Model Predictive Control for First-Order Hyperbolic System Based on Quasi-Shannon Wavelet Basis
Abstract
:1. Introduction
2. Problem Formulation
3. Model Predictive Control Using Quasi-Shannon Interpolating Wavelet
3.1. Model Reduction for First-Order Hyperbolic Systems
3.1.1. Finite Difference Method
3.1.2. Wavelet-Collocation Method
3.2. Interval Quasi-Shannon Wavelet
3.3. The Prediction Model Developed Based on WCM
3.4. Wavelet-Based Nonlinear Model Predictive Control
4. Case Study
4.1. The Performance of the Prediction Model
4.2. The Performance of the Proposed MPC Scheme
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CFL | Courant-Friedrichs-Lewy |
CLM | Characteristic line method |
DPS | Distributed parameter system |
FDM | Finite difference method |
FEM | Finite element method |
LPS | Lumped parameter system |
MPC | Model predictive control |
MSE | Mean square error |
PDE | Partial differential equation |
SQP | Sequential quadratic programming |
WCM | Wavelet-collocation method |
WRM | Weighted residual method |
References
- Yann, L.G. Technical Committee on Distributed Parameter Systems. IEEE Contr. Syst. Mag. 2018, 38, 12–13. [Google Scholar]
- Liu, S.Y.; Liu, K.P.; Li, Y.C. Dynamic feedback control for manipulators handling a flexible payload based on distributed parameters. J. Tsinghua Univ. 2012, 52, 473–496. [Google Scholar]
- Elgindy, K.T. Optimal control of a parabolic distributed parameter system using a fully exponentially convergent barycentric shifted gegenbauer integral pseudospectral method. J. Ind. Manag. Optim. 2018, 14, 473–496. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.K.; Li, H.X. Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems-A Time/Space Separation Based Approach; Springer: New York, NY, USA, 2007; pp. 18–23. [Google Scholar]
- Auriol, J.; Bribiesca-Argomedo, F.; Saba, D.B.; di Loreto, M. Delay-robust stabilization of a hyperbolic PDE-ODE system. Automatica 2018, 95, 494–502. [Google Scholar] [CrossRef]
- Gugat, M.; Hante, F.M. On the turnpike phenomenon for optimal boundary control problems with hyperbolic systems. SIAM J. Control Optim. 2019, 57, 264–289. [Google Scholar] [CrossRef]
- Zhang, L.G.; Hao, J.R.; Qiao, J.F. Input-to-state stability of coupled hyperbolic PDE-ODE systems via boundary feedback control. SCI China Inform. Sci. 2019, 62, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Okereke, M.; Keates, M. Finite Element Applications: A Practical Guide to the FEM Process; Springer: New York, NY, USA, 2018; pp. 45–50. [Google Scholar]
- Gao, G.G.; Zeng, X.W.; Gu, X.S. Application of wavelets transforms to distributed parameter systems’ control. Int. J. Model. Identif. Control 2010, 10, 112–116. [Google Scholar] [CrossRef]
- Li, B.; Cheng, X.F. Wavelet-based numerical analysis: A review and classification. Finite Elem. Anal. Des. 2014, 81, 14–31. [Google Scholar] [CrossRef]
- Mehra, M. Wavelets Theory and Its Applications-A First Course; Springer: New York, NY, USA, 2018; pp. 135–141. [Google Scholar]
- Pandit, S.; Jiwari, R.; Bedi, K.; Koksal, M.E. Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations. Eng. Comput. 2017, 34, 2793–2814. [Google Scholar] [CrossRef]
- Aznam, S.M.; Chowdhury, M.S.H. Generalized Haar Wavelet Operational Matrix Method for Solving Hyperbolic Heat Conduction in Thin Surface Layers. Results Phys. 2018, 11, 243–252. [Google Scholar] [CrossRef]
- Kalateh, B.Z.; Askari, H.A. Wavelet collocation methods for solving the Pennes bioheat transfer equation. Optik 2017, 130, 345–355. [Google Scholar]
- Singh, S.; Patel, V.K.; Singh, V.K. Application of wavelet collocation method for hyperbolic partial differential equations via matrices. Appl. Math. Comput. 2018, 320, 407–424. [Google Scholar] [CrossRef]
- Ozdemir, N.; Secer, A.; Bayram, M. The Gegenbauer Wavelets-Based Computational Methods for the Coupled System of Burgers’ Equations with Time-Fractional Derivative. Math. Basel 2019, 7, 486. [Google Scholar] [CrossRef] [Green Version]
- Kheirabadi, A.; Vaziri, A.M.; Effati, S. Solving optimal control problem using Hermite wavelet. Numer. Algebr. Control Optim. 2019, 9, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Mcwilliam, S.; Knappett, D.J.; Fox, C.H.J. Numerical Solution of the Stationary FPK Equation using Shannon Wavelets. J. Sound Vib. 2000, 232, 405–430. [Google Scholar] [CrossRef]
- Wei, G.W. Quasi wavelets and quasi interpolating wavelets. Chem. Phys. Lett. 1998, 296, 215–222. [Google Scholar] [CrossRef]
- Lawrynczuk, M. Nonlinear Predictive Control of Temperature in Long Duct Using Specially Designed Neural Model. In Proceedings of the 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol), Barcelona, Spain, 7–9 September 2016; pp. 281–286. [Google Scholar]
- Dubljevic, S.; Mhaskar, P.; El-Farra, N.H.; Christofides, P.D. Predictive control of transport-reaction processes. Comput. Chem. Eng. 2005, 29, 2335–2345. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Dubljevic, S. Linear Model Predictive Control for Transport-Reaction Processes. AIChE J. 2017, 63, 2644–2659. [Google Scholar] [CrossRef]
- Lao, L.F.; Ellis, M.; Christofides, P.D. Economic Model Predictive Control of a First-Order Hyperbolic PDE System. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA, USA, 15–17 December 2014; pp. 563–570. [Google Scholar]
- Lao, L.F.; Ellis, M.; Christofides, P.D. Handling state constraints and economics in feedback control of transport-reaction processes. J. Process. Contr. 2015, 32, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N. Model Predictive Optimal Control of a Time-Delay Distributed-Parameter System. In Proceedings of the 53rd AIAA Guidance, Navigation and Control Conference and Exhibit, Keystone, CA, USA, 21–24 August 2006; pp. 21–24. [Google Scholar]
- Cen, L.H.; Wu, Z.Q.; Chen, X.F.; Zou, Y.G.; Zhang, S.H. On Modeling and Constrained Model Predictive Control of Open Irrigation Canals. J. Contr. Sci. Eng. 2017, 32, 1–10. [Google Scholar] [CrossRef]
- Fan, L.T.; Wang, F.L.; Li, H.R. Characteristic-line-based model predictive control for hyperbolic distributed parameter systems and its application. Control Theory A 2013, 30, 1329–1334. [Google Scholar]
- Mohammadi, L.; Dubljevic, S.; Forbes, J.F. Robust characteristic-based MPC of a fixed-bed reactor. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 4421–4426. [Google Scholar]
- Shang, H.L.; Forbes, J.F.; Guay, M. Computationally efficient model predictive control for convection dominated parabolic systems. J. Process. Contr. 2007, 17, 379–386. [Google Scholar] [CrossRef]
- Pakravesh, H.; Dubljevic, S.; Aksikas, I. Characteristics-based model predictive control of selective catalytic reduction in diesel-powered vehicles. J. Process. Contr. 2016, 47, 98–110. [Google Scholar] [CrossRef]
- Ding, D.Z.; Gu, X.S. Predictive Control of State Square Nonlinear Distributed Parameter System Based on Wavelets Transformation. Proceeding of the 11th World Congress on Intelligent Control and Automation, Shenyang, China, 29 June–4 July 2015; pp. 3931–3935. [Google Scholar]
- Dimov, I.; Faragó, I.; Vulkov, L. Finite Difference Methods: Theory and Applications; Springer: New York, NY, USA, 2019; pp. 2–10. [Google Scholar]
- Mei, S.L.; Zhu, D.H. Interval Shannon Wavelet Collocation Method for Fractional Fokker-Planck Equation. Adv. Math. Phys. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Neculai, A. Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology; Springer: New York, NY, USA, 2017. [Google Scholar]
- Qian, L. On the regularized Whittake-Kotel’nikov-Shannon sampling formula. Proc. Am. Math. Soc. 2003, 131, 1169–1176. [Google Scholar] [CrossRef]
j | N | r | Single-Step Prediction Error | 3-Step Prediction Error | |||
---|---|---|---|---|---|---|---|
0.1 | 2 | 2 | 2.2 | 0.01792 | 1.90 × 10 | 0.1158 | 3.70 × 10 |
2.8 | 0.2152 | 2.60 × 10 | 0.1525 | 5.60 × 10 | |||
3.4 | 0.2347 | 3.00 × 10 | 0.1848 | 6.50 × 10 | |||
3 | 3 | 2.2 | 0.0143 | 4.29 × 10 | 0.0449 | 3.43 × 10 | |
2.8 | 0.0248 | 1.64 × 10 | 0.0851 | 2.20 × 10 | |||
3.4 | 0.0381 | 4.03 × 10 | 0.1267 | 6.80 × 10 | |||
4 | 7 | 2.2 | 0.0185 | 2.66 × 10 | 0.2394 | 4.83 × 10 | |
2.8 | 0.017 | 2.70 × 10 | 0.2611 | 5.82 × 10 | |||
3.4 | 0.019 | 2.89 × 10 | 0.2771 | 7.63 × 10 | |||
0.01 | 2 | 2 | 2.2 | 0.0181 | 1.86 × 10 | 0.0478 | 1.43 × 10 |
2.8 | 0.0216 | 2.60 × 10 | 0.0567 | 1.99 × 10 | |||
3.4 | 0.0235 | 2.93 × 10 | 0.0614 | 2.26 × 10 | |||
3 | 3 | 2.2 | 0.0033 | 5.38 × 10 | 0.0087 | 3.71 × 10 | |
2.8 | 0.0041 | 1.72 × 10 | 0.0107 | 1.44 × 10 | |||
3.4 | 0.0051 | 4.08 × 10 | 0.0134 | 3.65 × 10 | |||
4 | 7 | 2.2 | 0.0035 | 3.31 × 10 | 0.0092 | 1.86 × 10 | |
2.8 | 0.0033 | 3.30 × 10 | 0.0087 | 1.85 × 10 | |||
3.4 | 0.0033 | 3.47 × 10 | 0.0075 | 2.00 × 10 |
Method | j | Single-Step Prediction Error | 3-Step Prediction Error | ||
---|---|---|---|---|---|
FDM | 2 | 0.0075 | 1.05 × 10 | 0.0222 | 8.29 × 10 |
3 | 0.0089 | 6.04 × 10 | 0.022 | 4.17 × 10 | |
4 | 0.0082 | 4.30 × 10 | 0.017 | 2.58 × 10 | |
Haar | 2 | ||||
3 | 0.063 | 6.35 × 10 | 0.0956 | 9.60 × 10 | |
4 | 0.1086 | 3.90 × 10 | 0.1217 | 1.90 × 10 | |
Proposed method | 2 | 0.0181 | 1.86 × 10 | 0.0478 | 1.43 × 10 |
3 | 0.0033 | 5.38 × 10 | 0.0087 | 3.71 × 10 | |
4 | 0.0033 | 3.30 × 10 | 0.0087 | 1.85 × 10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ai, L.; Teo, K.L.; Deng, L.; Zhang, D. Model Predictive Control for First-Order Hyperbolic System Based on Quasi-Shannon Wavelet Basis. Processes 2020, 8, 1114. https://doi.org/10.3390/pr8091114
Ai L, Teo KL, Deng L, Zhang D. Model Predictive Control for First-Order Hyperbolic System Based on Quasi-Shannon Wavelet Basis. Processes. 2020; 8(9):1114. https://doi.org/10.3390/pr8091114
Chicago/Turabian StyleAi, Ling, Kok Lay Teo, Liwei Deng, and Desheng Zhang. 2020. "Model Predictive Control for First-Order Hyperbolic System Based on Quasi-Shannon Wavelet Basis" Processes 8, no. 9: 1114. https://doi.org/10.3390/pr8091114
APA StyleAi, L., Teo, K. L., Deng, L., & Zhang, D. (2020). Model Predictive Control for First-Order Hyperbolic System Based on Quasi-Shannon Wavelet Basis. Processes, 8(9), 1114. https://doi.org/10.3390/pr8091114