Research on Green Power Dispatching Based on an Emergy-Based Life Cycle Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background and Materials
2.2. Em-LCA Method
2.2.1. Em-LCA Scope and System Boundary Identification
- resource consumption including renewable and non-renewable resources,
- socio-economic investment including monetary costs and purchased labor and services,
- emissions including solid waste, atmospheric pollutants, and water pollutants.
2.2.2. Inventory Analysis
2.2.3. Emergy Quantification
Resource Consumption
Socio-Economic Investment
Emissions
- (1)
- Potentially disappeared fraction (PDF) of species in the affected ecosystem
- (2)
- Disability adjusted life years per unit emission (DALY).
2.3. Em-LCA Based Cleaner Production Comprehensive Evaluation (ECPCE) Index
3. Results and Discussion
3.1. Em-LCA Environmental Impacts Analysis
3.2. Calculation Results of ECPCE Index
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Em-LCA | Energy-based life cycle assessment |
Sej | Solar equivalent joules |
Potentially disappeared fraction of species in the affected ecosystem | |
DALY | Disability adjusted life years per unit emission |
Energy equivalent of loss of regional natural resources due to given emission | |
Energy equivalent of human health loss due to given emission | |
Energy equivalent of natural loss due to discharge of solid waste on land | |
The unit of annual emergy allocated to regional natural capital | |
Total annual emergy per population | |
Energy value of land restoration per area |
References
- Huo, T.; Ren, H.; Zhang, X.; Cai, W.; Feng, W.; Zhou, N.; Wang, X. China Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- National Development and Reform Commission. Available online: http://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170605_849994.htmlhttp://www.ndrc.gov.cn/fzgggz/fzgh/ghwb/gjjgh/201706/t20170605_849994.html (accessed on 19 November 2019).
- Bostan, V.; Li, L. A decision model for reducing active power losses during electric power dispatching. Comput. Oper. Res. 2003, 30, 833–849. [Google Scholar] [CrossRef]
- King, T.D.; El-Hawary, M.E.; El-Hawary, F. Optimal environmental dispatching of electric power systems via an improved hopfield neural network model. IEEE Trans. Power Syst. 1995, 10, 1559–1565. [Google Scholar] [CrossRef]
- Sáenz, J.P.; Celik, N.; Xi, H. Two-stage economic and environmental load dispatching framework using particle filtering. Int. J. Electr. Power Energy Syst. 2013, 48, 93–110. [Google Scholar] [CrossRef]
- Kerl, P.Y.; Zhang, W.; Moreno-Cruz, J.B.; Nenes, A.; Realff, M.J.; Russell, A.G. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations. Proc. Natl. Acad. Sci. USA 2015, 112, 10884–10889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Ma, J.; Li, D.; Wang, J. Grid dispatching of energy saving and environmental protection based on thermodynamic system model with flow dimension. In Proceedings of the 2nd International Conference on Mechatronics and Automatic Control, Beijing, China, 20–21 September 2014. [Google Scholar] [CrossRef]
- Goudarzi, A.; Swanson, A.G.; Van Coller, J.; Siano, P. Smart real-time scheduling of generating units in an electricity market considering environmental aspects and physical constraints of generators. Appl. Energy 2017, 189, 667–696. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H. Optimal Dispatch Method of Transmission and Distribution Coordination for Power Systems with High Proportion of Renewable Energy. Autom. Electr. Power Syst. 2019, 43, 67–75. [Google Scholar] [CrossRef]
- Lippiatt, B. BEES 2.0: Building for Environmental and Econominc Sustainability, Technical Manual and User Guide; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2000.
- Spath, P.L.; Mann, M.K.; Kerr, D.R. Life Cycle Assessment of Coal-Fired Power Production; Topical; Office of Scientific & Technical Information Technical Reports: Golden, CO, USA, 1999. [CrossRef] [Green Version]
- Wu, X.; Wu, K.; Zhang, Y.; Hong, Q.; Cen, K. Comparative life cycle assessment and economic analysis of typical flue-gas cleaning processes of coal-fired power plants in china. J. Clean. Prod. 2016, 142, 3236–3242. [Google Scholar] [CrossRef]
- Say, N.P.; Yucel, M.; Yilmazer, M. A computer-based system for environmental impact assessment (EIA) applications to energy power stations in Turkey: CEDINFO. Energy Policy 2016, 35, 6395–6401. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Hauck, M.; Karuppiah, R.; Laurenzi, I.J.; Huijbregts, M.A.J. A methodology for separating uncertainty and variability in the life cycle greenhouse gas emissions of coal-lueled power generation in the USA. Int. J. Life Cycle Assess. 2014, 19, 1146–1155. [Google Scholar] [CrossRef]
- Bannitt, C.W.; Lindner, A.S. A life cycle inventory of coal used for electricity production in Florida. J. Clean. Prod. 2005, 13, 903–912. [Google Scholar] [CrossRef]
- Henriksson, P.J.G.; Zhang, W.; Guinee, J.B. Updated unit process data for coal-based energy in China including parameters for overall dispersions. Int. J. Life Cycle Assess. 2014, 20, 185–195. [Google Scholar] [CrossRef]
- Hau, J.L.; Bakshi, B.R. Promise and problems of emergy analysis. Ecol. Model. 2004, 178, 215–225. [Google Scholar] [CrossRef]
- Bertalanffy, L.V. General System Theory; George Braziller: New York, NY, USA, 1973. [Google Scholar]
- Lotka, A.J. The Law of Evolution as a maximal Principle. Hum. Biol. 1945, 17, 167–194. [Google Scholar]
- Pulselli, R.M.; Simoncini, E.; Marchettini, N. Energy and emergy based cost–benefit evaluation of building envelopes relative to geographical location and climate. Build. Environ. 2009, 44, 920–928. [Google Scholar] [CrossRef]
- Wang, L.; Ni, W.; Li, Z. Emergy evaluation of combined heat and power plant eco-industrial park (CHP plant EIP). Resour. Conserv. Recycl. 2006, 48, 56–70. [Google Scholar] [CrossRef]
- Zhang, L.X.; Tang, S.J.; Hao, Y. Integrated emergy and economic evaluation of a case tidal power plant in China. J. Clean. Prod. 2018, 182, 38–45. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J. Emergy evaluation of power plant eco-industrial park. Chin. J. Appl. Ecol. 2004, 15, 1047. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, F.; Shao, S. An Evaluation of the Sustainability of Thermal Power Plants Based on Emergy and Exergy Theory. Energy Sources Part A Recovery Util. Environ. Eff. 2012, 34, 1249–1258. [Google Scholar] [CrossRef]
- Sha, S.; Hurme, M. Emergy evaluation of combined heat and power plant processes. Appl. Therm. Eng. 2012, 43, 67–74. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, Z.; Li, T. Emergy-based life-cycle assessment (Em-LCA) for sustainability assessment: A case study of laser additive manufacturing versus CNC machining. Int. J. Adv. Manuf. Technol. 2019, 102, 4109–4120. [Google Scholar] [CrossRef]
- Reza, B.; Sadiq, R.; Hewage, K. Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: A case study on paved roads. Clean. Technol. Environ. Policy 2014, 16, 251–266. [Google Scholar] [CrossRef]
- Duan, N.; Liu, X.D.; Dai, J. Evaluating the environmental impacts of an urban wetland park based on emergy accounting and life cycle assessment: A case study in Beijing. Ecol. Model. 2011, 222, 351–359. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Sui, P. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 2014, 128, 66–78. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Chen, B.; Ulgiati, S. Monitoring trends of urban development and environmental impact of Beijing, 1999–2006. Sci. Total. Environ. 2011, 409, 3295–3308. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Yang, Z.; Chen, B.; Zhang, L. Analysis of resource and imission impacts: An emergy-based multiple spatial scale framework for urban ecological and economic evaluation. Entropy 2011, 13, 720. [Google Scholar] [CrossRef]
- Na, L. Eco-Efficiency Assessment of Remanufactured Truck Engines Based on a Hybrid Approach of Emergy and Life Cycle Assessment; Dalian University of Technology: Dalian, China, 2016. [Google Scholar]
- Kaicheng, X.; Yu, G.; Pu, W. Emergy analysis of planting economic ecosystem in intensive agricultural region of North China plain: A case study in Cangzhou of Hebei province. Ecol. Environ. Sci. 2015, 2, 592–597. [Google Scholar] [CrossRef]
- Odum, H.T. Emergy evaluation of an OTEC electrical power system. Energy Econ. 2000, 2, 389–393. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, X.; Wu, J.; Zhang, Y.Z.; Lin, L.L.; Yang, G.; Deng, S.H.; Li, L.; Yu, X.Y.; Qi, H. Sustainability evaluation of a steel production system in China based on emergy. J. Clean. Prod. 2015, 112, 1498–1509. [Google Scholar] [CrossRef]
- Jiang, M.M.; Zhou, J.B.; Chen, B.; Chen, G.Q. Emergy-based ecological account for the Chinese economy in 2004. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 2337–2356. [Google Scholar] [CrossRef]
- Ma, F.; Eneji, A.E.; Wu, Y. An Evaluation of Input–Output Value for Sustainability in a Chinese Steel Production System Based on Emergy Analysis. Sustainability 2018, 10, 4749. [Google Scholar] [CrossRef] [Green Version]
- Liping, J.; Bin, C.; Zhifeng, Y. Emergy analysis for the whole biodiesel production process with jatropha curcas oil as raw materials. Acta Ecol. Sin. 2009, 30, 5646–5652. [Google Scholar]
- Brandt-Williams, S. Handbook of Emergy Evaluation Folio 4; Emergy of Florida Agriculture, Center for Environmental Policy, University of Florida: Gainesville, FL, USA, 2002. [Google Scholar]
- Wang, J.; Wang, R.; Zhu, Y.; Li, J. Life cycle assessment and environmental cost accounting of coal-fired power generation in china. Energy Policy 2018, 115, 374–384. [Google Scholar] [CrossRef]
- Xie, Y.; Tan, Z.; Cheng, J.; Hu, Q.; Wang, Z. Generation Cost Analysis of Coal-Fired Power Plant in Environment of Energy Saving and Emission Reduction Dispatching. Power Syst. Technol. 2011, 35, 143–148. [Google Scholar]
- Reza, B.; Sadiq, R.; Hewage, K. Emergy-based life cycle assessment (Em-LCA) of multi-unit and single-family residential buildings in Canada. Int. J. Sustain. Built Environ. 2014, 3, 207–224. [Google Scholar] [CrossRef] [Green Version]
Items | Coal Mining | Coal Washing | Coal Transportation | Power Generation | Waste Treatment | |
---|---|---|---|---|---|---|
Input | Coal (kg) | 3.92 × 1010 | — | — | 1.14 × 109 | — |
Steel (kg) | 3.14 × 109 | — | — | — | — | |
Wood (kg) | 3.53 × 109 | — | — | — | — | |
Gasoline (J) | 4.89 × 108 | — | 1.24 × 1010 | — | — | |
Diesel (J) | 2.44 × 108 | — | 1.04 × 1010 | — | — | |
Water (kg) | 2.13 × 1012 | 2.42 × 1012 | — | 7.28 × 105 | 4.1 × 108 | |
Electricity (kg) | 2.8 × 1010 | 1.22 × 1010 | — | — | 2.61 × 107 | |
Limestone (kg) | — | — | — | — | 1.25 × 107 | |
Liquid ammonia (kg) | — | — | — | — | 1.14 × 109 | |
Output | CO2 (kg) | 3.34 × 1010 | — | 5.56 × 1011 | 4.73 × 109 | — |
SO2 (kg) | 2.27 × 109 | — | 4.54 × 109 | — | 1.58 × 105 | |
Nox (kg) | 2.44 × 108 | — | 1.12 × 109 | — | 4.12 × 105 | |
Peat (kg) | — | 6.98 × 107 | — | — | — | |
Boiler ash (kg) | 2.55 × 1010 | — | — | — | — | |
Slag (kg) | — | — | — | 2.25 × 1011 | — | |
Dust (kg) | — | — | — | — | 1.93 × 104 |
Items | Coal Mining | Coal Washing | Coal Transportation | Power Generation | Waste Treatment | |
---|---|---|---|---|---|---|
Input | Coal (kg) | 3.63 × 1010 | — | — | 1.06 × 109 | — |
Steel (kg) | 2.91 × 109 | — | — | — | — | |
Wood (kg) | 3.26 × 109 | — | — | — | — | |
Gasoline (J) | 4.52 × 108 | — | 1.15 × 1010 | — | — | |
Diesel (J) | 2.26 × 108 | — | 9.65 × 109 | — | — | |
Water (kg) | 1.97 × 1012 | 2.24 × 1012 | — | 6.8 × 105 | 4.15 × 108 | |
Electricity (kg) | 2.59 × 1010 | 1.13 × 1010 | — | — | 3.31 × 107 | |
Limestone (kg) | — | — | — | — | 1.13 × 107 | |
Liquid ammonia (kg) | — | — | — | — | 1.06 × 109 | |
Output | CO2 (kg) | 3.09 × 1010 | — | 5.14 × 1011 | 4.13 × 109 | — |
SO2 (kg) | 2.1 × 109 | — | 4.2 × 109 | — | 1.38 × 105 | |
Nox (kg) | 2.26 × 108 | — | 1.03 × 109 | — | 3.5 × 105 | |
Peat (kg) | — | 6.46 × 107 | — | — | — | |
Boiler ash (kg) | 2.36 × 1010 | — | — | — | — | |
Slag (kg) | — | — | — | 2.14 × 1011 | — | |
Dust (kg) | — | — | — | — | 1.59 × 104 |
Items | Coal Mining | Coal Washing | Coal Transportation | Power Generation | Waste Treatment | |
---|---|---|---|---|---|---|
Input | Coal (kg) | 4.95 × 1010 | — | — | 1.48 × 109 | — |
Steel (kg) | 3.97 × 109 | — | — | — | — | |
Wood (kg) | 4.45 × 109 | — | — | — | — | |
Gasoline (J) | 6.17 × 108 | — | 1.57 × 1010 | — | — | |
Diesel (J) | 3.09 × 108 | — | 1.32 × 1010 | — | — | |
Water (kg) | 2.70 × 1012 | 3.06 × 1012 | — | 9.28 × 105 | 3.36 × 107 | |
Electricity (kg) | 3.54 × 1010 | 1.54 × 1010 | — | 3.05 × 107 | ||
Limestone (kg) | — | — | — | — | 1.75 × 107 | |
Liquid ammonia (kg) | — | — | — | — | 1.48 × 109 | |
Output | CO2 (kg) | 4.22 × 1010 | — | 7.02 × 1011 | 6.81 × 109 | — |
SO2 (kg) | 2.87 × 109 | — | 5.73 × 109 | — | 2.69 × 105 | |
Nox (kg) | 3.09 × 108 | — | 1.41 × 109 | — | 6.71 × 105 | |
Peat (kg) | — | 8.82 × 107 | — | — | — | |
Boiler ash (kg) | 3.22 × 1010 | — | — | — | — | |
Slag (kg) | — | — | — | 2.99 × 1011 | — | |
Dust (kg) | — | — | — | — | 2.07 × 104 |
Items | Coal Mining | Coal Washing | Coal Transportation | Power Generation | Waste Treatment | |
---|---|---|---|---|---|---|
Input | Coal (kg) | 4.75 × 1010 | — | — | 1.41 × 109 | — |
Steel (kg) | 3.81 × 109 | — | — | — | — | |
Wood (kg) | 4.27 × 109 | — | — | — | — | |
Gasoline (J) | 5.92 × 108 | — | 1.51 × 1010 | — | — | |
Diesel (J) | 2.96 × 108 | — | 1.26 × 1010 | — | — | |
Water (kg) | 2.59 × 1012 | 2.93 × 1012 | — | 8.91 × 105 | 4.23 × 107 | |
Electricity (kg) | 3.40 × 1010 | 1.48 × 1010 | — | — | 3.08 × 107 | |
Limestone (kg) | — | — | — | — | 1.73 × 107 | |
Liquid ammonia (kg) | — | — | — | — | 1.41 × 109 | |
Output | CO2 (kg) | 4.05 × 1010 | — | 6.73 × 1011 | 6.76 × 109 | — |
SO2 (kg) | 2.75 × 109 | — | 5.50 × 109 | — | 2.21 × 105 | |
Nox (kg) | 2.96 × 108 | — | 1.35 × 109 | — | 6.27 × 105 | |
Peat (kg) | — | 8.46 × 107 | — | — | — | |
Boiler ash (kg) | 3.09 × 1010 | — | — | — | — | |
Slag (kg) | — | — | — | 2.91 × 1011 | — | |
Dust (kg) | — | — | — | — | 2.38 × 104 |
Resource Consumption | Coal Mining (Sej) | Coal Washing (Sej) | Coal Transportation (Sej) | Power Generation (Sej) | Waste Treatment (Sej) |
---|---|---|---|---|---|
Coal | 2.62 × 1015 | — | — | 7.61 × 1013 | — |
Steel | 9.71 × 1024 | — | — | — | — |
Wood | 6.31 × 1020 | — | — | — | — |
Gasoline | 1.50 × 1023 | — | 3.82 × 1024 | — | — |
Diesel | 7.65 × 1022 | — | 3.27 × 1024 | — | — |
Water | 1.42 × 1018 | 1.61 × 1018 | — | 4.83 × 1011 | 2.72 × 1014 |
Electricity | 4.49 × 1015 | 1.95 × 1015 | — | — | 4.17 × 1012 |
Limestone | — | — | — | — | 4.55 × 1016 |
Liquid ammonia | — | — | — | — | 1.68 × 1019 |
Non-renewable resources | 2.27 × 1023 | — | 7.08 × 1024 | 7.61 × 1013 | 4.55 × 1016 |
Renewable resources | 9.71 × 1024 | 1.61 × 1018 | — | 4.83 × 1011 | 1.68 × 1019 |
Resource Consumption | Coal Mining (Sej) | Coal Washing (Sej) | Coal Transportation (Sej) | Power Generation (Sej) | Waste Treatment (Sej) |
---|---|---|---|---|---|
Coal | 2.43 × 1015 | — | — | 7.07 × 1013 | — |
Steel | 8.98 × 1024 | — | — | — | — |
Wood | 5.84 × 1020 | — | — | — | — |
Gasoline | 1.39 × 1023 | — | 3.53 × 1024 | — | — |
Diesel | 7.07 × 1022 | — | 3.02 × 1024 | — | — |
Water | 1.31 × 1018 | 1.49 × 1018 | — | 4.52 × 1011 | 2.76 × 1014 |
Electricity | 4.15 × 1015 | 1.80 × 1015 | — | — | 5.29 × 1012 |
Limestone | — | — | — | — | 4.13 × 1016 |
Liquid ammonia | — | — | — | — | 1.56 × 1019 |
Non-renewable resources | 2.10 × 1023 | — | 6.55 × 1024 | 7.07 × 1013 | 4.13 × 1016 |
Renewable resources | 8.98 × 1024 | 1.49 × 1018 | — | 4.52 × 1011 | 1.56 × 1019 |
Resource Consumption | Coal Mining (Sej) | Coal Washing (Sej) | Coal Transportation (Sej) | Power Generation (Sej) | Waste Treatment (Sej) |
---|---|---|---|---|---|
Coal | 3.31 × 1015 | — | — | 9.92 × 1013 | — |
Steel | 1.23 × 1025 | — | — | — | — |
Wood | 7.97 × 1020 | — | — | — | — |
Gasoline | 1.90 × 1023 | — | 4.82 × 1024 | — | — |
Diesel | 9.66 × 1022 | — | 4.13 × 1024 | — | — |
Water | 1.79 × 1018 | 2.03 × 1018 | — | 6.16 × 1011 | 2.23 × 1013 |
Electricity | 5.67 × 1015 | 2.46 × 1015 | — | — | 4.88 × 1012 |
Limestone | — | — | — | — | 6.37 × 1016 |
Liquid ammonia | — | — | — | — | 2.20 × 1019 |
Non-renewable resources | 2.86 × 1023 | — | 8.95 × 1024 | 9.92 × 1013 | 6.37 × 1016 |
Renewable resources | 1.23 × 1025 | 2.03 × 1018 | — | 6.16 × 1011 | 2.20 × 1019 |
Resource Consumption | Coal Mining (Sej) | Coal Washing (Sej) | Coal Transportation (Sej) | Power Generation (Sej) | Waste Treatment (Sej) |
---|---|---|---|---|---|
Coal | 3.18 × 1015 | — | — | 9.40 × 1013 | — |
Steel | 1.18 × 1025 | — | — | — | — |
Wood | 7.65 × 1020 | — | — | — | — |
Gasoline | 1.82 × 1023 | — | 4.62 × 1024 | — | — |
Diesel | 9.27 × 1022 | — | 3.96 × 1024 | — | — |
Water | 1.72 × 1018 | 1.95 × 1018 | — | 5.92 × 1011 | 2.81 × 1013 |
Electricity | 5.43 × 1015 | 2.36 × 1015 | — | — | 4.93 × 1012 |
Limestone | — | — | — | — | 6.29 × 1016 |
Liquid ammonia | — | — | — | — | 2.08 × 1019 |
Non-renewable resources | 2.74 × 1023 | — | 8.58 × 1024 | 9.40 × 1013 | 6.29 × 1016 |
Renewable resources | 1.18 × 1025 | 1.95 × 1018 | — | 5.92 × 1011 | 2.08 × 1019 |
1# | |||||
---|---|---|---|---|---|
Cost Type | Coal Mining (Sej) | Coal Washing (Sej) | Coal Transportation (Sej) | Power Generation (Sej) | Waste Treatment (Sej) |
Resource consumption cost | 8.31 × 109 | 4.89 × 108 | 2.26 × 1010 | 1.29 × 1011 | 4.23 × 106 |
Air pollution cost | 9.78 × 108 | 5.03 × 109 | 2.77 × 1010 | 4.36 × 1010 | 5.24 × 107 |
Water pollution cost | 3.49 × 107 | 6.98 × 106 | — | 1.64 × 109 | 4.35 × 106 |
Solid waste pollution cost | 1.05 × 108 | 1.05 × 108 | — | 9.43 × 108 | 2.24 × 105 |
2# | |||||
Resource consumption cost | 7.68 × 109 | 4.52 × 108 | 2.09 × 1010 | 1.19 × 1011 | 4.22 × 106 |
Air pollution cost | 9.04 × 108 | 4.65 × 109 | 2.56 × 1010 | 4.03 × 1010 | 5.53 × 107 |
Water pollution cost | 3.23 × 107 | 6.46 × 106 | — | 1.52 × 109 | 4.21 × 106 |
Solid waste pollution cost | 9.69 × 107 | 9.69 × 107 | — | 8.72 × 108 | 2.10 × 105 |
3# | |||||
Resource consumption cost | 1.05 × 1010 | 6.17 × 108 | 2.86 × 1010 | 1.63 × 1011 | 5.23 × 106 |
Air pollution cost | 1.23 × 109 | 6.35 × 109 | 3.49 × 1010 | 5.51 × 1010 | 4.52 × 107 |
Water pollution cost | 4.41 × 107 | 8.82 × 106 | — | 2.07 × 109 | 4.11 × 106 |
Solid waste pollution cost | 1.32 × 108 | 1.32 × 108 | — | 1.19 × 109 | 2.56 × 105 |
4# | |||||
Resource consumption cost | 1.01 × 1010 | 5.92 × 108 | 2.74 × 1010 | 1.57 × 1011 | 3.89 × 106 |
Air pollution cost | 1.18 × 109 | 6.09 × 109 | 3.35 × 1010 | 5.28 × 1010 | 4.96 × 107 |
Water pollution cost | 4.23 × 107 | 8.46 × 106 | — | 1.99 × 109 | 4.26 × 106 |
Solid waste pollution cost | 1.27 × 108 | 1.27 × 108 | — | 1.14 × 109 | 2.56 × 105 |
1# | |||||
---|---|---|---|---|---|
Cost Type | Coal Mining (Sej) | Coal Washing (Sej) | Coal Transportation (Sej) | Power Generation (Sej) | Waste Treatment (Sej) |
2.66 × 1033 | — | 4.41 × 1034 | 3.75 × 1032 | 5.95 × 1027 | |
2.80 × 1020 | — | 8.50 × 1020 | 1.82 × 1018 | 9.59 × 1016 | |
6.70 × 1015 | 1.83 × 1013 | — | 4.26 × 1015 | 2.23 × 108 | |
2# | |||||
2.46 × 1033 | — | 4.08 × 1034 | 3.28 × 1032 | 5.06 × 1027 | |
2.59 × 1020 | — | 7.86 × 1020 | 1.59 × 1018 | 3.54 × 1017 | |
6.20 × 1015 | 1.70×1013 | — | 4.05 × 1015 | 1.84 × 108 | |
3# | |||||
3.36 × 1033 | — | 5.57 × 1034 | 5.41×1032 | 9.70×1027 | |
3.53 × 1020 | — | 1.07 × 1021 | 2.62 × 1018 | 1.50 × 1017 | |
8.46 × 1015 | 2.32 × 1013 | — | 5.66 × 1015 | 2.39 × 108 | |
4# | |||||
3.22 × 1033 | — | 5.35 × 1034 | 5.36 × 1032 | 9.07 × 1027 | |
3.39 × 1020 | — | 6.61 × 1025 | 2.60 × 1018 | 1.40 × 1017 | |
8.12 × 1015 | 2.22 × 1013 | — | 5.50 × 1015 | 2.75 × 108 |
Weightings | Coal Mining | Coal Washing | Coal Transportation | Power Generation | Waste Treatment |
---|---|---|---|---|---|
Resource consumption | 0.25 | 0.35 | 0.40 | 0.24 | 0.45 |
Socio-economic investment | 0.37 | 0.20 | 0.35 | 0.33 | 0.20 |
Emissions | 0.38 | 0.45 | 0.25 | 0.43 | 0.35 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Song, Y.M.; Li, A.; Shen, J.; Liang, C.; Gao, M. Research on Green Power Dispatching Based on an Emergy-Based Life Cycle Assessment. Processes 2020, 8, 114. https://doi.org/10.3390/pr8010114
Li T, Song YM, Li A, Shen J, Liang C, Gao M. Research on Green Power Dispatching Based on an Emergy-Based Life Cycle Assessment. Processes. 2020; 8(1):114. https://doi.org/10.3390/pr8010114
Chicago/Turabian StyleLi, Tao, Yi Miao Song, Ang Li, Jing Shen, Chao Liang, and Ming Gao. 2020. "Research on Green Power Dispatching Based on an Emergy-Based Life Cycle Assessment" Processes 8, no. 1: 114. https://doi.org/10.3390/pr8010114
APA StyleLi, T., Song, Y. M., Li, A., Shen, J., Liang, C., & Gao, M. (2020). Research on Green Power Dispatching Based on an Emergy-Based Life Cycle Assessment. Processes, 8(1), 114. https://doi.org/10.3390/pr8010114