Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach
Abstract
:1. Introduction
2. Literature Review and Hypotheses Development
3. Materials and Methods
- (y)—dependent variable
- x1, x2, x3, x4, x5, and x6—independent variables
- β0, β1, β2, β3, β4, β5, and β6—parametric coefficients
- i—1,..,28—the number of countries; t—1,..20—time frame
- ε—error term
- CO2 emissions—the total levels of CO2 emission in EU countries
- Renewable—the rate of RES in total energy
- Biofuels—production of biofuels
- Bioenergy—bioenergy productivity
- Population—represents the total population in EU countries
- Urbanization—the urbanization degree in total population
- Real GDP per capita—real GDP divided by the number of inhabitants
4. Results and Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EU | European Union |
RES | Renewable Energy Sources |
EViews | Econometric Views |
Eurostat | European Union Statistical Office |
VIF | Variance Inflection Factor |
GDP | Gross Domestic Product |
CO2 | Carbon Dioxide |
References
- Fogarassy, C.; Toth, L.; Czikkely, M.; Finger, D.C. Improving the efficiency of pyrolysis and increasing the quality of gas production through optimization of prototype systems. Resources 2019, 8, 182. [Google Scholar] [CrossRef] [Green Version]
- Tun, M.M.; Juchelková, D. Biomass sources and energy potential for energy sector in Myanmar: An outlook. Resources 2019, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Busu, M. Assessment of the impact of bioenergy on sustainable economic development. Energies 2019, 12, 578. [Google Scholar] [CrossRef] [Green Version]
- Rada, E.C.; Andreottola, G.; Istrate, I.A.; Viotti, P.; Conti, F.; Magaril, E.R. Remediation of soil polluted by organic compounds through chemical oxidation and phytoremediation combined with DCT. Int. J. Environ. Res. Public Health 2019, 16, 3179. [Google Scholar] [CrossRef] [Green Version]
- Beck, F.; Martinot, E. Renewable energy policies and barriers. Encycl. Energy 2004, 5, 365–383. [Google Scholar]
- Verbruggen, A.; Fischedick, M.; Moomaw, W.; Weir, T.; Nadaï, A.; Nilsson, L.J.; Sathaye, J. Renewable energy costs, potentials, barriers: Conceptual issues. Energy Policy 2010, 38, 850–861. [Google Scholar] [CrossRef]
- Marra, A.; Colantonio, E. The path to renewable energy consumption in the European Union through drivers and barriers: A panel vector autoregressive approach. Socio Econ. Plan. Sci. 2020, 100958. [Google Scholar] [CrossRef]
- Cioca, L.-I.; Ivascu, L.; Rada, E.C.; Torretta, V.; Ionescu, G. Sustainable development and technological impact on CO2 reducing conditions in Romania. Sustainability 2015, 7, 1637–1650. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. 2020. Available online: https://ec.europa.eu/eurostat/data/statistics-a-z/abc (accessed on 26 May 2020).
- Busu, M.; Trica, C.L. Sustainability of circular economy indicators and their impact on economic growth of the European Union. Sustainability 2019, 11, 5481. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competitiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Demirbas, A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog. Energy Combust. Sci. 2005, 31, 466–487. [Google Scholar] [CrossRef]
- Frondel, M.; Ritter, N.; Schmidt, C.M.; Vance, C. Economic impacts from the promotion of renewable energy technologies: The German experience. Energy Policy 2010, 38, 4048–4056. [Google Scholar] [CrossRef] [Green Version]
- Tugcu, C.T.; Ozturk, I.; Aslan, A. Renewable and non-renewable energy consumption and economic growth relationship revisited: Evidence from G7 countries. Energy Econ. 2012, 34, 1942–1950. [Google Scholar] [CrossRef]
- DeCicco, J.M. Methodological issues regarding biofuels and carbon uptake. Sustainability 2018, 10, 1581. [Google Scholar] [CrossRef] [Green Version]
- Gomiero, T. Are biofuels an effective and viable energy strategy for industrialized societies? A reasoned overview of potentials and limits. Sustainability 2015, 7, 8491–8521. [Google Scholar]
- Salman, B.; Ong, M.Y.; Nomanbhay, S.; Salema, A.A.; Sankaran, R.; Show, P.L. Thermal analysis of nigerian oil palm biomass with sachet-water plastic wastes for sustainable production of biofuel. Processes 2019, 7, 475. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Iqbal, W.; Muhammad Shaikh, G.; Iqbal, N.; Ahmad Solangi, Y.; Fatima, A. Measuring energy efficiency and environmental performance: A case of South Asia. Processes 2019, 7, 325. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, W.L.; Hu, J.L.; Hsiao, C.; Chang, M.C. Energy efficiency of the Baltic Sea countries: An application of stochastic frontier analysis. Energies 2019, 12, 104. [Google Scholar] [CrossRef] [Green Version]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. Future trajectories of renewable energy consumption in the European Union. Resources 2018, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Lage, S.; Gojkovic, Z.; Funk, C.; Gentili, F.G. Algal biomass from wastewater and flue gases as a source of bioenergy. Energies 2018, 11, 664. [Google Scholar] [CrossRef] [Green Version]
- Al-Esawi, N.; Al Qubeissi, M.; Kolodnytska, R. The impact of biodiesel fuel on ethanol/diesel blends. Energies 2019, 12, 1804. [Google Scholar] [CrossRef] [Green Version]
- Banga, J.R.; Menolascina, F. Computational methods enabling next-generation bioprocesses. Processes 2019, 7, 214. [Google Scholar] [CrossRef] [Green Version]
- Busu, C.; Busu, M. How does renewable energy impact carbon emissions? An Eu level analysis. In Proceedings of the International Management Conference, Bucharest, Romania, 2–4 November 2017; Volume 11, pp. 502–510. [Google Scholar]
- Ciupăgeanu, D.A.; Lăzăroiu, G.; Tîrşu, M. Carbon dioxide emissions reduction by renewable energy employment in Romania. In Proceedings of the 2017 International Conference on Electromechanical and Power Systems (SIELMEN), Iasi, Romania, 11–13 October 2017; pp. 281–285. [Google Scholar]
- Surugiu, C.; Surugiu, M.R.; Breda, Z.; Dinca, A.I. An input-output approach of CO2 emissions in tourism sector in post-communist Romania. Procedia Econ. Financ. 2012, 3, 987–992. [Google Scholar] [CrossRef]
- Destek, M.A.; Balli, E.; Manga, M. The relationship between CO2 emission, energy consumption, urbanization and trade openness for selected CEECs. Res. World Econ. 2016, 7, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Varga, B.O. Electric vehicles, primary energy sources and CO2 emissions: Romanian case study. Energy 2013, 49, 61–70. [Google Scholar] [CrossRef]
- Dragoş, L.; Scarlat, N.; Flueraru, C. Trends in evolution of CO2 emissions in Romania and perspectives for diminishing their environmental impact. Energy Conv. Manag. 1997, 38, S679–S684. [Google Scholar] [CrossRef]
- Sims, R.E.; Rogner, H.H.; Gregory, K. Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation. Energy Policy 2003, 31, 1315–1326. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. CO2 emissions, nuclear energy, renewable energy and economic growth in the US. Energy Policy 2010, 38, 2911–2915. [Google Scholar] [CrossRef]
- Kök, A.G.; Shang, K.; Yücel, ¸S. Impact of electricity pricing policies on renewable energy investments and carbon emissions. Manag. Sci. 2016, 64, 131–148. [Google Scholar]
- Camarero, M.; Picazo-Tadeo, A.J.; Tamarit, C. Are the determinants of CO2 emissions converging among OECD countries? Econ. Lett. 2013, 118, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Leung, S.F.; Yu, S. On the choice between sample selection and two-part models. J. Econom. 1996, 72, 197–229. [Google Scholar] [CrossRef]
- Andrews, D.W.; Schafgans, M.M. Semiparametric estimation of the intercept of a sample selection model. Rev. Econ. Stud. 1998, 65, 497–517. [Google Scholar] [CrossRef]
- Dabholkar, P.A.; Thorpe, D.I.; Rentz, J.O. A measure of service quality for retail stores: Scale development and validation. J. Acad. Mark. Sci. 1996, 24, 3. [Google Scholar] [CrossRef]
- Khan, M.W.A.; Panigrahi, S.K.; Almuniri, K.S.N.; Soomro, M.I.; Mirjat, N.H.; Alqaydi, E.S. Investigating the dynamic impact of CO2 emissions and economic growth on renewable energy production: Evidence from FMOLS and DOLS tests. Processes 2019, 7, 496. [Google Scholar] [CrossRef] [Green Version]
- Lazarevic, D.; Martin, M. Life cycle assessment calculative practices in the Swedish biofuel sector: Governing biofuel sustainability by standards and numbers. Bus. Strategy Environ. 2018, 27, 1558–1568. [Google Scholar] [CrossRef]
- Proskurina, S.; Junginger, M.; Heinimö, J.; Vakkilainen, E. Global biomass trade for energy–Part 1: Statistical and methodological considerations. Biofuels Bioprod. Biorefin. 2017, 13, 358–370. [Google Scholar] [CrossRef]
- Chen, S.; Yan, F.; Wu, R. Capital deepening, productivity promotion and CO2 emission in China. Financ. Trade Econ. 2010, 12, 111–119. [Google Scholar]
- Baležentis, T.; Streimikiene, D.; Zhang, T.; Liobikiene, G. The role of bioenergy in greenhouse gas emission reduction in EU countries: An environmental kuznets curve modelling. Resour. Conserv. Recycl. 2019, 142, 225–231. [Google Scholar] [CrossRef]
- D’Adamo, I. The profitability of residential photovoltaic systems. A new scheme of subsidies based on the price of CO2 in a developed PV market. Soc. Sci. 2018, 7, 148. [Google Scholar] [CrossRef] [Green Version]
- Gámez-García, D.C.; Saldaña-Márquez, H.; Gómez-Soberón, J.M.; Arredondo-Rea, S.P.; Gómez-Soberón, M.C.; Corral-Higuera, R. Environmental challenges in the residential sector: Life cycle assessment of mexican social housing. Energies 2019, 12, 2837. [Google Scholar] [CrossRef] [Green Version]
- Biber-Freudenberger, L.; Basukala, A.; Bruckner, M.; Börner, J. Sustainability performance of national bio-economies. Sustainability 2018, 10, 2705. [Google Scholar] [CrossRef] [Green Version]
- da Graça Carvalho, M.; Bonifacio, M.; Dechamps, P. Building a low carbon society. Energy 2011, 36, 1842–1847. [Google Scholar] [CrossRef]
- Pelau, C.; Acatrinei, C. The paradox of energy consumption decrease in the transition period towards a digital society. Energies 2019, 12, 1428. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, D.; Wang, S.; Xu, Q.; Buss, R.; Chen, D. Process and carbon footprint analyses of the allam cycle power plant integrated with an air separation unit. Clean Technol. 2019, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Karmellos, M.; Kopidou, D.; Diakoulaki, D. A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions fromthe power sector in the European Union countries. Energy 2016, 94, 680–692. [Google Scholar] [CrossRef]
- Bento, J.P.C.; Moutinho, V. CO2 emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. Renew. Sustain. Energy Rev. 2016, 55, 142–155. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Takeda, S.; Keeley, A.R.; Sakurai, S.; Managi, S.; Norris, C.B. Are renewables as friendly to humans as to the environment?: A social life cycle assessment of renewable electricity. Sustainability 2019, 11, 1370. [Google Scholar] [CrossRef] [Green Version]
Hypotheses | |
---|---|
H1 | Renewable energy sources (RES) are highly correlated with CO2 emissions. |
H2 | Biofuels are a significant factor in CO2 emissions. |
H3 | Bioenergy productivity is strongly correlated with CO2 emissions. |
H4 | Population is a significant factor in CO2 emissions. |
H5 | Urbanization is a significant factor in CO2 emissions. |
H6 | Real Gross Domestic Product (GDP) per capita is a significant factor in CO2 emissions. |
Variable | Name | Definition | Unit |
---|---|---|---|
(Y) | CO2 emissions | The total CO2 emissions | Millions of tones |
(X1) | Renewable energy | Renewable energy consumed divided by total energy | Percentages (%) |
(X2) | Biofuels | Biofuels production | Thousand tones |
(X3) | Bioenergy productivity | GDP divided by the gross inland consumption of bioenergy in one year | Euro/kg |
(X4) | Population | Population of each EU country | Millions |
(X5) | Urbanization | Urban population share from total population | Percentages (%) |
(X6) | Real GDP per capita | The rate of the Real GDP per capita in EU countries, and the number of inhabitants | Millions of euro |
Variable | Mean | Median | Standard Deviation | N |
---|---|---|---|---|
CO2 emissions (Y) | 68.6 | 68.2 | 13.18 | 560 |
Renewable (X1) | 21.7 | 22.5 | 3.02 | 560 |
Biofuels (X2) | 3.51 | 3.64 | 0.35 | 560 |
Bioenergy (X3) | 3.32 | 3.4 | 0.78 | 560 |
Population (X4) | 22.52 | 22.52 | 0.25 | 560 |
Urbanization (X5) | 53.6 | 53.8 | 0.45 | 560 |
Real GDP per capita (X6) | 5.68 | 6.35 | 2.03 | 560 |
Variable | Y | X1 | X2 | X3 | X4 | X5 | X6 |
---|---|---|---|---|---|---|---|
Y | 1 | - | - | - | - | - | - |
X1 | 0.714 | 1 | - | - | - | - | - |
X2 | 0.689 | 0.098 | 1 | - | - | - | - |
X3 | 0.702 | 0.134 | 0.078 | 1 | - | - | - |
X4 | 0.544 | 0.198 | 0.105 | 0.102 | 1 | - | - |
X5 | 0.612 | 0.233 | 0.099 | 0.105 | 0.112 | 1 | - |
X6 | 0.623 | 0.203 | 0.104 | 0.125 | 0.107 | 0.188 | 1 |
Test Summary | Chi-Square Statistic | Chi-Square D.F. | Probability | |
---|---|---|---|---|
Random cross-section | 11.3245 | 8 | 0.1103 | |
Endogenous variable | Exogenous variable | Coefficient | Probability | R_squared |
CO2 | Renewable energy (X1) | −0.218 | 0.039 | 0.5564 |
Biofuels (X2) | −0.182 | 0.041 | ||
Bioenergy (X3) | −0.125 | 0.037 | ||
Population (X4) | 0.139 | 0.029 | ||
Urbanization (X5) | 0.164 | 0.032 | ||
Real GDP_per_capita (X6) | 0.137 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busu, M.; Nedelcu, A.C. Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach. Processes 2021, 9, 130. https://doi.org/10.3390/pr9010130
Busu M, Nedelcu AC. Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach. Processes. 2021; 9(1):130. https://doi.org/10.3390/pr9010130
Chicago/Turabian StyleBusu, Mihail, and Alexandra Catalina Nedelcu. 2021. "Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach" Processes 9, no. 1: 130. https://doi.org/10.3390/pr9010130
APA StyleBusu, M., & Nedelcu, A. C. (2021). Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach. Processes, 9(1), 130. https://doi.org/10.3390/pr9010130