Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of ESMC
2.2.2. Lipase Immobilization
2.2.3. Characterization of Free and Immobilized PFL
2.2.4. Synthesis of Cocoa Butter Substitute
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Adsorption
3.2. Covalent Binding
3.3. pH and Temperature Optimum
3.4. pH and Temperature Stability
3.5. Stability in Methanol and Ethanol
3.6. Substrate Specificity
3.7. Reusability
3.8. Selection of Lipases
3.9. Cocoa Butter Substitute
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PFL | Pseudomonas fluorescens lipase |
ESMC | Eggshell membrane-based carriers |
ESMC-HCl | Hydrochloric acid-derived eggshell membrane-based carriers |
ESMC-HAc | Acetic acid-derived eggshell membrane-based carriers |
ESMC-H3PO4 | o-phosphoric acid-derived eggshell membrane-based carriers |
CB | Cocoa butter |
CBE | Cocoa butter equivalent |
CBR | Cocoa butter replacer |
CBS | Cocoa butter substitute |
pNPP | p-nitrophenyl palmitate |
References
- Naik, B.; Kumar, V. Cocoa Butter and Its Alternatives: A Review. J. Biores. Eng. Technol. 2014, 1, 7–17. [Google Scholar]
- Beg, M.S.; Ahmad, S.; Jan, K.; Bashir, K. Status, Supply Chain and Processing of Cocoa—A Review. Trends Food Sci. Technol. 2017, 66, 108–116. [Google Scholar] [CrossRef]
- Wessel, M.; Quist-Wessel, P.M.F. Cocoa Production in West Africa, a Review and Analysis of Recent Developments. NJAS Wagening. J. Life Sci. 2015, 74–75, 1–7. [Google Scholar] [CrossRef]
- Gyan, J.K.; Bajan, B. Market Analysis on Cocoa Beans Export: The Case of Ghana and Cote d’ivoire in West Africa. J. Agribus. Rural. Dev. 2022, 66, 375–384. [Google Scholar] [CrossRef]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the Future Climatic Suitability for Cocoa Farming of the World’s Leading Producer Countries, Ghana and Côte d’Ivoire. Clim. Change 2013, 119, 841–854. [Google Scholar] [CrossRef]
- Biswas, N.; Cheow, Y.L.; Tan, C.P.; Siow, L.F. Physical, Rheological and Sensorial Properties, and Bloom Formation of Dark Chocolate Made with Cocoa Butter Substitute (CBS). LWT-Food Sci. Technol. 2017, 82, 420–428. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Jin, Q.; Meng, Z.; Wang, X. Characterization of Cocoa Butter Substitutes, Milk Fat and Cocoa Butter Mixtures. Eur. J. Lipid Sci. Technol. 2011, 113, 1145–1151. [Google Scholar] [CrossRef]
- Gunstone, F.D. Structured and Modified Lipids; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0-8247-0253-3. [Google Scholar]
- Yamada, K.; Ibuki, M.; McBrayer, T. Cocoa Butter, Cocoa Butter Equivalents, and Cocoa Butter Replacers. In Healthful Lipids; AOCS Publishing: Urbana, IL, USA, 2005; ISBN 978-0-429-10449-7. [Google Scholar]
- Mokbul, M.; Siow, L.F. Cocoa Butter Butters Alternatives for Food Applications. In Recent Advances in Edible Fats and Oils Technology: Processing, Health Implications, Economic and Environmental Impact; Lee, Y., Tang, T.-K., Phuah, E.-T., Lai, O.-M., Eds.; Springer: Singapore, 2022; pp. 307–331. ISBN 9789811651137. [Google Scholar]
- Lipp, M.; Simoneau, C.; Ulberth, F.; Anklam, E.; Crews, C.; Brereton, P.; de Greyt, W.; Schwack, W.; Wiedmaier, C. Composition of Genuine Cocoa Butter and Cocoa Butter Equivalents. J. Food Compos. Anal. 2001, 14, 399–408. [Google Scholar] [CrossRef]
- De Clercq, N.; Kadivar, S.; Van de Walle, D.; De Pelsmaeker, S.; Ghellynck, X.; Dewettinck, K. Functionality of Cocoa Butter Equivalents in Chocolate Products. Eur. Food Res. Technol. 2017, 243, 309–321. [Google Scholar] [CrossRef]
- Jahurul, M.H.A.; Zaidul, I.S.M.; Nik Norulaini, N.A.; Sahena, F.; Abedin, M.Z.; Mohamed, A.; Mohd Omar, A.K. Hard Cocoa Butter Replacers from Mango Seed Fat and Palm Stearin. Food Chem. 2014, 154, 323–329. [Google Scholar] [CrossRef]
- Gregersen, S.B.; Miller, R.L.; Hammershøj, M.; Andersen, M.D.; Wiking, L. Texture and Microstructure of Cocoa Butter Replacers: Influence of Composition and Cooling Rate. Food Struct. 2015, 4, 2–15. [Google Scholar] [CrossRef]
- Ghazani, S.M.; Marangoni, A.G. Facile Lipase-Catalyzed Synthesis of a Chocolate Fat Mimetic. Sci. Rep. 2018, 8, 15271. [Google Scholar] [CrossRef] [PubMed]
- Verstringe, S.; De Clercq, N.; Nguyen, T.M.; Kadivar, S.; Dewettinck, K. 18—Enzymatic and Other Modification Techniques to Produce Cocoa Butter Alternatives. In Cocoa Butter and Related Compounds; Garti, N., Widlak, N.R., Eds.; AOCS Press: Urbana, IL, USA, 2012; pp. 443–474. ISBN 978-0-9830791-2-5. [Google Scholar]
- Robescu, M.S.; Bavaro, T. A Comprehensive Guide to Enzyme Immobilization: All You Need to Know. Molecules 2025, 30, 939. [Google Scholar] [CrossRef] [PubMed]
- Mateo, C.; Palomo, J.M.; Fernandez-Lorente, G.; Guisan, J.M.; Fernandez-Lafuente, R. Improvement of Enzyme Activity, Stability and Selectivity via Immobilization Techniques. Enzym. Microb. Technol. 2007, 40, 1451–1463. [Google Scholar] [CrossRef]
- Budžaki, S.; Velić, N.; Ostojčić, M.; Stjepanović, M.; Rajs, B.B.; Šereš, Z.; Maravić, N.; Stanojev, J.; Hessel, V.; Strelec, I. Waste Management in the Agri-Food Industry: The Conversion of Eggshells, Spent Coffee Grounds, and Brown Onion Skins into Carriers for Lipase Immobilization. Foods 2022, 11, 409. [Google Scholar] [CrossRef] [PubMed]
- Zieniuk, B.; Malajowicz, J.; Jasińska, K.; Wierzchowska, K.; Ugur, S.; Fabiszewska, A. Agri-Food and Food Waste Lignocellulosic Materials for Lipase Immobilization as a Sustainable Source of Enzyme Support—A Comparative Study. Foods 2024, 13, 3759. [Google Scholar] [CrossRef]
- Girelli, A.M.; Chiappini, V. Renewable, Sustainable, and Natural Lignocellulosic Carriers for Lipase Immobilization: A Review. J. Biotechnol. 2023, 365, 29–47. [Google Scholar] [CrossRef]
- Bisht, M.; Thayallath, S.K.; Bharadwaj, P.; Franklin, G.; Mndal, D. Biomass-Derived Functional Materials as Carriers for Enzymes: Towards Sustainable and Robust Biocatalysts. Green Chem. 2023, 25, 4591. [Google Scholar] [CrossRef]
- Girelli, A.M.; Astolfi, M.L.; Scuto, F.R. Agro-Industrial Wastes as Potential Carriers for Enzyme Immobilization: A Review. Chemosphere 2020, 244, 125368. [Google Scholar] [CrossRef]
- Jasińska, K.; Nowosad, M.; Perzyna, A.; Bielacki, A.; Dziwiński, S.; Zieniuk, B.; Fabiszewska, A. Sustainable Lipase Immobilization: Chokeberry and Apple Waste as Carriers. Biomolecules 2024, 14, 1564. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, R.; Han, Z.; Wang, Z.; Wang, F.; Deng, L.; Nie, K. The Highly-Stable Immobilization of Enzymes on a Waste Mycelium Carrier. J. Environ. Manag. 2020, 271, 111032. [Google Scholar] [CrossRef]
- Strelec, I.; Peranović, K.; Ostojčić, M.; Aladić, K.; Pavlović, H.; Djerdj, I.; Tatar, D.; Maravić, N.; Skoko, Ž.; Budžaki, S. Eggshell Waste Transformation to Calcium Chloride Anhydride as Food-Grade Additive and Eggshell Membranes as Enzyme Immobilization Carrier. Green Process. Synth. 2024, 13, 20230254. [Google Scholar] [CrossRef]
- Strelec, I.; Ostojčić, M.; Brekalo, M.; Hajra, S.; Kim, H.-J.; Stanojev, J.; Maravić, N.; Budžaki, S. Transformation of Eggshell Waste to Egg White Protein Solution, Calcium Chloride Dihydrate, and Eggshell Membrane Powder. Green Process. Synth. 2023, 12, 20228151. [Google Scholar] [CrossRef]
- Strelec, I.; Tomičić, K.; Zajec, M.; Ostojčić, M.; Budžaki, S. Eggshell-Waste-Derived Calcium Acetate, Calcium Hydrogen Phosphate and Corresponding Eggshell Membranes. Appl. Sci. 2023, 13, 7372. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Sen, R. A Comparative Performance Evaluation of Jute and Eggshell Matrices to Immobilize Pancreatic Lipase. Process Biochem. 2012, 47, 749–757. [Google Scholar] [CrossRef]
- Salleh, S.; Serri, N.A.; Hena, S.; Tajarudin, H.A. Preliminary Studies on Immobilization of Lipase Using Chicken Eggshell. IOP Conf. Ser. Earth Environ. Sci. 2016, 36, 012026. [Google Scholar] [CrossRef]
- Cui, C.; Tao, Y.; Li, L.; Chen, B.; Tan, T. Improving the Activity and Stability of Yarrowia lipolytica Lipase Lip2 by Immobilization on Polyethyleneimine-Coated Polyurethane Foam. J. Mol. Catal. B Enzym. 2013, 91, 59–66. [Google Scholar] [CrossRef]
- Singh, A.N.; Singh, S.; Suthar, N.; Dubey, V.K. Glutaraldehyde-Activated Chitosan Matrix for Immobilization of a Novel Cysteine Protease, Procerain B. J. Agric. Food Chem. 2011, 59, 6256–6262. [Google Scholar] [CrossRef]
- Mustranta, A.; Forssell, P.; Poutanen, K. Applications of Immobilized Lipases to Transesterification and Esterification Reactions in Nonaqueous Systems. Enzym. Microb. Technol. 1993, 15, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Palacios, D.; Busto, M.D.; Ortega, N. Study of a New Spectrophotometric End-Point Assay for Lipase Activity Determination in Aqueous Media. LWT-Food Sci. Technol. 2014, 55, 536–542. [Google Scholar] [CrossRef]
- Saxena, R.K.; Misra, S.; Rawat, I.; Gupta, P.; Dutt, K.; Parmar, V.S. Production of 1, 3 Regiospecific Lipase from Bacillus Sp. RK-3: Its Potential to Synthesize Cocoa Butter Substitute. Malays. J. Microbiol. 2011, 7, 41–48. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, C.; Hao, M.; Wang, H.; Wang, Z.; Shen, C.; Cheong, L.-Z. Enhanced Catalytic Stability of Lipase Immobilized on Oxidized and Disulfide-Rich Eggshell Membrane for Esters Hydrolysis and Transesterification. Int. J. Biol. Macromol. 2017, 105, 1328–1336. [Google Scholar] [CrossRef]
- Meryam Sardar, R.A. Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem. Anal. Biochem. 2015, 4, 1000178. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kalia, V.C.; Choi, J.-H.; Haw, J.-R.; Kim, I.-W.; Lee, J.K. Immobilization of Laccase on SiO2 Nanocarriers Improves Its Stability and Reusability. J. Microbiol. Biotechnol. 2014, 24, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, Z.; Zeng, G.; Tang, L.; Pang, Y.; Li, Z.; Liu, C.; Lei, X.; Wu, M.; Ren, P.; et al. Immobilization of Laccase on Magnetic Bimodal Mesoporous Carbon and the Application in the Removal of Phenolic Compounds. Bioresour. Technol. 2012, 115, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, C.; Liu, H.; Liu, C. Immobilization of Pycnoporus sanguineus Laccase by Metal Affinity Adsorption on Magnetic Chelator Particles. J. Chem. Tech. Biotech. 2008, 83, 97–104. [Google Scholar] [CrossRef]
- Ranjbakhsh, E.; Bordbar, A.K.; Abbasi, M.; Khosropour, A.R.; Shams, E. Enhancement of Stability and Catalytic Activity of Immobilized Lipase on Silica-Coated Modified Magnetite Nanoparticles. Chem. Eng. J. 2012, 179, 272–276. [Google Scholar] [CrossRef]
- Dong, H.; Li, J.; Li, Y.; Hu, L.; Luo, D. Improvement of Catalytic Activity and Stability of Lipase by Immobilization on Organobentonite. Chem. Eng. J. 2012, 181–182, 590–596. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Godoy, C.A.; Volpato, G.; Ayub, M.A.Z.; Fernandez-Lafuente, R.; Guisan, J.M. Immobilization–Stabilization of the Lipase from Thermomyces lanuginosus: Critical Role of Chemical Amination. Process Biochem. 2009, 44, 963–968. [Google Scholar] [CrossRef]
- Gilani, S.L.; Najafpour, G.D.; Moghadamnia, A.; Kamaruddin, A.H. Stability of Immobilized Porcine Pancreas Lipase on Mesoporous Chitosan Beads: A Comparative Study. J. Mol. Catal. B Enzym. 2016, 133, 144–153. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, G. Lipase Immobilization on Glutaraldehyde-Activated Nanofibrous Membranes for Improved Enzyme Stabilities and Activities. React. Funct. Polym. 2012, 72, 839–845. [Google Scholar] [CrossRef]
- Song, C.; Sheng, L.; Zhang, X. Immobilization and Characterization of a Thermostable Lipase. Mar. Biotechnol. 2013, 15, 659–667. [Google Scholar] [CrossRef]
- Schubert, P.F.; Finn, R.K. Alcohol Precipitation of Proteins: The Relationship of Denaturation and Precipitation for Catalase. Biotechnol. Bioeng. 1981, 23, 2569–2590. [Google Scholar] [CrossRef]
- Skrzydlewska, E.; Roszkowska, A.; Moniuszko-Jakoniuk, J. A Comparison of Methanol and Ethanol Effects on the Activity and Distribution of Lysosomal Proteases. Pol. J. Environ. Stud. 1999, 8, 251–257. [Google Scholar]
- Zhang, A.; Gao, R.; Diao, N.; Xie, G.; Gao, G.; Cao, S. Cloning, Expression and Characterization of an Organic Solvent Tolerant Lipase from Pseudomonas fluorescens JCM5963. J. Mol. Catal. B Enzym. 2009, 56, 78–84. [Google Scholar] [CrossRef]
- Nawani, N.; Kaur, J. Purification, Characterization and Thermostability of Lipase from a Thermophilic Bacillus Sp. J33. Mol. Cell. Biochem. 2000, 206, 91–96. [Google Scholar] [CrossRef]
- NN 11/2019 Pravilnik o Jestivim Uljima i Mastima. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2019_01_11_229.html (accessed on 16 June 2025).
- Rios, N.S.; Mendez-Sanchez, C.; Arana-Peña, S.; Rueda, N.; Ortiz, C.; Gonçalves, L.R.B.; Fernandez-Lafuente, R. Immobilization of Lipase from Pseudomonas fluorescens on Glyoxyl-Octyl-Agarose Beads: Improved Stability and Reusability. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2019, 1867, 741–747. [Google Scholar] [CrossRef]
- Rios, N.S.; Neto, D.M.A.; dos Santos, J.C.S.; Fechine, P.B.A.; Fernández-Lafuente, R.; Gonçalves, L.R.B. Comparison of the Immobilization of Lipase from Pseudomonas fluorescens on Divinylsulfone or p-Benzoquinone Activated Support. Int. J. Biol. Macromol. 2019, 134, 936–945. [Google Scholar] [CrossRef]
pH Value | Average Relative Enzyme Activity [%] | ||
Free PFL | |||
pH 6 | 84.56 ± 0.79 | ||
pH 7 | 95.94 ± 3.93 | ||
pH 8 | 98.68 ± 0.56 | ||
pH 9 | 95.99 ± 0.73 | ||
PFL immobilized by adsorption | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
pH 6 | 83.81 ± 0.58 A | 79.45 ± 2.05 B | 78.28 ± 1.23 B |
pH 7 | 71.22 ± 0.22 A | 62.83 ± 1.01 B | 62.53 ± 2.14 B |
pH 8 | 66.03 ± 0.55 A | 50.94 ± 0.90 B | 58.18 ± 2.19 C |
pH 9 | 66.28 ± 0.88 A | 60.20 ± 0.78 B | 56.30 ± 1.82 C |
PFL immobilized by direct covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
pH 6 | 86.01 ± 2.03 A | 86.25 ± 1.35 A | 90.67 ± 2.10 B |
pH 7 | 71.78 ± 0.54 A | 68.90 ± 0.32 B | 69.26 ± 0.55 B |
pH 8 | 68.16 ± 0.78 A | 66.13 ± 1.29 B | 63.70 ± 0.00 C |
pH 9 | 89.68 ± 0.47 A | 82.68 ± 1.43 B | 83.08 ± 0.00 B |
PFL immobilized by indirect covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
pH 6 | 42.16 ± 2.98 A | 41.33 ± 0.65 A | 40.61 ± 1.22 A |
pH 7 | 45.41 ± 0.52 A | 41.83 ± 1.61 A | 41.17 ± 5.75 A |
pH 8 | 33.85 ± 0.37 A | 30.35 ± 0.63 B | 33.35 ± 0.16 A |
pH 9 | 63.88 ± 0.54 A | 52.17 ± 1.13 B | 60.99 ± 1.11 C |
Temperature [°C] | Average Relative Enzyme Activity [%] | ||
Free PFL | |||
40 | 87.90 ± 0.15 | ||
50 | 95.99 ± 0.73 | ||
60 | 40.85 ± 0.00 | ||
70 | 0.26 ± 0.46 | ||
PFL immobilized by adsorption | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
40 | 66.28 ± 0.88 A | 60.97 ± 0.78 B | 56.30 ± 1.82 C |
50 | 65.18 ± 1.88 A | 60.98 ± 2.62 B | 60.40 ± 1.91 B |
60 | 66.83 ± 3.00 A | 55.20 ± 1.67 B | 57.16 ± 0.86 B |
70 | 57.09 ± 1.14 A | 30.27 ± 0.98 B | 41.93 ± 0.83 C |
PFL immobilized by direct covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
40 | 89.68 ± 0.47 A | 82.68 ± 1.43 B | 83.08 ± 0.00 B |
50 | 76.66 ± 3.55 A | 75.21 ± 1.05 A | 75.95 ± 0.34 A |
60 | 87.66 ± 0.88 A | 72.09 ± 1.12 B | 80.75 ± 0.28 C |
70 | 68.62 ± 1.88 A | 67.37 ± 0.98 A | 72.86 ± 1.03 B |
PFL immobilized by indirect covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
40 | 63.88 ± 0.54 A | 52.17 ± 1.13 B | 60.99 ± 1.11 C |
50 | 59.69 ± 0.97 A | 52.72 ± 0.98 B | 56.51 ± 1.30 C |
60 | 48.96 ± 1.38 A | 42.45 ± 1.72 B | 40.35 ± 0.41 B |
70 | 32.35 ± 1.00 A | 20.77 ± 1.43 B | 21.66 ± 0.80 B |
Organic Solvent | Average Relative Enzyme Activity [%] | ||
Free PFL | |||
methanol | 18.29 ± 1.23 | ||
ethanol | 52.71 ± 0.97 | ||
PFL immobilized by adsorption | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
methanol | 84.86 ± 0.60 A | 69.27 ± 0.58 B | 70.71 ± 1.58 B |
ethanol | 70.86 ± 4.22 A | 67.00 ± 0.42 A,B | 63.15 ± 1.57 B |
PFL immobilized by direct covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
methanol | 72.65 ± 0.63 A | 74.85 ± 0.80 B | 71.13 ± 0.68 C |
ethanol | 70.84 ± 0.43 A | 71.22 ± 0.60 A | 64.34 ± 0.93 B |
PFL immobilized by indirect covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
methanol | 47.40 ± 0.94 A | 38.79 ± 0.68 B | 45.99 ± 0.46 A |
ethanol | 55.42 ± 0.92 A | 46.86 ± 1.87 B | 52.33 ± 1.22 C |
Lipases immobilized by adsorption | |||
---|---|---|---|
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
A [U/g] | 659.96 ± 19.87 A | 640.55 ± 21.36 A | 608.37 ± 32.48 B |
Lipases immobilized by direct covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
A [U/g] | 440.91 ± 4.39 A | 445.23 ± 3.41 A | 463.33 ± 9.37 B |
Lipases immobilized by indirect covalent binding | |||
ESMC-HCl-PFL | ESMC-HAc-PFL | ESMC-H3PO4-PFL | |
A [U/g] | 392.78 ± 8.83 A | 441.20 ± 3.40 B | 441.09 ± 9.86 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostojčić, M.; Stjepanović, M.; Bilić Rajs, B.; Strelec, I.; Velić, N.; Brekalo, M.; Hessel, V.; Budžaki, S. Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute. Processes 2025, 13, 2548. https://doi.org/10.3390/pr13082548
Ostojčić M, Stjepanović M, Bilić Rajs B, Strelec I, Velić N, Brekalo M, Hessel V, Budžaki S. Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute. Processes. 2025; 13(8):2548. https://doi.org/10.3390/pr13082548
Chicago/Turabian StyleOstojčić, Marta, Marija Stjepanović, Blanka Bilić Rajs, Ivica Strelec, Natalija Velić, Mirna Brekalo, Volker Hessel, and Sandra Budžaki. 2025. "Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute" Processes 13, no. 8: 2548. https://doi.org/10.3390/pr13082548
APA StyleOstojčić, M., Stjepanović, M., Bilić Rajs, B., Strelec, I., Velić, N., Brekalo, M., Hessel, V., & Budžaki, S. (2025). Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute. Processes, 13(8), 2548. https://doi.org/10.3390/pr13082548