Nanofluid-Enhanced Thermoelectric Generator Coupled with a Vortex-Generating Heat Exchanger for Optimized Energy Conversion
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Dimensions
2.2. Governing Equations
2.3. Boundary Conditions
- The heat exchanger inlet is set for fully developed flow, which is analyzed as turbulent flow.
- The effects of radiation are neglected, and the walls not in contact with the TEG are considered adiabatic.
- The inlet velocity ranges from 0.5 m/s to 3 m/s, and the temperature difference is maintained at approximately 75 K.
- At the outlet, the pressure is held constant at zero, which is essential for accurately representing the conditions as the fluid exits the system.
2.4. Evaluation Parameters
2.5. Mesh Independence
3. Validation
4. Results and Discussion
4.1. Fluid Dynamics Analysis in Nanofluid-Based Heat Exchangers
4.2. Edge Temperature Analysis of TEG in Nanofluid-Based Heat Exchangers
4.3. Evaluating Power Generation of TEG in Nanofluid-Based Heat Exchangers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Density | |
Dynamic viscosity | |
Specific heat | |
Velocity vector | |
Pressure | |
Temperature | |
Heat flow | |
Thermal conductivity of fluid | |
Thermal energy generated | |
Steady-state thermal conductivity | |
Heat flow on the surface of thermoelectric materials | |
Joule heat generated by electric current passing through thermoelectric materials | |
Seebeck coefficient | |
Thermal conductivity | |
Electrical conductivity | |
Electric field | |
Electric potential gradient | |
Internal resistance of a thermocouple | |
Thermoelectric conductivity of a thermocouple | |
Electrical resistivity of P-type thermoelectric material | |
Electrical resistivity of N-type thermoelectric material | |
Length of P-type thermoelectric material | |
N-type thermoelectric material length | |
Cross-sectional area of P-type thermoelectric material | |
Cross-sectional area of N-type thermoelectric material | |
Thermal conductivity of P-type thermoelectric material | |
Thermal conductivity of N-type thermoelectric material | |
Seebeck coefficient of a thermocouple | |
Seebeck coefficient of P-type thermoelectric material | |
Seebeck coefficient of N-type thermoelectric material | |
Number of thermocouples | |
Conductor resistivity | |
Conductor length | |
Cross-sectional area of conductor | |
TEG hot-edge temperature | |
TEG cold-edge temperature | |
Load resistance | |
Current | |
P | TEG output power |
Internal resistance of TEG | |
TEG output voltage | |
Maximum output power of TEG |
References
- Pfeiffelmann, B.; Benim, A.C.; Joos, F. Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review. Energies 2021, 14, 8329. [Google Scholar] [CrossRef]
- Bhutta, M.M.A.; Hayat, N.; Bashir, M.H.; Khan, A.R.; Ahmad, K.N.; Khan, S. CFD applications in various heat exchangers design: Areview. Appl. Therm. Eng. 2012, 32, 1–12. [Google Scholar] [CrossRef]
- Patil, D. A Review of Thermoelectric Generator for Waste Heat Recovery From Engine Exhaust. Int. J. Res. Aeronaut. Mech. Eng. 2013, 1, 1–9. [Google Scholar]
- Deng, W.; Wang, X.; Pan, X.; Zhang, S.; Ding, J.; Li, G. Geometry design and performance optimization of a terrestrial radioisotope thermoelectric generator based on finite element analysis. Ann. Nucl. Energy 2021, 151, 107883. [Google Scholar] [CrossRef]
- Charilaou, K.; Kyratsi, T.; Louca, L.S. Design of an air-cooled thermoelectric generator system through modelling and simulations, for use in cement industries. Mater. Today Proc. 2021, 44, 3516–3524. [Google Scholar] [CrossRef]
- Hu, Q.-X.; Liu, W.-D.; Zhang, L.; Gao, H.; Wang, D.-Z.; Wu, T.; Shi, X.-L.; Li, M.; Liu, Q.-F.; Yang, Y.-L.; et al. Carrier Separation Boosts Thermoelectric Perfomance of Flexible n-Type Ag2Se-Based Films. Adv. Energy Mater. 2024, 14, 2401890. [Google Scholar] [CrossRef]
- Ewert, M.K. Terrestrial, and Aerospace Solar Heat Pump Development: Past, Present, and Future; ASME: Albuquerque, NM, USA, 1998. [Google Scholar]
- Chen, G.; Mu, Y.; Zhai, P.; Li, G.; Zhang, Q. An Investigation on the Coupled Thermal–Mechanical–Electrical Response of Automobile Thermoelectric Materials and Devices. J. Electron. Mater. 2013, 42, 1762–1770. [Google Scholar] [CrossRef]
- Riffat, S.B.; Ma, X. Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 2003, 23, 913–935. [Google Scholar] [CrossRef]
- Su, X.; Zhang, L.; Liu, Z.; Luo, Y.; Chen, D.; Li, W. Performance evaluation of a novel building envelope integrated with thermoelectric cooler and radiative sky cooler. Renew. Energy 2021, 171, 1061–1078. [Google Scholar] [CrossRef]
- Zhu, L.; Li, H.; Chen, S.; Tian, X.; Kang, X.; Jiang, X.; Qiu, S. Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renew. Energy 2020, 156, 710–718. [Google Scholar] [CrossRef]
- Fan, S.; Gao, Y.; Rezania, A. Thermoelectric performance and stress analysis on wearable thermoelectric generator under bending load. Renew. Energy 2021, 173, 581–595. [Google Scholar] [CrossRef]
- Chung, Y.; Wu, C. Enhancing Ocean Thermal Energy Conversion Performance: Optimized Thermoelectric Genera-tor-Integrated Heat Exchangers with Longitudinal Vortex Generators. Energies 2024, 17, 526. [Google Scholar] [CrossRef]
- Maduabuchi, C.C.; Ejenakevwe, K.A.; Mgbemene, C.A. Performance optimization and thermodynamic analysis of irreversibility in a contemporary solar thermoelectric generator. Renew. Energy 2021, 168, 1189–1206. [Google Scholar] [CrossRef]
- Borhani, S.M.; Hosseini, M.J.; Pakrouh, R.; Ranjbar, A.A.; Nourian, A. Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite. Renew. Energy 2021, 168, 1122–1140. [Google Scholar] [CrossRef]
- Jouhara, H.; Khordehgah, N.; Almahmoud, S.; Delpech, B.; Chauhan, A.; Tassou, S.A. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 2018, 6, 268–289. [Google Scholar] [CrossRef]
- Gao, H.; Huang, G.; Zhang, Y. Development of stove-powered thermoelectric generators: A review. Appl. Therm. Eng. 2016, 96, 297–310. [Google Scholar] [CrossRef]
- Jang, J.-Y.; Tsai, Y.-C. Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system. Appl. Therm. Eng. 2013, 51, 677–689. [Google Scholar] [CrossRef]
- Chai, L.; Tassou, S.A. A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface. Energies 2018, 11, 2737. [Google Scholar] [CrossRef]
- Tian, L.-T.; He, Y.-L.; Lei, Y.-G.; Tao, W.-Q. Numerical study of fluid flow and heat transfer in a flat-plate channel with longitudinal vortex generators by applying field synergy principle analysis. Int. Commun. Heat. Mass. 2009, 36, 111–120. [Google Scholar] [CrossRef]
- Sinha, A.; Chattopadhyay, H.; Iyengar, A.K.; Biswas, G. Enhancement of heat transfer in a fin-tube heat exchanger using rectangular winglet type vortex generators. Int. J. Heat. Mass. Transf. 2016, 101, 667–681. [Google Scholar] [CrossRef]
- Hunga, Y.-H.; Tenga, T.-P.; Tengb, T.-C.; Chena, J.-H. Assessment of heat dissipation performance for nanofluid. Appl. Therm. Eng. 2012, 32, 132–140. [Google Scholar] [CrossRef]
- Narankhishig, Z.; Ham, J.; Lee, H.; Cho, H. Convective heat transfer characteristics of nanofluids including the magnetic effect on heat transfer enhancement-a review. Appl. Therm. Eng. 2021, 193, 116987. [Google Scholar] [CrossRef]
- Ramos-Castañeda, C.; Olivares-Robles, M.; Olivares-Hernandez, A.; Hernandez-Gonzalez, L. Performance of a Nanofluid-Cooled Segmented Thermoelectric Generator: Hollow/Filled Leg Structures and Segmentation Effects. Processes 2023, 11, 1728. [Google Scholar] [CrossRef]
- Srivastava, K.; Sahoo, R.R. Thermoelectric performance enhancement by employing fishtail and delta-shaped vortex generators in a heat exchanger: An experimental and numerical study. Int. J. Heat. Fluid. Flow. 2025, 115, 109869. [Google Scholar] [CrossRef]
- Bayat, M.; Basem, A.; Jaafar, M.S.; Dayoub, M.S.; Akbari, A.A.; Marzban, A.; Montazerifar, F.; Salahsouhr, S.; Baghaei, S.; Sarlak, R. Entropy and energy analysis of water/silver nanofluid flow in a microchannel by changing the angle of attack of a cam-shaped vortex generator. Int. J. Thermofluids 2024, 23, 100719. [Google Scholar] [CrossRef]
- Same Sky, 18 11 2024. Available online: https://www.sameskydevices.com (accessed on 13 June 2025).
- Yan, S.R.; Moria, H.; Asaadi, S.; Dizaji, H.S.; Khalilarya, S.; Jermsittiparsert, K. Performance and profit analysis of thermoelectric power generators mounted on channels with different cross-sectional shapes. Appl. Therm. Eng. 2020, 176, 5455. [Google Scholar] [CrossRef]
- Ma, T.; Lu, X.; Pandit, J.; Ekkad, S.V.; Huxtable, S.T.; Deshpande, S.; Wang, Q.W. Numerical study on thermoelectric–hydraulic performance of a thermoelectric power generator with a plate-fin heat exchanger with longitudinal vortex generators. Appl. Energy 2017, 185, 1343–1354. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, S.; Chen, L. Technologies and Applications of Thermoelectric Devices: Current Status, Challenges and Prospects. J. Inorg. Mater. 2019, 34, 279–293. [Google Scholar] [CrossRef]
- Chen, W.; Lin, Y.; Wang, X.; Lin, Y. A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties. Appl. Energy 2019, 241, 11–24. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Gen-erators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Tian, H.; Sun, X.; Jia, Q.; Liang, X.; Shu, G.; Wang, X. Comparison and parameter optimization of a segmented thermoelectric generator by using the high temperature exhaust of a diesel engine. Energy 2015, 84, 121–130. [Google Scholar] [CrossRef]
- Kumar, S.; Heister, S.; Xu, X.; Salvador, J.; Meisner, G. Thermoelectric Generators for Automotive Waste Heat Re-covery Systems Part I: Numerical Modeling and Baseline Model Analysis. J. Electron. Mater. 2013, 42, 665–674. [Google Scholar] [CrossRef]
SPECIFICATIONS | |||||
---|---|---|---|---|---|
Parameter | Conditions/description | min | typ | max | units |
Open circuit voltage | At Th = 300 °C, Tc = 30 °C | 8.4 | V | ||
Matched load resistance | At Th = 300 °C, Tc = 30 °C | 0.9 | Ω | ||
Matched load output voltage | At Th = 300 °C, Tc = 30 °C | 4.2 | V | ||
Matched load output current | At Th = 300 °C, Tc = 30 °C | 4.6 | A | ||
Matched load output power | At Th = 300 °C, Tc = 30 °C | 19.3 | W | ||
Heat flow across module | 306 | W | |||
Heat flow density | 9.8 | W/cm2 | |||
Ac resistance | At 27 °C, 1000 Hz | 0.25 | 0.45 | Ω | |
Solder melting temperature | Cold side: SnAgSn solder Hot side: not solder, aluminum bonding | 217 | °C | ||
Hot side plate | −60 | 300 | °C | ||
Cold side plate | −60 | 180 | °C | ||
Assembly compression | 1.4 | MPa | |||
Mounting torque per screw | Screw diameter # of screws: 5 mm/2 | 0.3 | kg-m | ||
RoHS | yes |
Distilled water | 0.6 | 7.47797 | 997 | 4181.7 |
TiO2 | 0.607 | 9.2143 | 1048 | 3502 |
Fe3O4 | 0.6274 | 8.174939 | 1003.06 | 4178.485 |
Al2O3 | 0.661 | 10.07544 | 1007.4 | 4154.7 |
Graphene | 0.752 | 9.97062 | 1123.3 | 3343.188 |
Type | Number of Nodes | Number of Elements | Mesh Independence (%) | ||
---|---|---|---|---|---|
P (Pa) | V (m/s) | T (K) | |||
Cam Winglets | 8309 | 28,140 | 99.98 | 100 | 93.07 |
33,238 | 124,772 | 99.98 | 98.19 | 99.99 | |
48,932 | 189,537 | 100 | 99.98 | 100 | |
Rectangular Winglets | 17,335 | 62,317 | 98.00 | 97.54 | 100 |
21,343 | 77,951 | 98.56 | 97.04 | 100 | |
27,409 | 104,113 | 100 | 100 | 100 | |
Fish Winglets | 28,056 | 113,091 | 81.28 | 99.33 | 100 |
88,338 | 385,379 | 90.56 | 99.38 | 100 | |
131,520 | 562,919 | 99.05 | 99.48 | 100 |
Distilled Water | TiO2 | Fe3O4 | Al2O3 | Graphene | |||||
---|---|---|---|---|---|---|---|---|---|
Tc | Th | Tc | Th | Tc | Th | Tc | Th | Tc | Th |
26.201 | 98.8087 | 26.23 | 98.7794 | 26.1789 | 98.8305 | 25.89 | 99.1167 | 26.0835 | 98.9251 |
26.0256 | 98.9851 | 26.0783 | 98.9321 | 26.018 | 98.9933 | 25.7268 | 99.2843 | 25.9643 | 99.0419 |
25.8925 | 99.1209 | 25.9494 | 99.0602 | 25.8907 | 99.1223 | 25.6113 | 99.3973 | 25.865 | 99.1434 |
25.795 | 99.2162 | 25.848 | 99.1616 | 25.7999 | 99.2166 | 25.5289 | 99.4777 | 25.7847 | 99.2266 |
25.7217 | 99.2884 | 25.7778 | 99.2404 | 25.7249 | 99.2898 | 25.4732 | 99.5343 | 25.7204 | 99.2913 |
25.6728 | 99.3393 | 25.7233 | 99.2986 | 25.6687 | 99.3392 | 25.433 | 99.5725 | 25.6679 | 99.3404 |
Distilled Water | TiO2 | Fe3O4 | Al2O3 | Graphene | |||||
---|---|---|---|---|---|---|---|---|---|
Tc | Th | Tc | Th | Tc | Th | Tc | Th | Tc | Th |
26.3181 | 98.7691 | 26.4731 | 98.6299 | 26.3384 | 98.7514 | 25.8198 | 99.2031 | 26.4022 | 98.6899 |
25.8215 | 99.2134 | 25.9159 | 99.1298 | 25.8316 | 99.2054 | 25.5874 | 99.4239 | 25.8849 | 99.1571 |
25.6396 | 99.3765 | 25.7035 | 99.3201 | 25.6454 | 99.3741 | 25.4986 | 99.5104 | 25.6793 | 99.3419 |
25.5532 | 99.4613 | 25.5975 | 99.4196 | 25.5533 | 99.4606 | 25.4497 | 99.5577 | 25.5768 | 99.4375 |
25.4984 | 99.5126 | 25.5361 | 99.4777 | 25.5004 | 99.5108 | 25.4183 | 99.5884 | 25.5156 | 99.4961 |
25.4582 | 99.5505 | 25.4929 | 99.5182 | 25.4602 | 99.5487 | 25.3963 | 99.61 | 25.4766 | 99.533 |
Distilled Water | TiO2 | Fe3O4 | Al2O3 | Graphene | |||||
---|---|---|---|---|---|---|---|---|---|
Tc | Th | Tc | Th | Tc | Th | Tc | Th | Tc | Th |
26.396 | 98.7093 | 26.5437 | 98.5758 | 26.407 | 98.7 | 25.9124 | 99.1062 | 26.4672 | 98.6389 |
25.9103 | 99.1472 | 26.0091 | 99.0603 | 25.9181 | 99.1411 | 25.6443 | 99.3678 | 25.9678 | 99.0957 |
25.7136 | 99.3244 | 25.7872 | 99.2593 | 25.7195 | 99.3197 | 25.54 | 99.4705 | 25.7569 | 99.2856 |
25.6067 | 99.4217 | 25.6643 | 99.3701 | 25.6105 | 99.41 | 25.4848 | 99.5249 | 25.6396 | 99.3915 |
25.5398 | 99.4832 | 25.5871 | 99.4405 | 25.5428 | 99.4806 | 25.449 | 99.5598 | 25.5662 | 99.4586 |
25.4928 | 99.5265 | 25.5341 | 99.489 | 25.4954 | 99.5242 | 25.4233 | 99.5848 | 25.5159 | 99.5049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vazquez-Aparicio, O.R.; Olivares-Robles, M.A.; Andrade-Vallejo, A.A. Nanofluid-Enhanced Thermoelectric Generator Coupled with a Vortex-Generating Heat Exchanger for Optimized Energy Conversion. Processes 2025, 13, 2857. https://doi.org/10.3390/pr13092857
Vazquez-Aparicio OR, Olivares-Robles MA, Andrade-Vallejo AA. Nanofluid-Enhanced Thermoelectric Generator Coupled with a Vortex-Generating Heat Exchanger for Optimized Energy Conversion. Processes. 2025; 13(9):2857. https://doi.org/10.3390/pr13092857
Chicago/Turabian StyleVazquez-Aparicio, Omar Ronaldo, Miguel Angel Olivares-Robles, and Andres Alfonso Andrade-Vallejo. 2025. "Nanofluid-Enhanced Thermoelectric Generator Coupled with a Vortex-Generating Heat Exchanger for Optimized Energy Conversion" Processes 13, no. 9: 2857. https://doi.org/10.3390/pr13092857
APA StyleVazquez-Aparicio, O. R., Olivares-Robles, M. A., & Andrade-Vallejo, A. A. (2025). Nanofluid-Enhanced Thermoelectric Generator Coupled with a Vortex-Generating Heat Exchanger for Optimized Energy Conversion. Processes, 13(9), 2857. https://doi.org/10.3390/pr13092857