Effects of Wall Wettability and PVCap on Adhesion Characteristics Between Cyclopentane Hydrate and X80 Steel
Abstract
1. Introduction
2. Experimental Section
2.1. Experimental Materials
2.2. Experimental Equipment
2.3. Experimental Procedures and Methods
2.3.1. X80 Steel Pretreatment
2.3.2. Preparation and Formation of Hydrate Particles
2.3.3. Adhesion Force Measurement Method
3. Results and Discussion
3.1. Effect of Contact Time on Hydrate Adhesion Force
3.2. Effect of Wall Wetting Conditions on Adhesion Force
3.3. Effect of PVCap Concentration on Adhesion Force
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, C.; Zhai, G.; Zhang, G.; Wang, H.; Zhang, G.; Li, J.; Wang, Z.; Wen, Z.; Ma, F.; Liang, Y.; et al. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Pet. Explor. Dev. 2015, 42, 14–28. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, G.; Wang, Z.; Wen, Z.; Tian, Z.; Wang, H.; Ma, F.; Wu, Y. Distribution and Potential of Global Oil and Gas Resources. Pet. Explor. Dev. 2018, 45, 779–789. [Google Scholar] [CrossRef]
- Zhang, Q.; Limmer, L.; Frey, H.; Kelland, M.A. N-Oxide Polyethers as Kinetic Hydrate Inhibitors: Side Chain Ring Size Makes the Difference. Energy Fuels 2021, 35, 4067–4074. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Meng, J.; Long, Y.; Yan, Y.; Li, M.; Huang, Z.; Liang, Y. Reducing Carbon Footprint of Deep-Sea Oil and Gas Field Exploitation by Optimization for Floating Production Storage and Offloading. Appl. Energy 2020, 261, 114398. [Google Scholar] [CrossRef]
- Darmawan, A.; Eka Saputra, R.; Astuti, Y. Structural, Thermal and Surface Properties of Sticky Hydrophobic Silica Films: Effect of Hydrophilic and Hydrophobic Precursor Compositions. Chem. Phys. Lett. 2020, 761, 138076. [Google Scholar] [CrossRef]
- Wan, C.; Xiao, S.; Zhou, D.; Zhu, H.; Bao, Y.; Li, T.; Tu, J.; Kyazze, M.S.; Han, Z. Numerical Analysis of Coarse Particle Two-Phase Flow in Deep-Sea Mining Vertical Pipe Transport with Forced Vibration. Ocean Eng. 2024, 301, 117550. [Google Scholar] [CrossRef]
- Duan, J.; Zhou, J.; You, Y.; Wang, X. Time-Domain Analysis of Vortex-Induced Vibration of a Flexible Mining Riser Transporting Flow with Various Velocities and Densities. Ocean Eng. 2021, 220, 108427. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, C.; Li, M.; Tong, S.; Qi, M.; Wang, Z. Direct Measurements of the Interactions between Methane Hydrate Particle-Particle/Droplet in High Pressure Gas Phase. Fuel 2023, 332, 126190. [Google Scholar] [CrossRef]
- Hu, J. Prediction of the Internal Corrosion Rate for Oil and Gas Pipelines and Influence Factor Analysis with Interpretable Ensemble Learning. Int. J. Press. Vessels Pip. 2024, 212, 105329. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Liu, Z.; Dou, B.; Liu, N.; Yang, M.; Song, Y. Hydrate Formation and Blockage in Inlet/Outlet and Slope Pipes of Gas–Water–Oil Transportation Pipeline. Energy Fuels 2024, 38, 18489–18501. [Google Scholar] [CrossRef]
- Huang, L.; Yin, Z.; Linga, P.; Veluswamy, H.P.; Liu, C.; Chen, Q.; Hu, G.; Sun, J.; Wu, N. Experimental Investigation on the Production Performance from Oceanic Hydrate Reservoirs with Different Buried Depths. Energy 2022, 242, 122542. [Google Scholar] [CrossRef]
- Li, Y.; Yu, G.; Xu, M.; Ou, W.; Niu, C.; Jiang, H.; Zhang, Y.; Wu, N.; Sun, J. Interfacial Strength between Ice and Sediment: A Solution towards Fracture-Filling Hydrate System. Fuel 2022, 330, 125553. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.; Song, K.; Xu, T.; Qian, Y.; Yao, M.; Song, G.; Li, Y. Study on Decomposition Characteristics of Natural Gas Hydrate in Pipeline under the Condition of Thermodynamic Inhibitor. Langmuir 2025, 41, 15106–15119. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Jia, W.; Hu, X.; Song, S.; Yang, F. Blockage Detection Techniques for Natural Gas Pipelines: A Review. Gas Sci. Eng. 2024, 122, 205187. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Li, Y.; Liu, Z.; Zhang, Y.; Yao, H.; Liu, Y.; Song, Y.; Zhang, L. The Effect of Subcooling on Hydrate Generation and Solid Deposition with Two-Phase Flow of Pure Water and Natural Gases. Chem. Eng. Sci. 2025, 301, 120718. [Google Scholar] [CrossRef]
- Aspenes, G.; Dieker, L.E.; Aman, Z.M.; Høiland, S.; Sum, A.K.; Koh, C.A.; Sloan, E.D. Adhesion Force between Cyclopentane Hydrates and Solid Surface Materials. J. Colloid Interface Sci. 2010, 343, 529–536. [Google Scholar] [CrossRef]
- Zhou, S.; Ren, Z.; Yu, Y.; Liu, Y.; Du, H.; Lv, X.; Yuan, Q. Study of Sintering Behavior of Methane Hydrate Particles on the Wall Surface. Langmuir 2024, 40, 6537–6549. [Google Scholar] [CrossRef]
- Lee, W.; Baek, S.; Kim, J.-D.; Lee, J.W. Effects of Salt on the Crystal Growth and Adhesion Force of Clathrate Hydrates. Energy Fuels 2015, 29, 4245–4254. [Google Scholar] [CrossRef]
- Navaneetha Kannan, S.; Delgado-Linares, J.G.; Makogon, T.Y.; Koh, C.A. Synergistic Effect of Kinetic Hydrate Inhibitor (KHI) and Monoethylene Glycol (MEG) in Gas Hydrate Management. Fuel 2024, 366, 131326. [Google Scholar] [CrossRef]
- Gulbrandsen, A.C.; Svartaas, T.M. Effect of Poly Vinyl Caprolactam Concentration on the Dissociation Temperature for Methane Hydrates. Energy Fuels 2017, 31, 8505–8511. [Google Scholar] [CrossRef]
- Zhou, S.-D.; Zhao, Y.-E.; Yu, H.-J.; Xiao, Y.-Y.; Li, X.-Y.; Ma, Q.-L.; Du, H. Study of the Microscopic Effect of PVCap on CO2 Hydrate Generation and Adhesion. Energy Fuels 2024, 38, 6195–6204. [Google Scholar] [CrossRef]
- Wu, R.; Aman, Z.M.; May, E.F.; Kozielski, K.A.; Hartley, P.G.; Maeda, N.; Sum, A.K. Effect of Kinetic Hydrate Inhibitor Polyvinylcaprolactam on Cyclopentane Hydrate Cohesion Forces and Growth. Energy Fuels 2014, 28, 3632–3637. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Lang, C.; Yang, L.; Zhao, J.; Song, Y. Crystal Growth of CO2–CH4 Hydrate on a Solid Surface with Varying Wettability in the Presence of PVCap. Cryst. Growth Des. 2024, 24, 4697–4706. [Google Scholar] [CrossRef]
- Khan, N.; Kumar, A.; Johns, M.L.; May, E.F.; Aman, Z.M. Experimental Investigation to Elucidate the Hydrate Anti-Agglomerating Characteristics of 2-Butoxyethanol. Chem. Eng. J. 2023, 471, 144288. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhang, Y.; Li, P.; Lv, X.; Yu, Y.; Yu, W.; Ma, Q.; Wang, C.; Zhou, S.; et al. Rheological and Dissociation Characteristics of Cyclopentane Hydrate in the Presence of Amide-Based Surfactants and Span 80: From Slurry to Particle. Energy 2025, 328, 136601. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, H.; Qiu, G.; Zhao, Y.; Liu, Y.; Du, H.; Li, S.; Fan, K. Effects of Pipeline Wall Surface Corrosion and PVP on Adhesion Behavior between Cyclopentane Hydrate and Inner Surface of Pipeline. Energy Fuels 2024, 38, 18631–18642. [Google Scholar] [CrossRef]
- Aman, Z.M.; Leith, W.J.; Grasso, G.A.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Adhesion Force between Cyclopentane Hydrate and Mineral Surfaces. Langmuir 2013, 29, 15551–15557. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Guo, J.; Chen, G.; Zhong, J.; Yan, Y.; Zhang, J. Molecular Insights into the Kinetic Hydrate Inhibition Performance of Poly(N-Vinyl Lactam) Polymers. J. Nat. Gas Sci. Eng. 2020, 83, 103504. [Google Scholar] [CrossRef]
- Gulbrandsen, A.C.; Svartås, T.M. Effects of PVCap on Gas Hydrate Dissociation Kinetics and the Thermodynamic Stability of the Hydrates. Energy Fuels 2017, 31, 9863–9873. [Google Scholar] [CrossRef]
- Olarinoye, F.O.; Kang, S.-P.; Ajienka, J.A.; Ikiensikimama, S.S. Synergy between Two Natural Inhibitors via Pectin and Mixed Agro-Waste-Based Amino Acids for Natural Gas Hydrate Control. Geoenergy Sci. Eng. 2024, 239, 212967. [Google Scholar] [CrossRef]
- Aminnaji, M.; Anderson, R.; Hase, A.; Tohidi, B. Can Kinetic Hydrate Inhibitors Inhibit the Growth of Pre-Formed Gas Hydrates? Gas Sci. Eng. 2023, 109, 104831. [Google Scholar] [CrossRef]
- Chen, B.; Qiu, F.; Xia, L.; Xu, L.; Jin, J.; Gou, G. In Situ Ultrasonic Characterization of Hydrogen Damage Evolution in X80 Pipeline Steel. Materials 2024, 17, 5891. [Google Scholar] [CrossRef]
- Shui, G.; Zhao, Q.; Chu, H.; Zhou, X.; Zhang, Y. Engineering the surface wettability: Recent advances in oil-water separation membranes. Energy Environ. Sustain. 2025, 1, 100040. [Google Scholar] [CrossRef]
- Luo, J.; Cheng, Z.; Yu, N.; Tian, Y.; Meng, J. A flexible skin material with switchable wettability for trans-medium vehicles. Int. J. Smart Nano Mater. 2025, 16, 419–442. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, S.; Li, B.; Wei, Y.; Wang, H. Investigation Interfacial Wetting Behavior of Copper Matte/Slag/Fe3O4 Enriched Intermediate Layer During High Temperature Smelting. Metall. Mater. Trans. B 2025, 56, 449–471. [Google Scholar] [CrossRef]











| Name | Molecular Formula | Specifications | Manufacturer | Purpose |
|---|---|---|---|---|
| Cyclopentane | C5H10 | Purity 96% | Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China | Hydrate guest molecule |
| Deionized water | H2O | 18.2 MΩ·cm | Laboratory-made, Changzhou, China | Hydrate host molecule |
| PVCap | (C8H13NO)n | Purity > 98% | Hangzhou Molot Chemical Technology Co., Ltd., Hangzhou, China | Kinetic inhibitor |
| X80 steel | / | 30 × 25 × 3 mm3; Grade X80; Yield strength = 555 MPa; Tensile strength = 630–770 MPa | Foshan Iron and Steel Co., Ltd., Foshan, China | Simulated pipeline wall |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhou, S.; Qiu, G.; Liu, Y.; Wang, W.; Liang, Z.; Zhang, Y. Effects of Wall Wettability and PVCap on Adhesion Characteristics Between Cyclopentane Hydrate and X80 Steel. Processes 2026, 14, 402. https://doi.org/10.3390/pr14030402
Zhou S, Qiu G, Liu Y, Wang W, Liang Z, Zhang Y. Effects of Wall Wettability and PVCap on Adhesion Characteristics Between Cyclopentane Hydrate and X80 Steel. Processes. 2026; 14(3):402. https://doi.org/10.3390/pr14030402
Chicago/Turabian StyleZhou, Shidong, Gan Qiu, Yang Liu, Wei Wang, Zhikuang Liang, and Yongqing Zhang. 2026. "Effects of Wall Wettability and PVCap on Adhesion Characteristics Between Cyclopentane Hydrate and X80 Steel" Processes 14, no. 3: 402. https://doi.org/10.3390/pr14030402
APA StyleZhou, S., Qiu, G., Liu, Y., Wang, W., Liang, Z., & Zhang, Y. (2026). Effects of Wall Wettability and PVCap on Adhesion Characteristics Between Cyclopentane Hydrate and X80 Steel. Processes, 14(3), 402. https://doi.org/10.3390/pr14030402

