Special Issue on “Novel Membrane Technologies for Traditional Industrial Processes”
1. Background
2. Content in This Special Issue
2.1. Gas Separation (GS)
2.2. Biorefinery
2.3. Forward Osmosis (FO)
2.4. Membrane Bioreactor (MBR)
2.5. Membranes with Aquaporins
Conflicts of Interest
References
- Leal Filho, W.; Marisa Azul, A.; Brandli, L.; Gokcin Ozuyar, P.; Wall, T. (Eds.) Responsible Consumption and Production; Encyclopedia of the UN Sustainable Development Goals; Springer: Basel, Switzerland, 2019. [Google Scholar]
- Figoli, A.; Criscuoli, A. (Eds.) Sustainable Membrane Technology for Water and Wastewater Treatment; Chemistry and Sustainable Technology; Springer: Singapore, 2017. [Google Scholar]
- Jiang, L.Y.; Li, N. (Eds.) Membrane-Based Separation in Metallurgy: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wilcox, J. Membrane Technology. In Carbon Capture; Springer: New York, NY, USA, 2012. [Google Scholar]
- Shao, P.; Huang, R.Y.M. Review: Polymeric membrane pervaporation. J. Membr. Sci. 2007, 287, 162–179. [Google Scholar] [CrossRef]
- McKelvey, M.; Ljungberg, D. How public policy can stimulate the capabilities of firms to innovate in a traditional industry through academic engagement: The case of the Swedish food industry. Res. Dev. Manag. 2017, 47, 535–544. [Google Scholar] [CrossRef]
- Zhang, Q.X. Science and Engineering for Metallurgical Separation; Science Press: Beijing, China, 2004. [Google Scholar]
- Ismail, A.F.; Rahman, M.A.; Othman, M.H.D.; Matsuura, T. (Eds.) Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses; Hand Books of Separation Science; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Yang, S.; Arvanitis, A.; Cao, Z.; Sun, X.; Dong, J. Synthesis of Silicalite Membrane with an Aluminum-Containing Surface for Controlled Modification of Zeolitic Pore Entries for Enhanced Gas Separation. Processes 2018, 6, 13. [Google Scholar] [CrossRef]
- Seeburg, D.; Liu, D.; Dragomirova, R.; Atia, H.; Pohl, M.; Amani, H.; Georgi, G.; Kreft, S.; Wohlrab, S. Low-Temperature Steam Reforming of Natural Gas after LPG-Enrichment with MFI Membranes. Processes 2018, 6, 263. [Google Scholar] [CrossRef]
- Zhang, M.; Deng, L.; Xiang, D.; Cao, B.; Hosseini, S.; Li, P. Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes 2019, 7, 51. [Google Scholar] [CrossRef]
- Lorente, E.; Haponska, M.; Clavero, E.; Torras, C.; Salvadó, J. Steam Explosion and Vibrating Membrane Filtration to Improve the Processing Cost of Microalgae Cell Disruption and Fractionation. Processes 2018, 6, 28. [Google Scholar] [CrossRef]
- Abejón, R.; Rabadán, J.; Lanza, S.; Abejón, A.; Garea, A.; Irabien, A. Supported Ionic Liquid Membranes for Separation of Lignin Aqueous Solutions. Processes 2018, 6, 143. [Google Scholar] [CrossRef]
- Long, Q.; Jia, Y.; Li, J.; Yang, J.; Liu, F.; Zheng, J.; Yu, B. Recent Advance on Draw Solutes Development in Forward Osmosis. Processes 2018, 6, 165. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Xie, C.; Zhao, S.; Ng, D.; Xie, Z. Dopamine Incorporated Forward Osmosis Membranes with High Structural Stability and Chlorine Resistance. Processes 2018, 6, 151. [Google Scholar] [CrossRef]
- Argurio, P.; Fontananova, E.; Molinari, R.; Drioli, E. Photocatalytic Membranes in Photocatalytic Membrane Reactors. Processes 2018, 6, 162. [Google Scholar] [CrossRef]
- Wagh, P.; Zhang, X.; Blood, R.; Kekenes-Huskey, P.; Rajapaksha, P.; Wei, Y.; Escobar, I. Increasing Salt Rejection of Polybenzimidazole Nanofiltration Membranes via the Addition of Immobilized and Aligned Aquaporins. Processes 2019, 7, 76. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.Y.; Li, P.; Wang, Y. Special Issue on “Novel Membrane Technologies for Traditional Industrial Processes”. Processes 2019, 7, 144. https://doi.org/10.3390/pr7030144
Jiang LY, Li P, Wang Y. Special Issue on “Novel Membrane Technologies for Traditional Industrial Processes”. Processes. 2019; 7(3):144. https://doi.org/10.3390/pr7030144
Chicago/Turabian StyleJiang, Lan Ying, Pei Li, and Yan Wang. 2019. "Special Issue on “Novel Membrane Technologies for Traditional Industrial Processes”" Processes 7, no. 3: 144. https://doi.org/10.3390/pr7030144
APA StyleJiang, L. Y., Li, P., & Wang, Y. (2019). Special Issue on “Novel Membrane Technologies for Traditional Industrial Processes”. Processes, 7(3), 144. https://doi.org/10.3390/pr7030144