A Multi-Level Fusion Framework for Bearing Fault Diagnosis Using Multi-Source Information
Abstract
1. Introduction
2. Related Theory Introduction
2.1. The Theory of SDP
2.2. RepLKNet: A Large-Kernel Architecture
3. Proposed Fault Diagnosis Methods
3.1. SDP-Based Data-Level Fusion Module
Algorithm 1: SDP-based Data-level Fusion |
Require: Multi-sensor signals S = {S1(t), …, SN(t)}; number of VMD mode K; number of sectors n; SDP params θ, ξ, and l; Ensure: Fused SDP image Ifused; 1: for each Si(t)∈ S do 2: IMFi1, IMFi2, …, IMFiK ← VMD(Si(t), K); 3: Eik ← ; 4: IMFi1, …, IMFiM ← Select M IMFs by highest EiK; M ← n/N − 1; 5: datai ← concat (Si(t), IMFi1, …, IMFiM); 6: end for 7: All_data ← concat (data1, …, dataN); 8: θk ← k⋅θ, k = 0, …, n − 1; 9: for each sector k = 0 to n − 1 do 10: Compute r(i), θ(i), φ(i), Plot S(r(i), θ(i), φ(i)) in polar coordinates; 11: end for 12: return Ifused |
3.2. Cross-Attention-Based Multi-View Feature Fusion Strategy
Algorithm 2: Cross-attention-based Multi-view Feature Fusion |
Require: Multi-sensor signals S = {S1(t), …, SN(t)}; SDP image Ifused; Ensure: fused feature representation , …, ; 1: Extract image feature: Fimg ← RepLKNet (Ifused); 2: for each signal S = {S1(t), …, SN(t)} do 3: Hidden states ← BiGRU(S); 4: for each ht ∈ do 5: Compute attention weights: ← , αt(i) ← softmax (); 6: Global vector βt ← ; 7: Enhanced state Fseq ← ; 8: end for 9: Cross-attention: Q ← FseqWQ, K ← FimgWK, V ← FimgWV, A ← softmax (QKT/√d) V; 10: Fused feature ← concat (A, Fseq); 11: end for 12: return , …, |
3.3. Information Entropy-Based Feature Channel Fusion Module
Algorithm 3: Information Entropy-based Feature Channel Fusion |
Require: Feature from N channels = , …, }, Each = {fi1, fi2, …, fin}, small constant ϵ; Ensure: Final fused feature Ffused; 1: for each channel ∈ do 2: for each dimension k = 1 to n do 3: probability value ← softmax (); 4: end for 5: Compute entropy Hi ← ; 6: end for 7: weight wi← softmax (1/Hi+ ϵ); 8: final fused feature Ffused ← 9: return Ffused |
4. Discussion
4.1. Dataset
4.2. Experimental Detail Configuration
4.3. Experimental Results and Analysis
4.3.1. Multi-Source Information Fusion Experiment
4.3.2. Comparative Experiment
4.3.3. Ablation Experiment
4.3.4. Robustness Against Noise Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, P.; Chen, R.; Xu, X.; Yang, L.; Ran, M. Recent Progress and Prospective Evaluation of Fault Diagnosis Strategies for Electrified Drive Powertrains: A Comprehensive Review. Measurement 2023, 222, 113711. [Google Scholar] [CrossRef]
- Huang, R.; Xia, J.; Zhang, B.; Chen, Z.; Li, W. Compound Fault Diagnosis for Rotating Machinery: State-of-the-Art, Challenges, and Opportunities. J. Dyn. Monit. Diagn. 2023, 2, 13–29. [Google Scholar] [CrossRef]
- Choudhary, A.; Mishra, R.K.; Fatima, S.; Panigrahi, B.K. Multi-Input CNN Based Vibro-Acoustic Fusion for Accurate Fault Diagnosis of Induction Motor. Eng. Appl. Artif. Intell. 2023, 120, 105872. [Google Scholar] [CrossRef]
- Dao, F.; Zeng, Y.; Qian, J. Fault Diagnosis of Hydro-Turbine via the Incorporation of Bayesian Algorithm Optimized CNN-LSTM Neural Network. Energy 2024, 290, 130326. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, C.; Deng, C. An Improved GNN Using Dynamic Graph Embedding Mechanism: A Novel End-to-End Framework for Rolling Bearing Fault Diagnosis Under Variable Working Conditions. Mech. Syst. Signal Process. 2023, 200, 110534. [Google Scholar] [CrossRef]
- Kibrete, F.; Engida Woldemichael, D.; Shimels Gebremedhen, H. Multi-Sensor Data Fusion in Intelligent Fault Diagnosis of Rotating Machines: A Comprehensive Review. Measurement 2024, 232, 114658. [Google Scholar] [CrossRef]
- Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor Data Fusion for Gearbox Fault Diagnosis Using 2-D Convolutional Neural Network and Motor Current Signature Analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [Google Scholar] [CrossRef]
- Yang, J.; Gao, T.; Zhang, H.; Li, Y. A Multi-Sensor Fault Diagnosis Method for Rotating Machinery Based on Improved Fuzzy Support Fusion and Self-Normalized Spatio-Temporal Network. Meas. Sci. Technol. 2023, 34, 125112. [Google Scholar] [CrossRef]
- Xie, T.; Huang, X.; Choi, S.-K. Intelligent Mechanical Fault Diagnosis Using Multisensor Fusion and Convolution Neural Network. IEEE Trans. Ind. Inform. 2022, 18, 3213–3223. [Google Scholar] [CrossRef]
- Dong, K.; Lotfipoor, A. Intelligent Bearing Fault Diagnosis Based on Feature Fusion of One-Dimensional Dilated CNN and Multi-Domain Signal Processing. Sensors 2023, 23, 5607. [Google Scholar] [CrossRef]
- Xiao, X.; Li, C.; He, H.; Huang, J.; Yu, T. Rotating Machinery Fault Diagnosis Method Based on Multi-Level Fusion Framework of Multi-Sensor Information. Inf. Fusion 2025, 113, 102621. [Google Scholar] [CrossRef]
- Gao, S.; Noman, K.; Mao, G.; Deng, Z.; Li, Y.; Ge, W. Multi-Source Heterogeneous Information Fusion Based on Graph Convolutional Network for Gearbox Fault Diagnosis. IEEE Trans. Instrum. Meas. 2025, 74, 3547515. [Google Scholar] [CrossRef]
- Gao, L.; Liu, Z.; Gao, Q.; Li, Y.; Wang, D.; Lei, H. Dual Data Fusion Fault Diagnosis of Transmission System Based on Entropy Weighted Multi-Representation DS Evidence Theory and GCN. Measurement 2025, 243, 116308. [Google Scholar] [CrossRef]
- Shao, H.; Lin, J.; Zhang, L.; Galar, D.; Kumar, U. A Novel Approach of Multisensory Fusion to Collaborative Fault Diagnosis in Maintenance. Inf. Fusion 2021, 74, 65–76. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Cao, S.; Lv, S.; Yang, C.; Xiang, W. Trusted multi-source information fusion for fault diagnosis of electromechanical system with modified graph convolution network. Adv. Eng. Inform. 2023, 57, 102088. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, X.; Huang, S.; Qin, G.; He, Y.; Qu, Y.; Xie, J.; Zhou, J.; Long, Z. Multisensor-Driven Motor Fault Diagnosis Method Based on Visual Features. IEEE Trans. Ind. Inform. 2023, 19, 5902–5914. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, X.; Qin, G.; Xie, J.; Peng, J.; Huang, S.; Long, Z.; Tang, Y. Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Using Magnetic Leakage Signals. IEEE Trans. Ind. Inform. 2023, 19, 6105–6116. [Google Scholar] [CrossRef]
- Yang, F.; Tian, X.; Ma, L.; Shi, X. An Optimized Variational Mode Decomposition and Symmetrized Dot Pattern Image Characteristic Information Fusion-Based Enhanced CNN Ball Screw Vibration Intelligent Fault Diagnosis Approach. Measurement 2024, 229, 114382. [Google Scholar] [CrossRef]
- Chen, Q.; Li, C.; Ning, J.; Lin, S.; He, K. GMConv: Modulating Effective Receptive Fields for Convolutional Kernels. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 6669–6678. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Zhou, Y.; Han, J.; Ding, G.; Sun, J. Scaling up your kernels to 31 × 31: Revisiting large kernel design in CNNs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar] [CrossRef]
- Khan, Z.Y.; Niu, Z. CNN with Depthwise Separable Convolutions and Combined Kernels for Rating Prediction. Expert Syst. Appl. 2021, 170, 114528. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. RepVGG: Making VGG-Style ConvNets Great Again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021. [Google Scholar] [CrossRef]
- Tuli, S.; Dasgupta, I.; Grant, E.; Griffiths, T.L. Are Convolutional Neural Networks or Transformers more like human vision? arXiv 2021, arXiv:2105.07197. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Liu, T.; Li, S.; Zhang, B.; Zhou, G.; Huang, T. Composite Fault Diagnosis for Rolling Bearing Based on Parameter-Optimized VMD. Measurement 2022, 201, 111637. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, X.; Liu, Y.; Son, C.; Yang, Y. Multi-source information fusion fault diagnosis for gearboxes based on SDP and VGG. Appl. Sci. 2022, 12, 6323. [Google Scholar] [CrossRef]
- Han, H.; Cho, S.; Kwon, S.; Cho, S.-B. Fault diagnosis using improved complete ensemble empirical mode decomposition with adaptive noise and power-based intrinsic mode function selection algorithm. Electronics 2018, 7, 16. [Google Scholar] [CrossRef]
- Xu, X.; Liu, H.; Zhu, H.; Wang, S. Fan fault diagnosis based on symmetrized dot pattern analysis and image matching. J. Sound Vib. 2016, 374, 297–311. [Google Scholar] [CrossRef]
- Lessmeier, C.; Kimotho, J.K.; Zimmer, D.; Sextro, W. Condition Monitoring of Bearing Damage in Electromechanical Drive Systems by Using Motor Current Signals of Electric Motors: A Benchmark Data Set for Data-Driven Classification. PHM Soc. Eur. Conf. 2016, 3, 1–17. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Jia, L.; Song, Y.; Liu, Y. Novel Three-Stage Feature Fusion Method of Multimodal Data for Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3514710. [Google Scholar] [CrossRef]
- Wang, J.; Fu, P.; Zhang, L.; Gao, R.X.; Zhao, R. Multilevel Information Fusion for Induction Motor Fault Diagnosis. IEEE/ASME Trans. Mechatron. 2019, 24, 2139–2150. [Google Scholar] [CrossRef]
- Li, H.; Huang, J.; Gao, M.; Yang, L.; Bao, Y. Multi-View Information Fusion Fault Diagnosis Method Based on Attention Mechanism and Convolutional Neural Network. Appl. Sci. 2022, 12, 11410. [Google Scholar] [CrossRef]
- Zhu, H.; Fang, T. Compound Fault Diagnosis of Rolling Bearings with Few-Shot Based on DCGAN-RepLKNet. Meas. Sci. Technol. 2024, 35, 066105. [Google Scholar] [CrossRef]
Time Interval Parameter l | Fault Status | |||
---|---|---|---|---|
Normal | Electric Engraver | … | Fatigue: Pitting | |
2 | … | |||
4 | … | |||
6 | … | |||
8 | … | |||
10 | … |
Label | Bearing Code | Bearing Running Status | Damage Symptom | Damage Level |
---|---|---|---|---|
1 | K001 | Normal | / | / |
2 | KA01 | Electrical discharge machining | OR | 1 |
3 | KA03 | Electric engraver | OR | 2 |
4 | KA05 | Electric engraver | OR | 1 |
5 | KI01 | Electrical discharge machining | IR | 1 |
6 | KI03 | Electric engraver | IR | 1 |
7 | KI07 | Electric engraver | IR | 2 |
8 | KB23 | Fatigue: pitting | IR&OR | 2 |
9 | KB24 | Fatigue: pitting | IR&OR | 3 |
10 | KB27 | Fatigue: pitting | IR&OR | 1 |
Description | Parameters | Value |
---|---|---|
RepLKNet Stage 1 | B, C, K | (2, 128, 31) |
RepLKNet Stage 2 | B, C, K | (2, 256, 29) |
RepLKNet Stage 3 | B, C, K | (18, 512, 27) |
RepLKNet Stage 4 | B, C, K | (2, 1024, 13) |
BiGRU layer | number of layers | 2 |
BiGRU units | hidden layer units | (32, 64) |
Learning rate | lr | 0.0003 |
Attention | head | 1 |
Dropout | dropout | 0.3 |
Min-batch learning | batch size | 32 |
Maximum iteration times | epoch | 100 |
Number of sample classes | class | 10 |
Optimization | optimizer | Adam |
Loss function | loss | cross-entropy |
Methods | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
AMDC-CNN | 87.08 | 86.93 | 86.56 | 86.56 |
MRSFN | 91.78 | 92.08 | 92.13 | 92.02 |
Matrix-CNN | 96.49 | 96.69 | 96.60 | 96.60 |
MCFCNN | 95.21 | 95.16 | 95.03 | 95.07 |
CWT-RepLKNet | 98.80 | 97.95 | 97.86 | 97.90 |
SDP-CNN | 97.71 | 98.07 | 98.10 | 97.99 |
Proposed | 99.38 | 99.39 | 99.37 | 99.37 |
Methods | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
Proposed | 99.38 | 99.39 | 99.37 | 99.37 |
Strategy A | 97.29 | 97.32 | 97.26 | 97.27 |
Strategy B | 95.79 | 95.73 | 96.05 | 95.82 |
Strategy C | 98.54 | 98.43 | 98.53 | 98.46 |
Methods | SNR | |||
---|---|---|---|---|
−5 | 0 | 5 | 10 | |
AMDC-CNN | 61.39 | 75.67 | 82.16 | 85.69 |
MRSFN | 68.42 | 76.15 | 87.75 | 90.77 |
Matrix-CNN | 77.72 | 83.08 | 89.68 | 92.66 |
MCFCNN | 80.10 | 86.18 | 91.28 | 94.81 |
CWT-RepLKNet | 43.15 | 48.85 | 81.34 | 89.31 |
SDP-CNN | 61.15 | 72.29 | 88.69 | 94.93 |
Proposed | 87.23 | 95.79 | 98.43 | 99.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Sun, Y.; Li, L.; Peng, X. A Multi-Level Fusion Framework for Bearing Fault Diagnosis Using Multi-Source Information. Processes 2025, 13, 2657. https://doi.org/10.3390/pr13082657
Deng X, Sun Y, Li L, Peng X. A Multi-Level Fusion Framework for Bearing Fault Diagnosis Using Multi-Source Information. Processes. 2025; 13(8):2657. https://doi.org/10.3390/pr13082657
Chicago/Turabian StyleDeng, Xiaojun, Yuanhao Sun, Lin Li, and Xia Peng. 2025. "A Multi-Level Fusion Framework for Bearing Fault Diagnosis Using Multi-Source Information" Processes 13, no. 8: 2657. https://doi.org/10.3390/pr13082657
APA StyleDeng, X., Sun, Y., Li, L., & Peng, X. (2025). A Multi-Level Fusion Framework for Bearing Fault Diagnosis Using Multi-Source Information. Processes, 13(8), 2657. https://doi.org/10.3390/pr13082657