Mechanism Study on the Influence of High-Temperature Exposure on the Thermal Transfer Characteristics of Explosion-Proof Concrete
Abstract
1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Specimen Preparation and Experimental Design
2.3. Test Methods
- X-ray Diffraction (XRD) Analysis
- 2.
- Thermal Conductivity Testing
- 3.
- Specific Heat Capacity Measurement
- 4.
- Density and Porosity Testing
3. Results and Discussion
3.1. XRD Analysis of Explosion-Proof Concrete Specimens Under High-Temperature Exposure
3.2. Effect of High-Temperature Exposure on the Thermal Conductivity of Concrete
3.3. Effect of High-Temperature Exposure on the Specific Heat Capacity of Concrete
Temperature (°C) | Initial Temperature (°C) | Termination Temperature (°C) | Specific Heat Capacity [J/(kg·k)] |
---|---|---|---|
100 | 25.3 ± 0.2 | 35.8 ± 0.3 | 963.89 ± 15.2 |
200 | 24.8 ± 0.3 | 36.2 ± 0.2 | 1022.2 ± 18.5 |
300 | 25.1 ± 0.2 | 36.5 ± 0.2 | 1075 ± 20.1 |
400 | 24.6 ± 0.3 | 36.7 ± 0.2 | 1122.22 ± 22.7 |
3.4. Effect of High-Temperature Exposure on the Density of Concrete
3.5. Simulation Analysis of the Temperature Field
3.6. Mechanistic and Microstructural Insights
3.7. Comparison with Previous Studies and Novelty of This Work
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yue, W.P.; Luo, T.; Liu, K.D. Trade-Off Between Permeability and Compressive Strength for Aerated Concrete-Based Material with Fly-Ash Under High Pressure. Transp. Porous Media 2023, 149, 669–685. [Google Scholar] [CrossRef]
- Chanda, S.S.; Patel, S.K.; Nayak, A.N.; Mohanty, C.R. Performance evaluation on bond, durability, micro-structure, cost effectiveness and environmental impacts of fly ash cenosphere based structural lightweight concrete. Constr. Build. Mater. 2023, 397, 132429. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, B.; Zhang, Y. Optimal Design of Cryogenic Insulation System for Large Liquefied Natural Gas (LNG) Storage Tanks Based on Operation Factors. E3S Web Conf. 2023, 385, 03010. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, J.-J.; Peng, G.-F.; van Breugel, K. A meso-level investigation into the explosive spalling mechanism of high-performance concrete under fire exposure. Cem. Concr. Res. 2014, 65, 64–75. [Google Scholar] [CrossRef]
- Sun, B.; Lin, Z. Investigation on spalling resistance of ultra-high-strength concrete under rapid heating and rapid cooling. Case Stud. Constr. Mater. 2016, 4, 146–153. [Google Scholar]
- Anandakumar, P.; Kanny, K.; Mohan, T.P.; Velmurugan, R. Mechanical behavior of glass fiber-reinforced hollow glass particles filled epoxy composites under moisture environment. Polym. Compos. 2024, 45, 8613–8630. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; El-Sayed, A.A.; Aboraya, A.M.; Fathy, I.N.; Abouelnour, M.A.; Elfakharany, M.E.; Fattouh, M.S.; Alahmer, A.E.; Nabil, I.M. Influence of elevated temperature exposure on the residual compressive strength and radiation shielding efficiency of ordinary concrete incorporating granodiorite and ceramic powders. Sci. Rep. 2025, 15, 3572. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; El-Sayed, A.A.; Aboraya, A.M.; Fathy, I.N.; Zygouris, N.; Sadollah, A.; Agwa, I.S.; Tayeh, B.A.; Asteris, P.G. Synergizing machine learning and experimental analysis to predict post-heating compressive strength in waste concrete. Struct. Concr. 2025, 26, 2916–2950. [Google Scholar] [CrossRef]
- Wang, C.; Duan, X.; Deng, J.; Bai, Z.; Chen, W.; Deng, Y.; Qu, G. Characteristics of antioxidant temperature-sensitive hydrogel inhibiting coal spontaneous combustion. Fuel 2025, 394, 135089. [Google Scholar] [CrossRef]
- Wen, Y.; Chi, H.; Lai, Z.; Wang, Y.; Qin, J.; Meng, L.; Huang, R. Experimental and numerical investigation on saturated concrete subjected to underwater contact explosion. Constr. Build. Mater. 2023, 384, 131465. [Google Scholar] [CrossRef]
- Yang, L.; Gao, Y.; Chen, H.; Jiao, H.; Dong, M.; Bier, T.A.; Kim, M. Three-dimensional concrete printing technology from a rheology perspective: A review. Adv. Cem. Res. 2024, 36, 567–586. [Google Scholar] [CrossRef]
- Maciá, M.E.; Castillo, Á.; Martinez, I.; Rubiano, F.J. High-Temperature Residual Compressive Strength in Concretes Bearing Construction and Demolition Waste (CDW): An Experimental Study. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 4303–4312. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, L.; Nie, H.; Zhang, R.; Wang, B.; Zhang, H. Effect of porosity and pore heterogeneity on heat transfer performance of polyimide aerogels. Mater. Today Commun. 2024, 40, 110105. [Google Scholar] [CrossRef]
- Lucio-Martin, T.; Roig-Flores, M.; Izquierdo, M.; Alonso, M.C. Thermal conductivity of concrete at high temperatures for thermal energy storage applications: Experimental analysis. Sol. Energy 2021, 214, 430–442. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Z.; Liang, Y.; Ji, T. Preparation and fireproof performance of alkali activated cement based fire resistive coatings with different alkali activators for steel structures. Case Stud. Constr. Mater. 2025, 22, e04428. [Google Scholar] [CrossRef]
- Qian, X.; Yang, R. Machine learning for predicting thermal transport properties of solids. Mater. Sci. Eng. R Rep. 2021, 146, 100642. [Google Scholar] [CrossRef]
- Liu, D.; Chen, H.; Chacon, L.A.; Ramu, V.M.; Poovathingal, S.J. Micro-CT image-based computation of effective thermal and mechanical properties of fibrous porous materials. Compos. Part B Eng. 2024, 281, 111502. [Google Scholar] [CrossRef]
- Gaviria, X.; Borrachero, M.V.; Payá, J.; Monzó, J.M.; Tobón, J.I. Mineralogical evolution of cement pastes at early ages based on thermogravimetric analysis (TG). J. Therm. Anal. Calorim. 2018, 132, 39–46. [Google Scholar] [CrossRef]
- GB 175-2007; Common Portland Cement. Standardization Administration of China, China Standards Press: Beijing, China, 2007.
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson Education: London, UK, 2011; pp. 102–105. [Google Scholar]
- Hargis, C.W.; Kirchheim, A.P.; Monteiro, P.J.M.; Gartner, E.M. Early age hydration of calcium sulfoaluminate (synthetic ye’elimite, C4A3S¯) in the presence of gypsum and varying amounts of calcium hydroxide. Cem. Concr. Res. 2013, 48, 105–115. [Google Scholar] [CrossRef]
- Snellings, R.; Scrivener, K.L. Rapid screening tests for supplementary cementitious materials: Past and future. Mater. Struct. 2016, 49, 3265–3279. [Google Scholar] [CrossRef]
- Duran, A.; Sirera, R.; Pérez-Nicolás, M.; Navarro-Blasco, I.; Fernández, J.M.; Alvarez, J.I. Study of the early hydration of calcium aluminates in the presence of different metallic salts. Cem. Concr. Res. 2016, 81, 1–15. [Google Scholar] [CrossRef]
- Zaharia, S.M.; Pop, M.A.; Udroiu, R. Reliability and Lifetime Assessment of Glider Wing’s Composite Spar through Accelerated Fatigue Life Testing. Materials 2020, 13, 2310. [Google Scholar] [CrossRef] [PubMed]
- Hollingbery, L.A.; Hull, T.R. The fire retardant behaviour of huntite and hydromagnesite—A review. Polym. Degrad. Stab. 2010, 95, 2213–2225. [Google Scholar] [CrossRef]
- Huang, X.; Xin, C.; Li, J.-S.; Wang, P.; Liao, S.; Poon, C.S.; Xue, Q. Using hazardous barium slag as a novel admixture for alkali activated slag cement. Cem. Concr. Compos. 2022, 125, 104332. [Google Scholar] [CrossRef]
- Nagachi, M.; Mitsui, F.; Citerne, J.M.; Dutilleul, H.; Guibaud, A.; Jomaas, G.; Legros, G.; Hashimoto, N.; Fujita, O. Can a spreading flame over electric wire insulation in concurrent flow achieve steady propagation in microgravity? Proc. Combust. Inst. 2019, 37, 4155–4162. [Google Scholar] [CrossRef]
- Fujita, O.; Kyono, T.; Kido, Y.; Ito, H.; Nakamura, Y. Ignition of electrical wire insulation with short-term excess electric current in microgravity. Proc. Combust. Inst. 2011, 33, 2617–2623. [Google Scholar] [CrossRef]
- Takano, Y.; Fujita, O.; Shigeta, N.; Nakamura, Y.; Ito, H. Ignition limits of short-term overloaded electric wires in microgravity. Proc. Combust. Inst. 2013, 34, 2665–2673. [Google Scholar] [CrossRef]
- Shimizu, K.; Kikuchi, M.; Hashimoto, N.; Fujita, O. A numerical and experimental study of the ignition of insulated electric wire with long-term excess current supply under microgravity. Proc. Combust. Inst. 2017, 36, 3063–3071. [Google Scholar] [CrossRef]
- Wang, K.; Wang, B.; Kong, W.; Liu, F. Study on the pre-ignition temperature variations of wire insulation under overload conditions in microgravity by the functional simulation method. J. Fire Sci. 2014, 32, 257–280. [Google Scholar] [CrossRef]
- Gagnon, L.; Fernandez-Pello, C.; Urban, J.L.; Carey, V.P.; Konno, Y.; Fujita, O. Effect of reduced ambient pressures and opposed airflows on the flame spread and dripping of LDPE insulated copper wires. Fire Saf. J. 2021, 120, 103171. [Google Scholar] [CrossRef]
- Hu, L.; Zhu, K.; Lu, Y.; Zhang, X. An experimental study on flame spread over electrical wire with high conductivity copper core and controlling heat transfer mechanism under sub-atmospheric pressures. Int. J. Therm. Sci. 2019, 141, 141–149. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Chen, X.; Lu, S. Pressure effect on flame spread over polyethylene-insulated copper core wire. Appl. Therm. Eng. 2017, 123, 1042–1049. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yoshimura, N.; Ito, H.; Azumaya, K.; Fujita, O. Flame spread over electric wire in sub-atmospheric pressure. Proc. Combust. Inst. 2009, 32, 2559–2566. [Google Scholar] [CrossRef]
- Kang, M.S.; Park, J.; Chung, S.H.; Yoo, C.S. Effect of the thickness of polyethylene insulation on flame spread over electrical wire with Cu-core under AC electric fields. Combust. Flame 2022, 240, 112017. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Li, K.; Tang, K.; Liu, Z. Dripping behavior effects on flame propagation along electrical wires under high currents. Fire Saf. J. 2021, 123, 103368. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, T.; Wei, R.; Wang, J. Experimental study of flame spread over PE-insulated single copper core wire under varying pressure and electric current. Fire Mater. 2020, 44, 835–843. [Google Scholar] [CrossRef]
- Ettling, B.V. Electrical wiring in building fires. Fire Technol. 1978, 14, 317–325. [Google Scholar] [CrossRef]
- Erlandsson, R.; Strand, G. An investigation of physical characteristics indicating primary or secondary electrical damage. Fire Saf. J. 1985, 8, 97–103. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Gao, Y.; Sun, J.; Lyu, H.F.; Yu, T.; Yang, S.; Wang, Y. Analysis of overload induced arc formation and beads characteristics in a residential electrical cable. Fire Saf. J. 2022, 131, 103626. [Google Scholar] [CrossRef]
- Wright, S.A.; Loud, J.D.; Blanchard, R.A. Globules and beads: What do they indicate about small-diameter copper conductors that have been through a fire? Fire Technol. 2015, 51, 1051–1070. [Google Scholar] [CrossRef]
- Xu, N.; Ding, N.; Liu, L.; Zaïri, F.; Guo, W.; Li, F.; Li, N.; Tian, L.; Li, E.; Chen, L. Microscopic characteristics of copper wires with short-circuit molten marks in electrical fire. Mater. Test. 2023, 65, 844–854. [Google Scholar] [CrossRef]
- Gudym, V.; Mykhalichko, B.; Nazarovets, O.; Gavryliuk, A. The effect of short circuits and flame temperature modes on the change in the microstructure of copper in automotive wiring. Eng. Fail Anal. 2022, 136, 106198. [Google Scholar] [CrossRef]
- Yu, Z.J.; Chen, S.S.; Deng, J.; Xu, X.Y.; Wang, W.F. Microstructural characteristics of arc beads with overcurrent fault in the fire scene. Materials 2020, 13, 4521. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tang, M.B.; Liang, D.; Wang, L.; Mo, S.J. Evolution of phase transition and oxidation of copper in electrical fires. Proc. Eng. 2016, 135, 588–601. [Google Scholar] [CrossRef]
- Wu, Y.; Decai, H. Metallurgical and composition analysis of melted marks due to electrical failures. Mechanika 2012, 18, 227–232. [Google Scholar] [CrossRef]
- Park, J.; Kang, J.; Lee, E.; Ko, Y.; Bang, S. New approach to distinguish copper molten marks based on quantitative microstructure analysis using electron backscatter diffraction. Fire Technol. 2021, 57, 1667–1682. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, H.; Zhang, H.; Duan, H.; Wang, J.; Jiang, W.; Dong, B.; Liu, G.; Zuo, J.; Song, Q. Characterizing the generation and flows of construction and demolition waste in China. Constr. Build. Mater. 2017, 136, 405–413. [Google Scholar] [CrossRef]
Component | OPC | Fly Ash | Steel Slag Powder | Phosphorous Slag Powder |
---|---|---|---|---|
SiO2 | 20.6 | 52.3 | 16.5 | 32.8 |
Al2O3 | 5.3 | 27.1 | 7.8 | 13.2 |
Fe2O3 | 3.2 | 7.6 | 18.9 | 2.5 |
CaO | 62.1 | 4.6 | 44.7 | 42.1 |
MgO | 2.1 | 1.2 | 6.8 | 4.5 |
SO3 | 2.9 | 0.6 | 1.5 | 1.1 |
P2O5 | - | - | 0.5 | 3.8 |
LOI | 3.8 | 6.4 | 2.1 | 2.7 |
Project | Parameter |
---|---|
Scanning range (2θ) | 10°~60° |
Step length | 0.02° |
Scanning speed | 3°/min |
Detector opening angle | 3.3° |
Voltage | 40 kV |
Current | 40 mA |
Rotation range | −10°~168° |
Angle reproducibility | 0.0001° |
Detection area | 4 mm × 16 mm |
Single detector pixel | 75 μm |
Power | 9 kW |
Minimum step | 0.0001° |
X-Y-Z range of the sample | 150 × 150 mm/9 mm |
Resolution | 5 μm |
2θ angle measurement range | 0~145° |
Temperature (°C) | Porosity (%) | Density (kg/m3) |
---|---|---|
100 | 5.0 | 2400 |
200 | 7.5 | 2280 |
300 | 12.0 | 2350 |
400 | 20.0 | 1830 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Luo, Z.; He, W.; Hou, Z. Mechanism Study on the Influence of High-Temperature Exposure on the Thermal Transfer Characteristics of Explosion-Proof Concrete. Processes 2025, 13, 2712. https://doi.org/10.3390/pr13092712
Wang Q, Luo Z, He W, Hou Z. Mechanism Study on the Influence of High-Temperature Exposure on the Thermal Transfer Characteristics of Explosion-Proof Concrete. Processes. 2025; 13(9):2712. https://doi.org/10.3390/pr13092712
Chicago/Turabian StyleWang, Qiusha, Zhenmin Luo, Wei He, and Zhixuan Hou. 2025. "Mechanism Study on the Influence of High-Temperature Exposure on the Thermal Transfer Characteristics of Explosion-Proof Concrete" Processes 13, no. 9: 2712. https://doi.org/10.3390/pr13092712
APA StyleWang, Q., Luo, Z., He, W., & Hou, Z. (2025). Mechanism Study on the Influence of High-Temperature Exposure on the Thermal Transfer Characteristics of Explosion-Proof Concrete. Processes, 13(9), 2712. https://doi.org/10.3390/pr13092712