Optimization of Low-Rank Coal Flotation Using Jatropha curcas Biodiesel via Response Surface Methodology
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Raw Coal
2.2. Collector Preparation (Trans-Esterification Process)
2.3. Experimental Test
2.4. Characterization of Raw Coal, Collectors, and Clean Coal
2.5. Experimental Design for Coal Flotation Process Modeling and Optimization
2.6. Experimental Design by Central Composite Design
3. Results and Discussion
3.1. Characterization of Feed Coal and Jatropha Biodiesel
3.2. Characteristics of Clean Coal
3.2.1. XRD Analysis
3.2.2. Functional Group Analysis of Coal Before and After Treatment
3.2.3. Surface Hydrophobicity for the Feed Coal
3.2.4. SEM-EDS Analysis
3.3. Experimental Design and Modeling
3.3.1. Response Prediction
3.3.2. ANOVA for a Quadratic Model of the Responses
3.3.3. Interactive Effect of Collectors and Frother Dosage on Ash Content and Combustible Recovery of the Concentrate
3.3.4. Optimization of Coal Flotation Factors
3.3.5. Validation of Quadratic Models and Confirmation of Optimization Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schiffer, H.-W. World Energy Resources 2016. World Energy Council 2016, 2016, 27–29. Available online: https://www.worldenergy.org/publications/entry/world-energy-resources-2016 (accessed on 9 November 2023).
- Zhu, G.; Zhang, B.; Zhao, P.; Duan, C.; Zhao, Y.; Zhang, Z.; Yan, G.; Zhu, X.; Ding, W.; Rao, Z. Upgrading low-quality oil shale using high-density gas-solid fluidized bed. Fuel 2019, 252, 666–674. [Google Scholar] [CrossRef]
- Sivrikaya, O. Cleaning study of a low-rank lignite with DMS, Reichert spiral and flotation. Fuel 2014, 119, 252–258. [Google Scholar] [CrossRef]
- Sun, K.; Fan, L.; Xia, Y.; Li, C.; Chen, J.; Gao, S.; Wu, B.; Peng, J.; Ji, Y. Impact of coal mining on groundwater of Luohe Formation in Binchang mining area. Int. J. Coal Sci. Technol. 2021, 8, 88–102. [Google Scholar] [CrossRef]
- Tu, Q.; Cheng, Y.; Xue, S.; Ren, T.; Cheng, X. Energy-limiting factor for coal and gas outburst occurrence in intact coal seam. Int. J. Min. Sci. Technol. 2021, 31, 729–742. [Google Scholar] [CrossRef]
- Zheng, H.J.; Zhang, S.-Y.; Guo, X.; Lu, J.-F.; Dong, A.-X.; Deng, W.-X.; Tang, W.-J.; Zhao, M.-H.; Jin, T. An experimental study on the drying kinetics of lignite in high temperature nitrogen atmosphere. Fuel Process. Technol. 2014, 126, 259–265. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Laursen, K.; Nakagawa, H.; Miura, K. Hydrothermal upgrading of Loy Yang Brown coal—Effect of upgrading conditions on the characteristics of the products. Fuel Process. Technol. 2008, 89, 391–396. [Google Scholar] [CrossRef]
- Bharath, K.L.; Nikkam, S.; Udayabhanu, G. Beneficiation of high-ash Indian coal fines by froth flotation using bio-degradable-oil as a collector. Int. J. Coal Prep. Util. 2022, 42, 2685–2702. [Google Scholar] [CrossRef]
- Hu, H.; Li, M.; Li, L.; Tao, X. Improving bubble-particle attachment during the flotation of low rank coal by surface modification. Int. J. Min. Sci. Technol. 2020, 30, 217–223. [Google Scholar] [CrossRef]
- Pan, J.; Hassas, B.V.; Rezaee, M.; Zhou, C.; Pisupati, S.V. Recovery of rare earth elements from coal fly ash through sequential chemical roasting, water leaching, and acid leaching processes. J. Clean. Prod. 2021, 284, 124725. [Google Scholar] [CrossRef]
- Angadi, S.I.; Jeon, H.S.; Nikkam, S. Experimental analysis of solids and water flow to the coal flotation froths. Int. J. Miner. Process. 2012, 110–111, 62–70. [Google Scholar] [CrossRef]
- Xia, W.; Wu, F.; Jaiswal, S.; Li, Y.; Peng, Y.; Xie, G. Colloids and Surfaces A: Physicochemical and Engineering Aspects Chemical and physical modification of low rank coal floatability by a compound collector. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125943. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, F.; Xia, Y.; Xing, Y.; Gui, X. Improved floatability of low-rank coal through surface modification by hydrothermal pretreatment. J. Clean. Prod. 2020, 246, 119025. [Google Scholar] [CrossRef]
- Tian, Q.; Wang, Y.; Li, G. Application of special collectors and flotation column for beneficiation low rank coal slimes. Physicochem. Probl. Miner. Process. 2017, 53, 553–568. [Google Scholar] [CrossRef]
- Dey, S. Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview. Fuel Process. Technol. 2012, 94, 151–158. [Google Scholar] [CrossRef]
- Dashti, A.; Eskandari Nasab, M. Optimization of the performance of the hydrodynamic parameters on the flotation performance of coarse coal particles using design expert (DX8) software. Fuel 2013, 107, 593–600. [Google Scholar] [CrossRef]
- Ao, L.; Zhang, H.; Zhang, J.; Li, G. Optimization of Flotation Conditions for Long-Flame Coal Mud by Response Surface Method. Minerals 2024, 14, 636. [Google Scholar] [CrossRef]
- Hamza, H.; Jibril, A. Application of the Response Surface Methodology to Optimise the Leaching Process and Recovery of Rare Earth Elements from Discard and Run of Mine Coal. Minerals 2022, 12, 938. [Google Scholar] [CrossRef]
- Mohammadnejad, S.; Karamoozian, M.; Nouri, M. Statistically modelling of coal flotation in a pilot plant scale column cell. Int. J. Min. Geo-Eng. 2024, 3, 323–326. [Google Scholar]
- Xu, M.; Zhou, Y.; Hao, Y.; Cao, Y.; Xing, Y.; Gui, X. Enhancing Flotation Performance of Low-Rank Coal Using Environment-Friendly Vegetable Oil. Minerals 2023, 13, 717. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, D.-Z.; Ni, Y.; Wang, J.-X.; Nie, C.-C.; Yang, C.; Lyu, X.-J.; Qiu, J.; Li, L. Cleaner approach to fine coal flotation by renewable collectors prepared by waste oil transesterification. J. Clean. Prod. 2020, 252, 119822. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, J.; Xie, Z.; Li, B.; Liu, S. Micro-mechanism of improving low-rank coal flotation by using carboxylic acid collector: A DFT calculation and MD simulation study. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126696. [Google Scholar] [CrossRef]
- Venkateswarulu, T.C.; Raviteja, C.V.; Prabhaker, K.V.; Babu, D.J.; Reddy, A.R.; Indira, M.; Venkatanarayana, A. Review on methods of transesterification of oils and fats in bio-diesel formation. Int. J. ChemTech Res. 2014, 6, 2568–2576. [Google Scholar]
- Xia, W.; Yang, J.; Liang, C. Improving oxidized coal flotation using biodiesel as a collector. Int. J. Coal Prep. Util. 2013, 33, 181–187. [Google Scholar] [CrossRef]
- Biswas, S.; Sharma, S.; Mukherjee, S.; Meikap, B.C.; Sen, T.K. Process modelling and optimization of a novel Semifluidized bed adsorption column operation for aqueous phase divalent heavy metal ions removal. J. Water Process Eng. 2020, 37, 101406. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous Optimization of Several Response Variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Aslan, N. Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel 2007, 86, 769–776. [Google Scholar] [CrossRef]
- Mehrabani, J.V.; Noaparast, M.; Mousavi, S.M.; Dehghan, R.; Ghorbani, A. Process optimization and modelling of sphalerite flotation from a low-grade Zn-Pb ore using response surface methodology. Sep. Purif. Technol. 2010, 72, 242–249. [Google Scholar] [CrossRef]
- Kang, H.; Zhang, H. Enhanced Flotation Separation of Low-Rank Coal with a Mixed Collector: Experimental and Molecular Dynamics Simulation Study. ACS Omega 2022, 7, 34239–34248. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.; Fan, M.; Zhang, L. The effect of ethylene oxide groups in dodecyl ethoxyl ethers on low rank coal flotation: An experimental study and simulation. Powder Technol. 2019, 344, 684–692. [Google Scholar] [CrossRef]
- Li, Y.; Xia, W.; Peng, Y.; Xie, G. A novel coal tar-based collector for effective flotation cleaning of low rank coal. J. Clean. Prod. 2020, 273, 123172. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, J.; Kang, X.; Yu, H.; Frost, R.L. Structure evolution characterization of Anyang anthracites via H2O2 oxidization and HF acidification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 130, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Azizi, D.; Gharabaghi, M.; Saeedi, N. Optimization of the coal flotation procedure using the Plackett-Burman design methodology and kinetic analysis. Fuel Process. Technol. 2014, 128, 111–118. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Shang, H.; Bao, L.; Yu, G.; Tian, J. Hydrophobic regulation enhances the filtration and dehydration for coal preparation products, an experimental exploration. Physicochem. Probl. Miner. Process. 2024, 60, 194659. [Google Scholar] [CrossRef]
- Avenue, J.S.; Africa, S. X-ray structure of some South African coals before and after heat treatment at 500 and 1000° C. Fuel 2001, 62, 1315–1320. [Google Scholar]
- Yan, J.; Lei, Z.; Li, Z.; Wang, Z.; Ren, S.; Kang, S.; Wang, X.; Shui, H. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy. Fuel 2020, 268, 117038. [Google Scholar] [CrossRef]
- Zhang, K.; Cheng, Y.; Li, W.; Hao, C.; Hu, B.; Jiang, J. Microcrystalline Characterization and Morphological Structure of Tectonic Anthracite Using XRD, Liquid Nitrogen Adsorption, Mercury Porosimetry, and Micro-CT. Energy Fuels 2019, 33, 10844–10851. [Google Scholar] [CrossRef]
- Jiang, J.; Yang, W.; Cheng, Y.; Liu, Z.; Zhang, Q.; Zhao, K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification. Fuel 2019, 239, 559–572. [Google Scholar] [CrossRef]
- Fuerstenau, D.W.; Harris, G.H.; Jia, R. Nonionic surfactants as collectors for the flotation of oxidized and/or low-rank coal. ACS Symp. Ser. 1999, 740, 230–247. [Google Scholar] [CrossRef]
- Xia, W.; Xie, G.; Peng, Y. Recent advances in beneficiation for low rank coals. Powder Technol. 2015, 277, 206–221. [Google Scholar] [CrossRef]
- Huang, G.; Xu, J.; Geng, P.; Li, J. Carrier flotation of low-rank coal with polystyrene. Minerals 2020, 10, 452. [Google Scholar] [CrossRef]
- Jia, R.; Harris, G.H.; Fuerstenau, D.W. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 2000, 58, 99–118. [Google Scholar] [CrossRef]
- Giraldo, L. XRD study of coal microstructure evolution during air oxidation. Afinidad 2012, 69, 101–105. [Google Scholar]
- Parmar, P.; Shukla, A.; Goswami, D.; Patel, B.; Saraf, M. Optimization of cadmium and lead biosorption onto marine Vibrio alginolyticus PBR1 employing a Box-Behnken design. Chem. Eng. J. Adv. 2020, 4, 100043. [Google Scholar] [CrossRef]
- Ye, G.; Ma, L.; Li, L.; Liu, J.; Yuan, S.; Huang, G. Application of Box–Behnken design and response surface methodology for modeling and optimization of batch flotation of coal. Int. J. Coal Prep. Util. 2020, 40, 131–145. [Google Scholar] [CrossRef]
- Hannachi, Y.; Hafidh, A. Preparation and characterization of novel bi-functionalized xerogel for removal of methylene blue and lead ions from aqueous solution in batch and fixed-bed modes: RSM optimization, kinetic and equilibrium studies. J. Saudi Chem. Soc. 2020, 24, 505–519. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Suresh, N.; Varma, A.K. Flotation production of vitrinite maceral concentrate and its optimization using response surface approach. Int. J. Coal Prep. Util. 2020, 40, 155–174. [Google Scholar] [CrossRef]
- Tan, J.; Liang, L.; Xia, W.; Xie, G. The effect of different flotation operating parameters on the froth properties and their relation to clean coal ash content. Sep. Sci. Technol. 2018, 53, 1434–1444. [Google Scholar] [CrossRef]
- Hazare, G.D.; Dash, N.; Dwari, R.K. Sustainable coal flotation: Biodiesel from vegetable oil refinery waste as an alternative collector to diesel and acid oil. Sep. Sci. Technol. 2025, 60, 684–699. [Google Scholar] [CrossRef]
- Aksoy, D.O.; Sagol, E. Application of central composite design method to coal flotation: Modelling, optimization and verification. Fuel 2016, 183, 609–616. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.J.; Choi, J.W.; Sillanpää, M.; Mtei, K.M. Optimization of desorption parameters using response surface methodology for enhanced recovery of arsenic from spent reclaimable activated carbon: Eco-friendly and sorbent sustainability approach. Ecotoxicol. Environ. Saf. 2024, 280, 116550. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.J.; Mtei, K.M. Optimization of divalent mercury removal from synthetic wastewater using desirability function in central composite design of response surface methodology. J. Environ. Health Sci. Eng. 2024, 22, 209–227. [Google Scholar] [CrossRef]
- Niu, C.; Xia, W.; Li, Y.; Bu, X.; Wang, Y.; Xie, G. Insight into the low-rank coal flotation using amino acid surfactant as a promoter. Fuel 2022, 307, 121810. [Google Scholar] [CrossRef]
- Hao, B.; Fan, M.; Li, Z.; Li, H. Colloids and Surfaces A: Physicochemical and Engineering Aspects Study on the mechanism of adsorption and hydrophobic modification of glycerol monooleate / kerosene mixed collector on low-rank coal surface. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131960. [Google Scholar] [CrossRef]
- Xu, M.; Xing, Y.; Cao, Y.; Gui, X. Waste colza oil used as renewable collector for low rank coal flotation. Powder Technol. 2019, 344, 611–616. [Google Scholar] [CrossRef]
- Dube, R.; Honaker, R. Improving the flotation performance of an oxidized bituminous coal source. Miner. Eng. 2019, 142, 105937. [Google Scholar] [CrossRef]
- Yang, Z.; Chang, G.; Xia, Y.; He, Q.; Zeng, H.; Xing, Y.; Gui, X. Utilization of waste cooking oil for highly efficient recovery of unburned carbon from coal fly ash. J. Clean. Prod. 2021, 282, 124547. [Google Scholar] [CrossRef]
Proximate Analysis | Ultimate Analysis | |||||||
---|---|---|---|---|---|---|---|---|
F.C | Ash | F.M | V.M | C.V | Carbon | Hydrogen | Nitrogen | Oxygen |
% | % | % | % | MJ/kg | % | % | % | % |
48.05 | 29.71 | 3.43 | 21.78 | 5.73 | 58.12 | 3.28 | 1.76 | 20.38 |
Factors | Level | ||||
---|---|---|---|---|---|
−α | −1 | 0 | +1 | +α | |
A: Collector (kg/t) | −0.75 | 0.50 | 1.75 | 3.00 | 4.25 |
B: Frother (kg/t) | 0.05 | 0.20 | 275 | 0.50 | 0.65 |
C: Solid percent (wt%) | 7.50 | 10.00 | 12.50 | 15.00 | 17.50 |
D: Depressant (kg/t) | 0.25 | 0.50 | 1.25 | 2.00 | 2.75 |
Element (%) | Products Concentrate | ||
---|---|---|---|
Feed Coal | With Diesel Oil | With Jatropha Biodiesel | |
S1 | S2 | S3 | |
C | 60.80 | 69.70 | 73.70 |
O | 32.77 | 24.30 | 21.06 |
Al | 2.15 | 1.40 | 1.70 |
Si | 0.21 | 4.40 | 2.70 |
Ca | 0.15 | 0.10 | |
Ti | 0.32 | 0.10 |
Source | Std. Dev. | R2 | Adjusted R2 | Predicted R2 | Ad. Precis | Remark |
---|---|---|---|---|---|---|
Linear | 0.0058 | 0.7722 | 0.7357 | 0.6661 | Suggested | |
2FI | 0.0066 | 0.7764 | 0.6588 | 0.6086 | ||
Quadratic | 0.0052 | 0.8915 | 0.7901 | 0.6730 | 11.4800 | Suggested |
Cubic | 0.0000 | 1.0000 | 1.0000 | Aliased |
Scheme | Std. Dev. | R2 | Adjusted R2 | Predicted R2 | Ade. Precis | Remark |
---|---|---|---|---|---|---|
Linear | 5.28 | 0.8929 | 0.8758 | 0.8498 | ||
2FI | 6.05 | 0.8934 | 0.8374 | 0.8094 | ||
Quadratic | 3.01 | 0.9791 | 0.9596 | 0.8928 | 21.4900 | Suggested |
Cubic | 0.0000 | 1.0000 | 1.0000 | Aliased |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Model | 0.0033 | 14 | 0.0002 | 8.80 | <0.0001 | significant |
A-Collector dosage | 0.0020 | 1 | 0.0020 | 74.84 | <0.0001 | |
B-frother dosage | 0.0008 | 1 | 0.0008 | 28.33 | <0.0001 | |
C-Solid percent | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
D-Depressant | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
AB | 0.0000 | 1 | 0.0000 | 0.5902 | 0.4543 | |
AC | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
AD | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
BC | 4.337 × 10−19 | 1 | 4.337 × 10−19 | 1.609 × 10−14 | 1.0000 | |
BD | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
CD | 0.0000 | 1 | 0.0000 | 0.0000 | 1.0000 | |
A2 | 4.149 × 10−6 | 1 | 4.149 × 10−6 | 0.1539 | 0.7003 | |
B2 | 0.0003 | 1 | 0.0003 | 10.78 | 0.0050 | |
C2 | 0.0000 | 1 | 0.0000 | 1.51 | 0.2388 | |
D2 | 0.0000 | 1 | 0.0000 | 1.51 | 0.2388 | |
Residual | 0.0004 | 15 | 0.0000 | |||
Lack of Fit | 0.0004 | 10 | 0.0000 | |||
Pure Error | 0.0000 | 5 | 0.0000 | |||
Cor Total | 0.0037 | 29 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Remark |
---|---|---|---|---|---|---|
Model | 2321.32 | 14 | 165.81 | 102.29 | <0.0001 | Significant |
A-Collector | 2035.76 | 1 | 2035.76 | 1255.85 | <0.0001 | |
B-Frother | 66.67 | 1 | 66.67 | 41.13 | <0.0001 | |
C-Solid percent | 54.00 | 1 | 54.00 | 33.31 | <0.0001 | |
D-Depressant | 4.17 | 1 | 4.17 | 2.57 | 0.1297 | |
AB | 16.00 | 1 | 16.00 | 9.87 | 0.0067 | |
AC | 2.25 | 1 | 2.25 | 1.39 | 0.2571 | |
AD | 0.2500 | 1 | 0.2500 | 0.1542 | 0.7001 | |
BC | 0.2500 | 1 | 0.2500 | 0.1542 | 0.7001 | |
BD | 0.2500 | 1 | 0.2500 | 0.1542 | 0.7000 | |
CD | 8.777 × 10−11 | 1 | 8.777 × 10−11 | 5.414 × 10−11 | 1.0000 | |
A2 | 138.72 | 1 | 138.72 | 85.58 | <0.0001 | |
B2 | 1.16 | 1 | 1.16 | 0.7144 | 0.4113 | |
C2 | 9.24 | 1 | 9.24 | 5.70 | 0.0305 | |
D2 | 1.16 | 1 | 1.16 | 0.7144 | 0.4113 | |
Residual | 24.32 | 15 | 1.62 | |||
Lack of Fit | 20.98 | 10 | 2.10 | 3.15 | 0.1088 | not significant |
Pure Error | 3.33 | 5 | 0.6667 | |||
Cor Total | 2345.64 | 29 |
Solution 1 of 100 Response | Predicted Mean | Predicted Median | Observed | Std. Dev. | n | SE Pred | 95% PI Low | Data Mean | 95% PI High |
---|---|---|---|---|---|---|---|---|---|
Ash | 9.97 | 9.97 | 11.20 | 0.51 | 1 | N/A | 8.83 | 10.32 | 11.31 |
C.R | 83.22 | 83.22 | 80.08 | 3.01 | 1 | 3.37 | 75.43 | 80.64 | 87.81 |
Collectors | Combustible Recovery | Efficiency |
---|---|---|
Compound (Methyl oleate + DDAB) | 76.73% | [29] |
Compound (Kerosene + SCG (sodium cocoyl glycinate)) | 45.00% | [53] |
Compound (Diesel + Oxygen) | 65.00% | [21] |
Compound (Glycerol + Mono oleate) | 88.00% | [54] |
Manhua oil | 79.00% | [8] |
Waste colza oil | 65.68% | [55] |
Octanoic acid | 65.00% | [22] |
Fossil oil + oleic acid | 77.00% | [56] |
Waste fried cooking oil | 80.00% | [57] |
Jatropha biodiesel (biodiesel) | 80.08% | Current study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macapa, I.A.; Kivevele, T.; Jande, Y.A.C. Optimization of Low-Rank Coal Flotation Using Jatropha curcas Biodiesel via Response Surface Methodology. Processes 2025, 13, 2952. https://doi.org/10.3390/pr13092952
Macapa IA, Kivevele T, Jande YAC. Optimization of Low-Rank Coal Flotation Using Jatropha curcas Biodiesel via Response Surface Methodology. Processes. 2025; 13(9):2952. https://doi.org/10.3390/pr13092952
Chicago/Turabian StyleMacapa, Inácia Augusto, Thomas Kivevele, and Yusufu Abeid Chande Jande. 2025. "Optimization of Low-Rank Coal Flotation Using Jatropha curcas Biodiesel via Response Surface Methodology" Processes 13, no. 9: 2952. https://doi.org/10.3390/pr13092952
APA StyleMacapa, I. A., Kivevele, T., & Jande, Y. A. C. (2025). Optimization of Low-Rank Coal Flotation Using Jatropha curcas Biodiesel via Response Surface Methodology. Processes, 13(9), 2952. https://doi.org/10.3390/pr13092952