CFD-DEM Simulation of Erosion in Glass Fiber-Reinforced Epoxy Resin Elbow
Abstract
1. Introduction
2. Mathematical Model and Numerical Method
2.1. Model of Particles
2.2. Model of Fluid
2.3. CFD-DEM Coupling Model
2.4. Wear Model
3. Results and Discussion
3.1. Validation of Erosion Wear Model Proposed
3.2. Solution and Simulation Conditions
3.3. Effects of Different Air Velocities on Composite Elbow Wear Rate
3.4. The Effect of Particle Size Distribution on the Wear Rate of the Elbow
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CFD | Computational Fluid Dynamics |
| DEM | Discrete Element Method |
| DPM | Discrete Phase Model |
| ZnO-BE-GFRP | zinc oxide-modified bidirectional E-glass fiber-reinforced epoxy resin composites |
| PSD | particle size distribution |
References
- Peng, W.; Cao, X. Numerical Prediction of Erosion Distributions and Solid Particle Trajectories in Elbows for Gas–Solid Flow. J. Nat. Gas Sci. Eng. 2016, 30, 455–470. [Google Scholar] [CrossRef]
- Xu, L.; Luo, K.; Zhao, Y.; Fan, J.; Cen, K. Multiscale Investigation of Tube Erosion in Fluidized Bed Based on CFD-DEM Simulation. Chem. Eng. Sci. 2018, 183, 60–74. [Google Scholar] [CrossRef]
- Akhondizadeh, M.; Fooladi Mahani, M.; Rezaeizadeh, M.; Mansouri, S. Prediction of Tumbling Mill Liner Wear: Abrasion and Impact Effects. J. Eng. Tribol. 2016, 230, 1310–1320. [Google Scholar] [CrossRef]
- Huang, J.; Wen, J.; Li, H.; Xia, Y.; Tan, S.; Xiao, H.; Duan, W.; Hu, J. Particle Erosion in 90-Degree Elbow Pipe of Pneumatic Conveying System: Simulation and Validation. Comput. Electron. Agric. 2024, 216, 108534. [Google Scholar] [CrossRef]
- Finnie, I. Erosion of Surfaces by Solid Particles. Wear 1960, 3, 87–103. [Google Scholar] [CrossRef]
- Bitter, J.G. AA Study of Erosion Phenomena. Wear 1963, 6, 169. [Google Scholar] [CrossRef]
- Neilson, J.H.; Gilchrist, A. Erosion by a Stream of Solid Particles. Wear 1968, 11, 111–122. [Google Scholar] [CrossRef]
- Grant, G.; Tabakoff, W. An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy; The University of Cincinnati: Cincinnati, OH, USA, 1973. [Google Scholar]
- Oka, Y.I.; Okamura, K.; Yoshida, T. Practical Estimation of Erosion Damage Caused by Solid Particle Impact. Wear 2005, 259, 95–101. [Google Scholar] [CrossRef]
- Oka, Y.I.; Yoshida, T. Practical Estimation of Erosion Damage Caused by Solid Particle Impact. Wear 2005, 259, 102–109. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, H.; Xu, L.; Zheng, J. An Erosion Model for the Discrete Element Method. Particuology 2017, 34, 81–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Reuterfors, E.P.; McLaury, B.S.; Shirazi, S.A.; Rybicki, E.F. Comparison of Computed and Measured Particle Velocities and Erosion in Water and Air Flows. Wear 2007, 263, 330–338. [Google Scholar] [CrossRef]
- Njobuenwu, D.O.; Fairweather, M. Modelling of Pipe Bend Erosion by Dilute Particle Suspensions. Comput. Chem. Eng. 2012, 42, 235–247. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, R.; Chang, B.; Chen, B.; Li, J.; Lu, Q.; Zhang, T. Simulation of Elbow Erosion of Gas–Liquid–Solid Three-Phase Shale Gas Gathering Pipeline Based on CFD-DEM. Processes 2024, 12, 1231. [Google Scholar] [CrossRef]
- Patankar, N.A.; Joseph, D.D. Modeling and Numerical Simulation of Particulate Flows by the Eulerian–Lagrangian Approach. Int. J. Multiph. Flow 2001, 27, 1659–1684. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete Particle Simulation of Two-Dimensional Fluidized Bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- Peng, W.; Cao, X. Numerical Simulation of Solid Particle Erosion in Pipe Bends for Liquid–Solid Flow. Powder Technol. 2016, 294, 266–279. [Google Scholar] [CrossRef]
- Lin, N.; Lan, H.; Xu, Y.; Dong, S.; Barber, G. Effect of the Gas–Solid Two-Phase Flow Velocity on Elbow Erosion. J. Nat. Gas Sci. Eng. 2015, 26, 581–586. [Google Scholar] [CrossRef]
- Mohebi, A.R.; Najafi, F.; Mozaffarian, M.; Dabir, B.; Esmaeilian Amrabadi, N. Fluid Dynamics and Erosion Analysis in Industrial Naphtha Reforming: A CFD-DPM Simulation Approach. Powder Technol. 2024, 436, 119417. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Li, X.; He, R.; Han, S.; Chen, Y. Erosion Prediction of Liquid-Particle Two-Phase Flow in Pipeline Elbows via CFD–DEM Coupling Method. Powder Technol. 2015, 275, 182–187. [Google Scholar] [CrossRef]
- Ma, G.; Ma, H.; Sun, Z. Simulation of Two-Phase Flow of Shotcrete in a Bent Pipe Based on a CFD–DEM Coupling Model. Appl. Sci. 2022, 12, 3530. [Google Scholar] [CrossRef]
- Liao, Y.; Cheng, K.; Sun, W.; Zhao, Y. Study on Pumping Wear Characteristics of Concrete Pipeline Based on CFD-DEM Coupling. Sci. Rep. 2023, 13, 16119. [Google Scholar] [CrossRef]
- Beyralvand, D.; Banazadeh, F.; Moghaddas, R. Numerical Investigation of Novel Geometric Solutions for Erosion Problem of Standard Elbows in Gas-Solid Flow Using CFD-DEM. Results Eng. 2023, 17, 101014. [Google Scholar] [CrossRef]
- Xiao, F.; Luo, M.; Huang, F.; Zhou, M.; An, J.; Kuang, S.; Yu, A. CFD–DEM Investigation of Gas-Solid Flow and Wall Erosion of Vortex Elbows Conveying Coarse Particles. Powder Technol. 2023, 424, 118524. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X.; Wu, X.; Liang, J.; Bao, S.; Zheng, Q. Coarse-Grained CFD-DEM Simulation of Elbow Erosion Induced by Dilute Gas-Solid Flow: A Multi-Level Study. Powder Technol. 2024, 443, 119916. [Google Scholar] [CrossRef]
- Miyazaki, N.; Hamao, T. Solid Particle Erosion of Thermoplastic Resins Reinforced by Short Fibers. J. Compos. Mater. 1994, 28, 871–883. [Google Scholar] [CrossRef]
- Bagci, M.; Imrek, H. Solid Particle Erosion Behaviour of Glass Fibre Reinforced Boric Acid Filled Epoxy Resin Composites. Tribol. Int. 2011, 44, 1704–1710. [Google Scholar] [CrossRef]
- Purohit, A.; Dehury, J.; Rout, L.N.; Pal, S. A Novel Study of Synthesis, Characterization and Erosion Wear Analysis of Glass–Jute Polyester Hybrid Composite. J. Inst. Eng. India Ser. E 2023, 104, 1–9. [Google Scholar] [CrossRef]
- Purohit, A.; Gupta, G.; Pradhan, P.; Agrawal, A. Development and Erosion Wear Analysis of Polypropylene/Linz-Donawitz Sludge Composites. Polym. Compos. 2023, 44, 6556–6565. [Google Scholar] [CrossRef]
- Purohit, A.; Satapathy, A.; Swain, P.T.R. Analysis of Erosion Wear Behavior of LD Sludge Filled Polypropylene Composites Using RSM. Mater. Sci. Forum 2020, 978, 222–228. [Google Scholar] [CrossRef]
- Pradhan, P.; Purohit, A.; Mohanty, I.; Jena, H.; Sahoo, B.B. Erosion Wear Analysis of Coconut Shell Dust Filled Epoxy Composites Using Computational Fluid Dynamics and Taguchi Method. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023, 237, 5653–5662. [Google Scholar] [CrossRef]
- Öztürk, B.; Gedikli, H.; Kılıçarslan, Y.S. Erosive Wear Characteristics of E-Glass Fiber Reinforced Silica Fume and Zinc Oxide-Filled Epoxy Resin Composites. Polym. Compos. 2020, 41, 326–337. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Ting, J.M.; Corkum, B.T. Computational Laboratory for Discrete Element Geomechanics. J. Comput. Civ. Eng. 1992, 6, 129–146. [Google Scholar] [CrossRef]
- Di Felice, R. The Voidage Function for Fluid-Particle Interaction Systems. Int. J. Multiph. Flow 1994, 20, 153–159. [Google Scholar] [CrossRef]
- Oesterlé, B.; Dinh, T.B. Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers. Exp. Fluids 1998, 25, 16–22. [Google Scholar] [CrossRef]
- Mei, R. An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number. Int. J. Multiph. Flow 1992, 18, 145–147. [Google Scholar] [CrossRef]
- Rubinow, S.I.; Keller, J.B. The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid. J. Fluid Mech. 1961, 11, 447. [Google Scholar] [CrossRef]
- Dennis, S.C.R.; Singh, S.N.; Ingham, D.B. The Steady Flow Due to a Rotating Sphere at Low and Moderate Reynolds Numbers. J. Fluid Mech. 1980, 101, 257–279. [Google Scholar] [CrossRef]
- Zhou, L.; Li, T.; Ma, H.; Liu, Z.; Dong, Y.; Zhao, Y. Development and Verification of an Unresolved CFD-DEM Method Applicable to Different-Sized Grids. Powder Technol. 2024, 432, 119127. [Google Scholar] [CrossRef]
- Chen, X.; McLaury, B.S.; Shirazi, S.A. Application and Experimental Validation of a Computational Fluid Dynamics (CFD)-Based Erosion Prediction Model in Elbows and Plugged Tees. Comput. Fluids 2004, 33, 1251–1272. [Google Scholar] [CrossRef]

















| Parameters | Numerical Value |
|---|---|
| Particle diameter (μm) | 348 |
| Particle density (kg/m3) | 3160 |
| Incident velocity (m/s) | 100 |
| Particle mass flow rate qm (g/min) | 2.5 |
| Sample size (mm) | 25 × 25 × 5 |
| Wall density (kg/m3) | 2050.7 |
| Impact angle α (°) | 20, 30, 45, 60, 90 |
| Sliding friction coefficient f | 0.3 |
| Rolling friction coefficient f | 0.001 |
| Normal spring stiffness kn (N/m) | 7000 |
| Tangential spring stiffness kt (N/m) | 2000 |
| Recovery coefficient e | 0.9 |
| Parameter Names | Numerical Value | |
|---|---|---|
| Tube parameters | Tube material | ZnO-BE-GFRP |
| Density/(kg/m3) | 2050.7 | |
| Tube diameter/(mm) | 25.4 | |
| Bend ratio R/D | 1.5 | |
| Fluid properties | Density/(kg/m3) | 1.185 |
| Viscosity/(Pa·s) | 1.84 × 10−5 | |
| Gas velocity/(m/s) | 11.43; 22.86; 45.72 | |
| Particle properties | Particle density/(kg/m3) | 2650 |
| Particle mass flow rate qm/(kg/s) | 0.000208 | |
| Particle shape | Spherical | |
| Particle size/(mm) | 0.15 (mono-size)0.075–0.225, 0.1–0.2, 0.125–0.175(random distribution)0.1–0.2 (normal distribution) | |
| Normal spring coefficient/(N/m) | 7000 | |
| Tangential spring coefficient/(N/m) | 2000 | |
| Initial velocity/(m/s) | 2.5 | |
| Inlet fluctuation velocity/(m/s) | 2.7 | |
| Restitution coefficient | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Xu, L.; Shen, Y.; Chen, X.; Bao, S.; Zheng, X.; Du, X.; Zhao, Y. CFD-DEM Simulation of Erosion in Glass Fiber-Reinforced Epoxy Resin Elbow. Processes 2026, 14, 94. https://doi.org/10.3390/pr14010094
Xu L, Shen Y, Chen X, Bao S, Zheng X, Du X, Zhao Y. CFD-DEM Simulation of Erosion in Glass Fiber-Reinforced Epoxy Resin Elbow. Processes. 2026; 14(1):94. https://doi.org/10.3390/pr14010094
Chicago/Turabian StyleXu, Lei, Yujie Shen, Xingchen Chen, Shiyi Bao, Xiaoteng Zheng, Xiyong Du, and Yongzhi Zhao. 2026. "CFD-DEM Simulation of Erosion in Glass Fiber-Reinforced Epoxy Resin Elbow" Processes 14, no. 1: 94. https://doi.org/10.3390/pr14010094
APA StyleXu, L., Shen, Y., Chen, X., Bao, S., Zheng, X., Du, X., & Zhao, Y. (2026). CFD-DEM Simulation of Erosion in Glass Fiber-Reinforced Epoxy Resin Elbow. Processes, 14(1), 94. https://doi.org/10.3390/pr14010094
