Optimization of LC–MS/MS Conditions
3.2. Identification of Compounds 1–11 for LC–MS/MS MRM Assay
3.3. Method Validation of the LC–MS/MS MRM Assay
3.4. Quantification of Compounds 1–11 in SGJD Samples by LC–MS/MS MRM Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, S.L.; Song, J.Z.; Qiao, C.F.; Zhou, Y.; Xu, H.X. UPLC-PDA-TOFMS based chemical profiling approach to rapidly evaluate chemical consistency between traditional and dispensing granule decoctions of traditional medicine combinatorial formulae. J. Pharm. Biomed. Anal. 2010, 52, 468–478. [Google Scholar] [CrossRef]
- Wu, T.Y.; Chang, F.R.; Liou, J.R.; Lo, I.W.; Chung, T.C.; Lee, L.Y.; Chi, C.C.; Du, Y.C.; Wong, M.H.; Juo, S.H.H.; et al. Rapid HPLC quantification approach for detection of active constituents in modern combinatorial formula, San-Huang-Xie-Xin-Tang (SHXXT). Front. Pharmacol. 2016, 7, 374. [Google Scholar] [CrossRef] [Green Version]
- Shokenchuto. Available online: https://kampo.ca/herbs-formulas/formulas/shokenchuto/ (accessed on 25 November 2020).
- Heo, J. Donguibogam; Namsandang: Seoul, Korea, 2007; p. 452. [Google Scholar]
- Jung, I.H.; Kim, J.Y.; Kam, C.W.; Park, D.I. Inhibitory effects on the type I hypersensitivity and inflammatory reaction of Sogunjung-tang. Korean J. Orient. Physiol. Pathol. 2003, 17, 1188–1193. [Google Scholar]
- Kim, K.J.; Bae, M.J.; Suh, Y. Comparison study on activated degree of immunity and anti-cancer effect in extracted liquid of Shogunjung-tang and it’s distilled liquid. Korean J. Orient. Physiol. Pathol. 2004, 18, 179–186. [Google Scholar]
- Katami, M.; Kuboniwa, H.; Maemura, S.; Yanagisawa, T. Genotoxicity of extracts of Japanese traditional herbal medicines (Kampo). Environ. Mutagen. Res. 2002, 24, 1–15. [Google Scholar]
- Lee, D.; Jang, H.; Lee, Y.; Lee, Y. Clinical study of Sogunjung-tang granules in 30 case of heartburn. J. Int. Korean Med. 2019, 40, 1193–1201. [Google Scholar] [CrossRef]
- Xu, S.; Yang, L.; Tian, R.; Wang, Z.; Liu, Z.; Xie, P.; Feng, Q. Species differentiation and quality assessment of Radix Paeoniae Rubra (Chi-shao) by means of high-performance liquid chromatographic fingerprint. J. Chromatrogr. A 2009, 1216, 2163–2168. [Google Scholar] [CrossRef]
- Bae, J.Y.; Kim, C.Y.; Kim, H.J.; Park, J.H.; Ahn, M.J. Differences in the chemical profiles and biological activities of Paeonia lactiflora and Paeonia obovata. J. Med. Food 2015, 18, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.Y.; Zhao, B.T.; Moo, D.C.; Kang, J.S.; Lee, J.H.; Min, B.S.; Son, J.K.; Woo, M.H. Quantitative analysis of bioactive marker compounds from Cinnamomi Ramulus and Cinnamomi Cortex by HPLC-UV. Nat. Prod. Sci. 2013, 19, 28–35. [Google Scholar]
- Wu, Y.P.; Meng, X.S.; Bao, Y.R.; Wang, S.; Kang, T.G. Simultaneous quantitative determination of nine active chemical compositions in traditional Chinese medicine Glycyrrhiza by RP-HPLC with full-time five-wavelength fusion method. Am. J. Chin. Med. 2013, 41, 211–219. [Google Scholar] [CrossRef]
- Zhou, S.; Cao, J.; Qiu, F.; Kong, W.; Yang, S.; Yang, M. Simultaneous determination of five bioactive components in Radix Glycyrrhizae by pressurized liquid extraction combined with UPLC-PDA and UPLC/ESI-QTOF-MS confirmation. Phytochem. Anal. 2013, 24, 527–533. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.Y.; Wen, X.D.; Li, P.; Qi, L.W. Simultaneous determination of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma by liquid chromatography-mass spectrometry: Application to pharmacokinetics. J. Chromtogr. B 2009, 877, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, B.; Yao, S. Simultaneous analysis and identification of main bioactive constituents in extract of Zizyphus jujube var. saponosa (Zizyphi spinose semen) by high-performance liquid chromatography–photodiode array detection–electrospray mass spectrometry. Talanta 2007, 71, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.S.; Shin, H.K. Phytochemical analysis of twelve marker analytes in Sogunjung-tang using a high-performance liquid chromatography method. Appl. Sci. 2020, 10, 8561. [Google Scholar] [CrossRef]
- Lee, K.H. The Dispensatory on the Visual and Organoleptic Examination of Herbal Medicine; National Institute of Food and Drug Safety Evaluation: Seoul, Korea, 2013; pp. 24–529. [Google Scholar]
- Seo, C.S.; Shin, H.K. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC–PDA and LC–MS/MS. Saudi Pharm. J. 2020, 28, 427–439. [Google Scholar] [CrossRef]
- Jiang, M.; Zhou, M.; Han, Y.; Xing, L.; Zhao, H.; Dong, L.; Bai, G.; Luo, G. Identification of NF-κB inhibitors in Xuebijing injection for sepsis treatment based on bioactivity-integrated UPLC-Q/TOF. J. Ethnopharmacol. 2013, 147, 426–433. [Google Scholar] [CrossRef]
- Guo, K.; Tong, C.; Fu, Q.; Xu, J.; Shi, S.; Xiao, Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharm. Biomed. Anal. 2019, 170, 153–160. [Google Scholar] [CrossRef]
- Ye, M.; Liu, S.H.; Jiang, Z.; Lee, Y.; Tilton, R.; Cheng, Y.C. Liquid chromatography/mass spectrometry analysis of PHY906, a Chinese medicine formulation for cancer therapy. Rapid Commun. Mass Spectrom. 2007, 21, 3593–3607. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, X. Rapid determination of isomeric benzoylpaeoniflorin and benzoylalbiflorine in rat plasma by LC-MS/MS method. Int. J. Anal. Chem. 2017, 2017, 1693464. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liang, S.; Du, F.; Li, C. Simultaneous quantification of multiple licorice flavonoids in rat plasma. J. Am. Soc. Mass Spectrom. 2007, 18, 778–782. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.; Zhu, Z.; Jing, J.; Lv, L.; Lou, Z.; Zhang, G.; Chai, Y. Characterization of constituents in Sini decoction and rat plasma by high-performance liquid chromatography with diode array detection coupled to time-of-flight mass spectrometry. Biomed. Chromatogr. 2011, 25, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Concannon, S.; Ramachandran, V.N.; Smyth, W.F. A study of the electrospray ionization of selected coumarin derivatives and their subsequent fragmentation using an ion trap mass spectrometer. Rapid Commun. Mass Spectrom. 2000, 14, 1157–1166. [Google Scholar] [CrossRef]
- Flamini, R.; Dalla Vedova, A.; Cancian, D.; Panighel, A.; De Rosso, M. GC/MS-positive ion chemical ionization and MS/MS study of volatile benzene compounds in five different woods used in barrel making. J. Mass Spectrom. 2007, 42, 641–646. [Google Scholar] [CrossRef] [PubMed]
Analyte | Ion Mode | Molecular Weight | Precursor Ion | Product Ion | Cone Voltage (V) | Collision Energy (eV) | Retention Time (min) |
---|---|---|---|---|---|---|---|
1 | negative | 170.12 | 169.0 | 125.0 | 25 | 15 | 1.01 |
2 | positive | 342.41 | 342.4 | 297.2 | 30 | 20 | 1.31 |
3 | positive | 480.46 | 481.4 | 197.1 | 20 | 15 | 1.40 |
4 | negative | 480.46 | 479.2 | 121.0 | 32 | 25 | 1.45 |
5 | negative | 550.51 | 549.3 | 255.0 | 45 | 30 | 1.53 |
6 | negative | 418.39 | 417.4 | 255.2 | 30 | 15 | 1.65 |
7 | positive | 256.25 | 257.2 | 137.0 | 35 | 25 | 2.99 |
8 | positive | 146.15 | 147.1 | 91.0 | 30 | 20 | 3.06 |
9 | negative | 584.57 | 583.4 | 121.0 | 40 | 25 | 2.31 |
10 | positive | 132.16 | 133.1 | 115.0 | 25 | 15 | 4.42 |
11 | negative | 822.93 | 821.9 | 351.2 | 45 | 40 | 5.20 |
Analyte | Linear Range (ng/mL) | Regression Equation a | r2 | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|---|
1 | 50.00–800.00 | y = 143.39x − 308.07 | 0.9951 | 5.892 | 17.675 |
2 | 0.05–0.80 | y = 48,051.20x + 142.79 | 0.9980 | 0.004 | 0.013 |
3 | 100.00–1600.00 | y = 1365.54x + 1498.38 | 0.9997 | 5.892 | 17.675 |
4 | 250–4000.00 | y = 4.46x − 284.30 | 0.9977 | 26.596 | 79.787 |
5 | 25.00–400.00 | y = 164.29x + 467.48 | 0.9977 | 3.970 | 11.911 |
6 | 10.00–160.00 | y = 502.82x + 116.66 | 0.9986 | 1.089 | 3.267 |
7 | 1.00–16.00 | y = 5023.03x + 301.33 | 0.9996 | 0.148 | 0.444 |
8 | 5.00–80.00 | y = 2964.74x + 5340.70 | 0.9954 | 0.784 | 2.352 |
9 | 10.00–160.00 | y = 6.56x − 54.78 | 0.9953 | 3.289 | 9.868 |
10 | 100.00–1600.00 | y = 18.81x + 1050.19 | 0.9953 | 32.468 | 97.403 |
11 | 100.00–1600.00 | y = 33.10x + 124.16 | 0.9985 | 2.323 | 6.969 |
Analyte | Spiked Amount (μg/mL) | Found Amount (μg/mL) | Recovery (%) | SD | RSD (%) |
---|---|---|---|---|---|
1 | 200.00 | 208.36 | 104.18 | 4.02 | 3.86 |
400.00 | 408.88 | 102.22 | 2.92 | 2.86 | |
800.00 | 809.50 | 101.19 | 2.54 | 2.51 | |
2 | 0.40 | 0.39 | 96.50 | 5.48 | 5.68 |
0.80 | 0.80 | 99.75 | 3.47 | 3.48 | |
1.60 | 1.64 | 102.75 | 3.47 | 3.48 | |
3 | 1000.00 | 1000.30 | 100.03 | 2.20 | 2.20 |
2000.00 | 1945.72 | 97.29 | 1.99 | 2.05 | |
4000.00 | 3908.46 | 97.71 | 1.46 | 1.49 | |
4 | 1000.00 | 1029.74 | 102.97 | 4.89 | 4.74 |
2000.00 | 2024.48 | 101.22 | 2.05 | 2.02 | |
4000.00 | 4018.36 | 100.46 | 1.75 | 1.74 | |
5 | 100.00 | 102.80 | 102.80 | 4.28 | 4.16 |
200.00 | 199.78 | 99.89 | 6.22 | 6.23 | |
400.00 | 366.72 | 99.18 | 1.79 | 1.80 | |
6 | 20.00 | 20.02 | 100.10 | 4.35 | 4.35 |
40.00 | 40.58 | 101.45 | 4.35 | 4.29 | |
80.00 | 78.48 | 98.10 | 1.14 | 1.16 | |
7 | 4.00 | 4.10 | 102.50 | 8.84 | 8.62 |
8.00 | 7.84 | 98.00 | 3.38 | 3.45 | |
16.00 | 15.88 | 99.25 | 2.23 | 2.24 | |
8 | 20.00 | 19.44 | 97.20 | 6.08 | 6.25 |
40.00 | 39.46 | 98.65 | 5.16 | 5.23 | |
80.00 | 80.90 | 101.13 | 2.98 | 2.95 | |
9 | 40.00 | 43.04 | 107.60 | 12.06 | 11.20 |
80.00 | 77.14 | 96.43 | 7.14 | 7.40 | |
160.00 | 166.86 | 104.29 | 4.34 | 4.16 | |
10 | 400.00 | 394.68 | 98.67 | 8.66 | 8.78 |
800.00 | 798.48 | 99.81 | 1.41 | 1.41 | |
1600.00 | 1618.56 | 101.16 | 3.28 | 3.24 | |
11 | 200.00 | 200.46 | 100.23 | 4.51 | 4.50 |
400.00 | 410.68 | 102.67 | 2.81 | 2.74 | |
800.00 | 798.08 | 99.76 | 3.75 | 3.76 |
Analyte | Conc. (μg/mL) | Intraday (n = 5) | Interday (n = 5) | Repeatability (n = 6) | |||||
---|---|---|---|---|---|---|---|---|---|
Observed Conc. (μg/mL) | Precision (%) a | Accuracy (%) | Observed Conc. (μg/mL) | Precision (%) | Accuracy (%) | RSD (%) of Retention Time | RSD (%) of Peak Area | ||
1 | 200.00 | 208.86 | 5.14 | 104.43 | 208.20 | 2.56 | 104.11 | 0.42 | 1.30 |
400.00 | 408.32 | 2.76 | 102.08 | 409.70 | 1.62 | 102.43 | |||
800.00 | 807.32 | 2.14 | 100.92 | 809.90 | 1.67 | 101.24 | |||
2 | 0.40 | 208.86 | 5.14 | 104.43 | 208.22 | 2.56 | 104.11 | 0.48 | 1.39 |
0.80 | 408.32 | 2.76 | 102.08 | 409.72 | 1.62 | 102.43 | |||
1.60 | 807.32 | 2.14 | 100.92 | 809.92 | 1.67 | 101.24 | |||
3 | 1000.00 | 0.39 | 4.96 | 97.00 | 0.40 | 4.81 | 99.83 | 0.30 | 1.68 |
2000.00 | 0.77 | 4.43 | 96.50 | 0.81 | 1.50 | 101.00 | |||
4000.00 | 1.54 | 3.52 | 96.00 | 1.62 | 1.26 | 101.17 | |||
4 | 1000.00 | 1025.88 | 1.30 | 102.59 | 1033.23 | 0.99 | 103.32 | 0.35 | 1.52 |
2000.00 | 1923.94 | 1.97 | 96.20 | 1968.95 | 0.40 | 98.45 | |||
4000.00 | 3837.44 | 1.85 | 95.94 | 3928.37 | 1.18 | 98.21 | |||
5 | 100.00 | 1037.62 | 6.66 | 103.76 | 1034.42 | 4.23 | 103.44 | 0.33 | 1.89 |
200.00 | 2016.74 | 2.44 | 100.84 | 2047.77 | 1.17 | 102.39 | |||
400.00 | 3966.68 | 2.55 | 99.17 | 4030.94 | 0.94 | 100.77 | |||
6 | 20.00 | 99.30 | 3.73 | 99.30 | 101.97 | 2.52 | 101.97 | 0.31 | 0.92 |
40.00 | 195.08 | 3.59 | 97.54 | 203.38 | 2.14 | 101.69 | |||
80.00 | 391.26 | 2.19 | 97.82 | 402.52 | 1.39 | 100.63 | |||
7 | 4.00 | 19.60 | 6.03 | 98.00 | 20.43 | 3.08 | 102.13 | 0.25 | 4.88 |
8.00 | 37.54 | 2.70 | 93.85 | 40.89 | 2.11 | 102.23 | |||
16.00 | 75.90 | 3.22 | 94.88 | 80.08 | 1.76 | 100.10 | |||
8 | 20.00 | 4.04 | 2.82 | 101.00 | 4.11 | 3.17 | 102.83 | 0.24 | 3.94 |
40.00 | 8.22 | 2.00 | 102.75 | 8.05 | 2.34 | 100.58 | |||
80.00 | 15.82 | 2.77 | 98.88 | 15.93 | 2.40 | 99.54 | |||
9 | 40.00 | 20.12 | 8.51 | 100.60 | 20.61 | 3.45 | 103.03 | 0.21 | 2.07 |
80.00 | 38.48 | 3.96 | 96.20 | 40.22 | 2.93 | 100.55 | |||
160.00 | 78.26 | 3.31 | 97.83 | 80.54 | 1.77 | 100.68 | |||
10 | 400.00 | 39.22 | 3.55 | 98.05 | 40.89 | 5.29 | 102.23 | 0.26 | 3.84 |
800.00 | 75.76 | 3.05 | 94.70 | 79.60 | 1.79 | 99.50 | |||
1600.00 | 161.86 | 0.55 | 101.16 | 165.99 | 1.37 | 103.74 | |||
11 | 200.00 | 386.18 | 1.32 | 96.55 | 388.75 | 2.77 | 97.19 | 0.11 | 1.26 |
400.00 | 796.46 | 2.24 | 99.56 | 798.15 | 0.88 | 99.77 | |||
800.00 | 1537.72 | 2.19 | 96.11 | 1575.34 | 1.85 | 98.46 |
Analyte | Amount | ||
---|---|---|---|
Mean (mg/g) | SD (×10−1) | RSD (%) | |
1 | 5.69 | 3.73 | 6.54 |
2 | 0.01 | 0.01 | 4.76 |
3 | 25.38 | 4.19 | 1.65 |
4 | 51.83 | 5.56 | 1.07 |
5 | 3.37 | 1.58 | 4.71 |
6 | 0.79 | 0.15 | 1.87 |
7 | 0.10 | 0.04 | 4.22 |
8 | 0.66 | 0.42 | 6.45 |
9 | 1.69 | 0.90 | 5.29 |
10 | 8.02 | 7.27 | 9.05 |
11 | 9.28 | 4.25 | 4.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, C.-S.; Shin, H.-K. Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction. Processes 2021, 9, 153. https://doi.org/10.3390/pr9010153
Seo C-S, Shin H-K. Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction. Processes. 2021; 9(1):153. https://doi.org/10.3390/pr9010153
Chicago/Turabian StyleSeo, Chang-Seob, and Hyeun-Kyoo Shin. 2021. "Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction" Processes 9, no. 1: 153. https://doi.org/10.3390/pr9010153
APA StyleSeo, C.-S., & Shin, H.-K. (2021). Liquid Chromatography Tandem Mass Spectrometry for the Simultaneous Quantification of Eleven Phytochemical Constituents in Traditional Korean Medicine, Sogunjung Decoction. Processes, 9(1), 153. https://doi.org/10.3390/pr9010153