Effect of Different Amine Solutions on Performance of Post-Combustion CO2 Capture
Abstract
1. Introduction
1.1. Solvent Selection in Absorption Technology
1.2. Motivation of the Current Study
2. Methodology
2.1. Process Description
2.2. Process Modelling
3. Results and Discussion
3.1. Validation
3.2. Scenario 1: Benchmark Using MEA and Switching the Solvent
3.3. Scenario 2: CCL 90% for MEA and Switched Solvents
3.4. Scenario 3: CCL 90% for Solvents That Failed to Reach 90% in Scenario 2
3.4.1. MDEA + PZ as Solvent
3.4.2. PZ as Solvent
3.5. Sensitivity Analysis
3.5.1. Lean Amine Concentration
3.5.2. CO2 Concentration
3.5.3. Lean Amine Temperature
3.5.4. Flue Gas Temperature
3.5.5. Gas Flow Rate
3.5.6. Lean Amine Flow Rate
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AMP | 2-amino-2-methyl-1-propanol |
APA | bis (3-aminopropyl) amine |
CCL | carbon capture level |
CCS | carbon capture and storage |
CCUS | carbon capture, utilisation, and storage |
CO2 | carbon dioxide |
DACH | trans-1,4-Diaminocyclohexane |
DBN | 1,5diazabicyclo [4.3.0] non-5-ene |
DEA | diethanolamine |
DEEA | N,N-diethylethanolamine |
D2O | deuterium oxide |
H | height |
HX | heat exchanger |
IGCC | integrated gasification combined cycle |
KGa | mass transfer coefficient |
MDEA | methyldiethanolamine |
MEA | monoethanolamine |
Mtpa | million tonnes of CO2 annually |
PCC | post-combustion CO2 capture |
PZ | piperazine |
TEMDA | N,N,N′,N′-Tetra methylethylenediamine |
Tz | 1,2,4-triazole |
CO2 concentration |
References
- Hosseini-Ardali, S.M.; Hazrati-Kalbibaki, M.; Fattahi, M.; Lezsovits, F. Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent. Energy 2020, 211, 119035. [Google Scholar] [CrossRef]
- Luis, P. Use of monoethanolamine (MEA) for CO2 capture in a global scenario: Consequences and alternatives. Desalination 2016, 380, 93–99. [Google Scholar] [CrossRef]
- Borhani, T.N.; Abbasi, M.R.; Hosseinpour, M.; Salimi, M.; Afkhamipour, M.; Oko, E.; Campbell, K.S.; Kahllaghi, N. CO2 absorption-desorption cycles: Progress, gaps, and future. Carbon Capture Sci. Technol. 2024, 13, 100325. [Google Scholar] [CrossRef]
- 2025 Europe Forum on Carbon Capture and Storage: Recap 2025. Available online: https://www.globalccsinstitute.com/ (accessed on 13 May 2025).
- Khan, U.; Ogbaga, C.C.; Abiodun, O.-A.O.; Adeleke, A.A.; Ikubanni, P.P.; Okoye, P.U.; Okolie, J.A. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Sci. Technol. 2023, 8, 100125. [Google Scholar] [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef]
- Iveland, S.G.; Olsen, E.; Westbye, A.; Nygård, H.S. Experimental Validation of Carbon Capture in Molten Salts at Low CO2 Concentrations (1-5 Vol%). In Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16), Lyon, France, 23–24 October 2022. [Google Scholar] [CrossRef]
- Lacarbonara, G.; Chini, S.; Ratso, S.; Kruusenberg, I.; Arbizzani, C. A MnOx–graphitic carbon composite from CO2 for sustainable Li-ion battery anodes. Mater. Adv. 2022, 3, 7087–7097. [Google Scholar] [CrossRef]
- Borhani, T.N.; Wang, M. Role of solvents in CO2 capture processes: The review of selection and design methods. Renew. Sustain. Energy Rev. 2019, 114, 109299. [Google Scholar] [CrossRef]
- Marcus, Y. The Properties of Solvents; Wiley: Hoboken, NJ, USA, 1998. [Google Scholar]
- Raznahan, M.M.; Riahi, S.; Mousavi, S.H. A simple, robust and efficient structural model to predict CO2 absorption for different amine solutions: Concern to design new amine compounds. J. Environ. Chem. Eng. 2020, 8, 104572. [Google Scholar] [CrossRef]
- Hendriks, C. Energy Conversion: CO2 Removal from Coal-Fired Power Plant; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Veawab, A.; Aroonwilas, A.; Tontiwachwuthikul, P. CO2 absorption performance of aqueous alkanolamines in packed columns. ACS Div. Fuel Chem. Prepr. 2002, 47, 49–50. [Google Scholar]
- Rao, A.B.; Rubin, E.S. A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef]
- Ma’mun, S.; Dindore, V.Y.; Svendsen, H.F. Kinetics of the Reaction of Carbon Dioxide with Aqueous Solutions of 2-((2-Aminoethyl)amino)ethanol. Ind. Eng. Chem. Res. 2007, 46, 385–394. [Google Scholar] [CrossRef]
- Kohl, A.L.; Nielsen, R.B. Gas Purification, 5th ed.; Gulf Professional Publishing: Houston, TX, USA, 1960; ISBN 978-0-88415-220-0. [Google Scholar]
- Rochelle, G.T.; Bishnoi, S.; Chi, S.; Dang, H.; Santos, J. Research Needs for CO2 Capture From Flue Gas by Aqueous Absorption/Stripping; US Department of Energy: Pittsburgh, PA, USA, 2001. [Google Scholar]
- Adeosun, A.; El Hadri, N.; Goetheer, E.; Abu-Zahra, M.R. Absorption of CO2 by Amine Blends Solution: An Experimental Evaluation. Int. J. Eng. Sci. 2013, 3, 12–23. [Google Scholar]
- Zhang, R.; Li, Y.; He, X.; Niu, Y.; Li, C.; Amer, M.W.; Barzagli, F. Investigation of the improvement of the CO2 capture performance of aqueous amine sorbents by switching from dual-amine to trio-amine systems. Sep. Purif. Technol. 2023, 316, 123810. [Google Scholar] [CrossRef]
- Chen, P.-C.; Cho, H.-H.; Jhuang, J.-H.; Ku, C.-H. Selection of Mixed Amines in the CO2 Capture Process. C 2021, 7, 25. [Google Scholar] [CrossRef]
- Khan, A.A.; Halder, G.N.; Saha, A.K. Experimental investigation of sorption characteristics of capturing carbon dioxide into piperazine activated aqueous 2-amino-2-methyl-1-propanol solution in a packed column. Int. J. Greenh. Gas Control 2016, 44, 217–226. [Google Scholar] [CrossRef]
- Das, B.; Deogam, B.; Mandal, B. International Journal of Greenhouse Gas Control Absorption of CO2 into novel aqueous bis (3-aminopropyl) amine and enhancement of CO2 absorption into its blends with N -methyldiethanolamine. Int. J. Greenh. Gas Control 2017, 60, 172–185. [Google Scholar] [CrossRef]
- Aronu, U.E.; Hoff, K.A.; Svendsen, H.F. CO2 capture solvent selection by combined absorption-desorption analysis. Chem. Eng. Res. Des. 2011, 89, 1197–1203. [Google Scholar] [CrossRef]
- Ruan, J.; Ye, X.; Wang, R.; Chen, L.; Deng, L.; Qi, Z. Experimental and theoretical study on efficient CO2 absorption coordinated by molecules and ions of DBN and 1,2,4-triazole formed deep eutectic solvents. Fuel 2023, 334, 126709. [Google Scholar] [CrossRef]
- Yin, Q.; Mao, W.; Chen, D.; Song, C. Effect of adding tertiary amine TMEDA and space hindered amine DACH on the CO2 chemical absorption-microalgae conversion system. Energy 2023, 263, 125726. [Google Scholar] [CrossRef]
- Puxty, G.; Rowland, R.; Attalla, M. Describing CO2 mass transfer in amine/ammonia mixtures—No shuttle mechanism required. Energy Procedia 2011, 4, 1369–1376. [Google Scholar] [CrossRef]
- Birkelund, E.S. Department of Engineering and Safety CO2 Absorption and Desorption Simulation with Aspen HYSYS 2013. Master’s Thesis, University of Tromoso, Tromsø, Norway, 2013. Available online: https://munin.uit.no/handle/10037/8159 (accessed on 13 May 2025).
- Tripodi, A.; La Pietra, R.; Tommasi, M.; Rossetti, I. Model validation and simulation issues for carbon dioxide reactive absorption with mixed amines. Chem. Eng. Process.—Process Intensif. 2023, 194, 109588. [Google Scholar] [CrossRef]
- Sharif, M.; Fan, H.; Wu, X.; Yu, Y.; Zhang, T.; Zhang, Z. Assessment of novel solvent system for CO2 capture applications. Fuel 2023, 337, 127218. [Google Scholar] [CrossRef]
- Huertas, J.I.; Gomez, M.D.; Giraldo, N.; Garzón, J. CO2 absorbing capacity of MEA. J. Chem. 2015, 2015, 965015. [Google Scholar] [CrossRef]
- Mandal, B.P.; Guha, M.; Biswas, A.K.; Bandyopadhyay, S.S. Removal of carbon dioxide by absorption in mixed amines: Modelling of absorption in aqueous MDEA = MEA and AMP = MEA solutions. Chem. Eng. Sci. 2001, 56, 6217–6224. [Google Scholar] [CrossRef]
- Bairq, Z.; Pang, Y.; Li, J.; Hezam, A.; Tontiwachwuthikul, P.; Chen, H. Reducing energy requirements and enhancing MEA-CO2 desorption rates in amine solutions with KIT-6 nanostructures. Sep. Purif. Technol. 2024, 346, 127536. [Google Scholar] [CrossRef]
- Rayer, A.V.; Henni, A. Heats of absorption of CO2 in aqueous solutions of tertiary amines: N-methyldiethanolamine, 3-dimethylamino-1-propanol, and 1-dimethylamino-2-propanol. Ind. Eng. Chem. Res. 2014, 53, 4953–4965. [Google Scholar] [CrossRef]
- Chung, P.Y.; Soriano, A.N.; Leron, R.B.; Li, M.H. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water). J. Chem. Thermodyn. 2010, 42, 802–807. [Google Scholar] [CrossRef]
- Samanta, A.; Bandyopadhyay, S.S. Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine. Chem. Eng. J. 2011, 171, 734–741. [Google Scholar] [CrossRef]
- Rayer, A.V.; Sumon, K.Z.; Sema, T.; Henni, A.; Idem, R.O.; Tontiwachwuthikul, P. Part 5c: Solvent chemistry: Solubility of CO2 in reactive solvents for post-combustion CO2. Carbon Manag. 2012, 3, 467–484. [Google Scholar] [CrossRef]
- Artanto, Y.; Jansen, J.; Pearson, P.; Puxty, G.; Cottrell, A.; Meuleman, E.; Feron, P. Pilot-scale evaluation of AMP/PZ to capture CO2 from flue gas of an Australian brown coal–fired power station. Int. J. Greenh. Gas Control 2014, 20, 189–195. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Zhang, Z.; Li, L.; Bi, Y.; Zhang, L. Promotion of CO2 capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends. Greenh. Gases Sci. Technol. 2019, 9, 349–359. [Google Scholar] [CrossRef]
- Loachamin, D.; Casierra, J.; Calva, V.; Palma-Cando, A.; Ávila, E.E.; Ricaurte, M. Amine-Based Solvents and Additives to Improve the CO2 Capture Processes: A Review. ChemEngineering 2024, 8, 129. [Google Scholar] [CrossRef]
- Notz, R.; Mangalapally, H.P.; Hasse, H. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA. Int. J. Greenh. Gas Control 2012, 6, 84–112. [Google Scholar] [CrossRef]
- Ding, X.; Chen, H.; Li, J.; Zhou, T. Comparative techno-economic analysis of CO2 capture processes using blended amines. Carbon. Capture Sci. Technol. 2023, 9, 100136. [Google Scholar] [CrossRef]
- Salman, M.; Beguin, B.; Nyssen, T.; Léonard, G. Techno-economic analysis of AMP/PZ solvent for CO2 capture in a biomass CHP plant: Towards net negative emissions. Front. Energy Res. 2024, 12, 1325212. [Google Scholar] [CrossRef]
- Orangi, S.; Aromada, S.A.; Razi, N.; Øi, L.E. Simulation and Economic Analysis of MEA+PZ and MDEA+MEA Blends in Post-combustion CO2 Capture Plant. Scand. Simul. Soc. 2022, 317–324. [Google Scholar] [CrossRef]
- Kim, S.; Shi, H.; Lee, J.Y. CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int. J. Greenh. Gas Control 2016, 45, 181–188. [Google Scholar] [CrossRef]
- Anandita, S.; Liu, W.; Halim, I. A Comprehensive Study on Amine Performance in CO2 Capture: Insights from Design of Experiments and Principal Component Analysis. SSRN Electron. J. 2025. [Google Scholar] [CrossRef]
- Freeman, S.A.; Dugas, R.; Van Wagener, D.H.; Nguyen, T.; Rochelle, G.T. Carbon dioxide capture with concentrated, aqueous piperazine. Int. J. Greenh. Gas Control 2010, 4, 119–124. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine Scrubbing for CO2 Capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Kim, I.; Svendsen, H.F. Comparative study of the heats of absorption of post-combustion CO2 absorbents. Int. J. Greenh. Gas Control 2011, 5, 390–395. [Google Scholar] [CrossRef]
- Afkhamipour, M.; Mofarahi, M. Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns. RSC Adv. 2017, 7, 17857–17872. [Google Scholar] [CrossRef]
- Kayahan, E.; Di Caprio, U.; Bogaert, A.V.D.; Khan, M.N.; Bulut, M.; Braeken, L.; Van Gerven, T.; Leblebici, M.E. A new look to the old solvent: Mass transfer performance and mechanism of CO2 absorption into pure monoethanolamine in a spray column. Chem. Eng. Process.—Process Intensif. 2023, 184, 109285. [Google Scholar] [CrossRef]
- Mores, P.; Scenna, N.; Mussati, S. A rate based model of a packed column for CO2 absorption using aqueous monoethanolamine solution. Int. J. Greenh. Gas Control 2012, 6, 21–36. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, Y.; Sun, C.; Sun, Y.; Zhu, Y. Comparative Review for Enhancing CO2 Capture Efficiency with Mixed Amine Systems and Catalysts. Molecules 2024, 29, 4618. [Google Scholar] [CrossRef]
- Chai, S.Y.W.; Ngu, L.H.; How, B.S. Review of carbon capture absorbents for CO2 utilization. Greenh. Gases Sci. Technol. 2022, 12, 394–427. [Google Scholar] [CrossRef]
- Abu-Zahra, M.R.M.; Niederer, J.P.M.; Feron, P.H.M.; Versteeg, G.F. CO2 capture from power plants. Int. J. Greenh. Gas Control 2007, 1, 135–142. [Google Scholar] [CrossRef]
- Chen, Y.-M.; Hsu, H.-J.; Lin, Y.-J. Improving CO2 Capture Efficiency with High-Capacity Solvents: Addressing Temperature-Induced Mass Transfer Limitations. Ind. Eng. Chem. Res. 2025, 64, 2283–2293. [Google Scholar] [CrossRef]
- Joel, A.S.; Shehu, M.G.; Aroke, U.O.; Wang, M. Piperazine as a Solvent for Post-combustion Carbon Capture using Rotating Packed Bed Technology through Modelling and Simulation. Int. Res. J. Adv. Eng. Sci. 2021, 6, 248–252. [Google Scholar]
- Liu, Y. Research on Status and Outlook of Using Different Solvents for CO2 Capture in a Rotating Packed Bed. E3S Web Conf. 2021, 294, 06004. [Google Scholar] [CrossRef]
- Wu, T.-W.; Hung, Y.-T.; Chen, M.-T.; Tan, C.-S. CO2 capture from natural gas power plants by aqueous PZ/DETA in rotating packed bed. Sep. Purif. Technol. 2017, 186, 309–317. [Google Scholar] [CrossRef]
- Li, F.; Hemmati, A.; Rashidi, H. Industrial CO2 absorption into methyldiethanolamine/piperazine in place of monoethanolamine in the absorption column. Process Saf. Environ. Prot. 2020, 142, 83–91. [Google Scholar] [CrossRef]
- Khan, B.A.; Ullah, A.; Saleem, M.W.; Khan, A.N.; Faiq, M.; Haris, M. Energy Minimization in Piperazine Promoted MDEA-Based CO2 Capture Process. Sustainability 2020, 12, 8524. [Google Scholar] [CrossRef]
- Tveit, H.; Eimer, D.A.; Idris, Z. Viscosity Measurement and Correlation of Unloaded and CO2-Loaded Aqueous Blend of Monoethanolamine and Piperazine. J. Chem. Eng. Data 2021, 66, 3853–3858. [Google Scholar] [CrossRef]
- Closmann, F.; Nguyen, T.; Rochelle, G.T. MDEA/Piperazine as a solvent for CO2 capture. Energy Procedia 2009, 1, 1351–1357. [Google Scholar] [CrossRef]
- Khaled, F.; Hamad, E.; Traver, M.; Kalamaras, C. Amine-based CO2 capture on-board of marine ships: A comparison between MEA and MDEA/PZ aqueous solvents. Int. J. Greenh. Gas Control 2024, 135, 104168. [Google Scholar] [CrossRef]
- Dugas, R.E. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2006. [Google Scholar]
- Du, Y.; Yuan, Y.; Rochelle, G.T. Capacity and absorption rate of tertiary and hindered amines blended with piperazine for CO2 capture. Chem. Eng. Sci. 2016, 155, 397–404. [Google Scholar] [CrossRef]
- Rochelle, G.T. Conventional amine scrubbing for CO2 capture. In Absorption-Based Post-Combustion Capture of Carbon Dioxide; Elsevier: Amsterdam, The Netherlands, 2016; pp. 35–67. [Google Scholar] [CrossRef]
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. A review on CO2 capture and sequestration in the construction industry: Emerging approaches and commercialised technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- Ziobrowski, Z.; Rotkegel, A. Comparison of CO2 Separation Efficiency from Flue Gases Based on Commonly Used Methods and Materials. Materials 2022, 15, 460. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Zhao, S.; Wu, H.; Sun, Z. Parameter optimization of solution method of CO2 capture from aluminum electrolysis flue gas: Ammonia versus MEA. J. Environ. Chem. Eng. 2025, 13, 115702. [Google Scholar] [CrossRef]
- Hosseini, S.M.; PMoghadam, R.; Afshar Ebrahimi, A. Boosting CO2 capture efficiency of the exhausted RFCC flue gas by using intercooler exchangers: Leveraging ANN in MDEA-based approach. J. CO2 Util. 2025, 95, 103091. [Google Scholar] [CrossRef]
- Gul, A.; Tezcan Un, U. Effect of Temperature and Gas Flow Rate on CO2 Capture. Eur. J. Sustain. Dev. Res. 2022, 6, em0181. [Google Scholar] [CrossRef]
- Ren, S.; Hou, Y.; Wu, W.; Tian, S.; Liu, W. CO2 capture from flue gas at high temperatures by new ionic liquids with high capacity. RSC Adv. 2012, 2, 2504. [Google Scholar] [CrossRef]
- Meng, Y.; Jiang, J.; Aihemaiti, A.; Ju, T.; Gao, Y.; Liu, J.; Han, S. Feasibility of CO2 Capture from O2 -Containing Flue Gas Using a Poly(ethylenimine)-Functionalized Sorbent: Oxidative Stability in Long-Term Operation. ACS Appl. Mater. Interfaces 2019, 11, 33781–33791. [Google Scholar] [CrossRef]
- Rahmandoost, E.; Roozbehani, B.; Maddahi, M.H. Experimental studies of CO2 capturing from the flue gases. Iran. J. Oil Gas Sci. Technol. 2014, 3, 1–15. [Google Scholar]
- Borhani, T.N.; Ansarpour, M.; Babamohammadi, S.; Oko, E. Preliminary application of batch downflow gas contactor (BDGC) as a novel unit operation for CO2 absorption. Gas Sci. Eng. 2025, 135, 205560. [Google Scholar] [CrossRef]
- Subramanian, N.; Madejski, P. Analysis of CO2 capture process from flue-gases in combined cycle gas turbine power plant using post-combustion capture technology. Energy 2023, 282, 128311. [Google Scholar] [CrossRef]
- Yuan, B.; Zhan, G.; Chen, Z.; Li, Y.; Wang, L.; You, C.; Li, J. Intrinsic insight of energy-efficiency optimization for CO2 capture by amine-based solvent: Effect of mass transfer and solvent regeneration. Int. J. Greenh. Gas Control 2022, 118, 103673. [Google Scholar] [CrossRef]
- Agbonghae, E.O.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Pourkashanian, M. Optimal Process Design of Commercial-Scale Amine-Based CO2 Capture Plants. Ind. Eng. Chem. Res. 2014, 53, 14815–14829. [Google Scholar] [CrossRef]
- Vinjarapu, S.H.B.; Neerup, R.; Larsen, A.H.; Jørsboe, J.K.; Villadsen, S.N.B.; Jensen, S.; Karlsson, J.L.; Kappel, J.; Lassen, H.; Blinksbjerg, P.; et al. Results from pilot-scale CO2 capture testing using 30 wt% MEA at a Waste-to-Energy facility: Optimisation through parametric analysis. Appl. Energy 2024, 355, 122193. [Google Scholar] [CrossRef]
Solvent | Equipment Specifications | Operating Conditions | Research Remark | Ref. |
---|---|---|---|---|
1MEA + PZ DEA + PZ AMP + PZ 1MDEA + PZ | Total gas pressure of 100 kPa (with CO2 partial pressure of 12 kPa) and temperature of 40 °C | 10 wt.%-AMP/20 wt.%-PZ blend recorded the highest absorption capacity of 0.99 mol CO2/mol amine | [18] | |
2-dimethylamino-2-methyl-1-propanol 2DMA2M1P + MEA + AMP | Mass flow controller, gas mixer, saturation unit, reactor, condenser | Gas mixtures (CO2 + N2) with PCO2 between 5 and 60 kPa. A constant flow rate of 500 mL/min. The regeneration rate at T = 373 K. MEA 5 M as a benchmark aqueous solution for comparison purposes. | MEA-2DMA2M1P-AMP (1:2:2) has the fastest desorption kinetics, the highest cyclic capacity and the lowest energy demand | [19] |
MEA + DIPA MEA + TEA MEA + AMP MEA + PZ | The bubble column as the scrubber, gas-flow feed system, liquid-flow system, pH meter, gas heating system, liquid cooling system | Tg = 50 °C Solvent concentration: 1–2.5 M Ratio of mixed amines: 5–20 wt.% Gas flow rate: 3–12 L/min Liquid flow rate: 150–30 mL/min | The optimum conditions to reach 100% absorption efficiency: Solvent = MEA + AMP Ratio of mixed amines: 20 wt.% Solvent concentration: 2.5 M Gas flow rate: 3.0 L/min Liquid flow rate: 300 mL/min | [20] |
AMP + PZ | Inner diameter, height, and packing height of absorption and stripping columns are 0.04 m, 1.3 m and 084 m, respectively. Packing material is nonreactive metal HELI-PAK. | Pabs: atmospheric Tabs: 298–308 K Tdes: 368–383 K Pdes: 50–55 kPa PCO2: 10, 12 and 15 kPa | CO2 loading capacity increases with the increase in the ratio of PZ in the mixture A higher concentration of solvent has a significantly lower regeneration efficiency. | [21] |
bis (3-aminopropyl) amine (APA) + MDEA | Kinetic experiments of CO2 absorption A wetted-wall model contactor Deuterium oxide (D2O) was used for NMR measurement | T (303 to 323 K). a concentration range of 0.1–0.5 kmol m−3 and different CO2 partial pressures. | The kinetic rate constants of APA indicate that it has great potential as an activator with AMP and MDEA A small amount of fast-reacting APA added to a much larger amount of MDEA significantly enhances the absorption rate | [22] |
TEPA-MEA TMBPA-PZ | Absorber unit. Stripping unit. | Absorption experiments at 40 °C and 9.5 kPa CO2 partial pressure. Desorption experiments at 80 °C down to 1.0 kPa CO2 partial pressure. | TEPA-MEA showed the best performance in terms of absorption rate. TMBPA-PZ showed the best potential for efficient CO2 removal at reduced cost among all systems tested. Cyclic capacity in mol CO2/mol amine 70%. | [23] |
1,5diazabicyclo [4.3.0] non-5-ene (DBN), 1,2,4-triazole (Tz), DBN/Tz | Tz (99%), DBN (98%). A vacuum pump to a pressure lower than 3 kPa. An absorption equilibrium. | Tdesorber: 80 °C, vibrational frequency analysis at 25 °C and 100 kPa. | Capacity 0.19 g CO2/g DES at 25 °C. | [24] |
TEMDA (N,N,N′,N′-Tetra methylethylenediamine) and space-hindered amine DACH (trans-1,4-Diaminocyclohexane) | L166 concentration of Chlorella sp. 0.45 μm membranes. SPSS software. | Drying at 105 °C for 48 h. | CO2 conversion efficiency increased to 43.29%. Carbon sequestration capacity increased by 49.07%. Carbon sequestration capacity: 123.27 mg/L.day | [25] |
Mixture of Amines | Modelling Performed, Process Equipment | Software | Modelling Studies and Conditions | Research Remark | Ref. |
---|---|---|---|---|---|
PZ-AMP PZ-NH3 | Reaction film simulator. | MATLAB | Modelling of mass transfer during CO2 absorption. | The study found that the model successfully predicted the absorption flux of CO2 in mixed solvents, especially when reactants were significantly reduced within the film. | [26] |
DEA and MDEA in water. | 14–16 stages in the absorber and stripper units. Flash tank. | Aspen HYSYS | P 110–120 kPa. CO2 removal efficiency % 85%. Minimum temperature 5 K. Kent–Eisenberg for mixed amines. Peng–Robinson for the vapour phase. | CO2 removal efficiency of 84–86%. 1.15 M tons of CO2/year is removed. | [27] |
Mixed amines-water | Aspen Plus. Absorption–desorption modelling. Absorber unit Stripper unit. | Aspen Plus | Gas flow rate 160 kg/h. 15–20 vol% CO2. CO2 capture %90. | The absorption of CO2 into a solvent is highly dependent on the partial pressures of all the species involved, as well as on maintaining a constant volume or pressure for the combination. | [28] |
(2EAE- TMPAD, 2EAE-DEAB, 2EAE-1DMA2P, 2MAE-2DMAE, 2EAE-2DMAE, and DMCA-MCA) | A molecular dynamics simulation model. | Material Studio | T (313, 3232, and 333) K. | 2EAE-TMPAD has the highest diffusion rate. 10%DMCA–20%MCA has a higher interaction strength. | [29] |
Industrial Solvents | Solvent | Applications | Suppliers | Commercial Process Examples |
---|---|---|---|---|
UCARSOL™ | MDEA | Natural gas processing, refinery operations | Dow Chemical Company | Used to treat raw sour gas to meet pipeline specifications (<4 ppm H2S and <2% CO2) |
UCARSOL™ AP (802/804/806/ 810/814) | Proprietary tertiary amine blend with activators | Acid gas removal in natural gas processing | Dow Chemical Company | Used in natural gas sweetening in high-pressure systems |
UCARSOL™ HS (101/102/103/115) | Proprietary hindered amine formulation | Ammonia synthesis (removal of CO2 and H2S from feed gas) | Dow Chemical Company | Ammonia plants for syngas purification |
Selexol™ | Dimethyl ethers of polyethylene glycol | Acid gas removal in syngas and natural gas processing | Honeywell UOP | Used in integrated gasification combined cycle (IGCC) power plants |
CESAR1 | 30 wt.% MEA + 10 wt.% PZ | Advanced post-combustion CO2 capture | European CESAR Project (Collaborative) | Pilot-scale CO2 capture at coal-fired power stations |
CESAR2 | 30 wt.% AMP + 10 wt.% PZ | Post-combustion carbon capture | European CESAR Project (Collaborative) | Demonstrated in post-combustion CO2 capture pilot plants |
Rectisol® | Methanol (CH3OH), cryogenic solvent | For the physical absorption of CO2, H2S, and other impurities. It is particularly effective for applications requiring high-purity gas streams | Linde | Methanol-based purification in Fischer–Tropsch processes |
Amisol® | Proprietary amine solution (likely MDEA-based) | Acid gas removal in chemical and petrochemical industries | BASF | BASF’s Amisol process for H2S and CO2 removal |
KS Series | Proprietary hindered amine blend | Post-combustion carbon capture | Mitsubishi Heavy Industries | Mitsubishi’s CO2 capture process (such as Petra Nova) |
OASE® sulfexx | Amine-based | Natural gas processing, refinery, off-gas treatment, synthesis gas treatment | ExxonMobil and BASF | Ammonia production, methanol plants, and hydrogen production facilities |
FLEXSORB™ (ExxonMobil) | Proprietary sterically hindered amines | Widely used in natural gas and sulphur recovery operations | ExxonMobil | ExxonMobil’s FLEXSORB™ process in gas-treating plants |
ADIP-X | MDEA + PZ | CO2 and H2S removal in natural gas processing | Shell Global Solutions | Shell’s ADIP process for gas treating |
ADIP Ultra | MDEA + PZ | CO2 and H2S removal in natural gas, sulphur recovery | Shell Global Solutions | Shell’s ADIP Ultra process in sulphur recovery units |
Property | Flue Gas | Inlet Lean MEA | Makeup Water |
---|---|---|---|
Temperature (°C) | 48.01 | 40.01 | 43.87 |
Pressure (mbar) | 1004.49 | 2000 | ~1000 |
Total flow (kg/h) | 72.0 | 201.3 | 30.75 |
MEA (wt.%) | 0 | 27.5 | 00.31 |
H2O (wt.%) | 7.1 | 67.3 | 99.54 |
CO2 (wt.%) | 8.50 | 5.2 | 0 |
N2 (wt.%) | 74.3 | 0 | 0 |
O2 (wt.%) | 10.1 | 0 | 0 |
Molar CO2 loading | -- | 0.265 | -- |
Items | Unit | Value |
---|---|---|
Absorber and stripper diameters | m | 0.125 |
Absorbing section height | m | 4.2 |
Washing section height (absorber) | m | 0.42 |
Stripping section height | m | 2.5 |
Washing section height (stripper) | m | 0.42 |
Water outlet flow rate | kg/h | 28.53 |
Number of stages (absorber and stripper) | stages | 20 |
Packing type | - | FLEXIPAC® 250Y |
Distillate rate | kg/h | 6.93 |
Boil-up ratio | - | 0.064 |
Chemical Solvent | Chemical Reactions | Type of Reaction |
---|---|---|
MEA | Equilibrium | |
Equilibrium | ||
Kinetic | ||
Kinetic | ||
MDEA | Equilibrium | |
Kinetic | ||
Kinetic | ||
PZ | Equilibrium | |
Equilibrium | ||
Kinetic | ||
Kinetic | ||
Kinetic | ||
Kinetic | ||
Other reactions that must be considered for all the solvents | Equilibrium | |
Equilibrium | ||
Equilibrium | ||
Kinetic | ||
Kinetic |
Zpacking/m | REP (%) | ||
---|---|---|---|
0.411 | 16.502 | 15.510 | 6.008 |
1.272 | 18.977 | 19.506 | 2.791 |
2.111 | 23.928 | 25.746 | 7.599 |
2.945 | 35.066 | 33.962 | 3.148 |
3.806 | 44.142 | 44.285 | 0.323 |
AREP | 3.974 |
Parameters | Amine Solvents | |||
---|---|---|---|---|
MEA | PZ | MEA + PZ (5:1) | MDEA + PZ (5:1) | |
Outlet CO2 concentration (%) in treated gas stream | 1.49 | 1.73 | 0.9 | 1.50 |
Lean amine loading (mol/mol) | 0.24 | 0.56 | 0.33 | 0.056 |
Rich amine loading (mol/mol) | 0.36 | 0.72 | 0.55 | 0.24 |
Lean amine circulation (m3/h) | 0.20 | 0.20 | 0.22 | 0.25 |
Outlet CO2 flow rate (kg/h) | 4.51 | 4.23 | 5.13 | 4.54 |
Stripper reboiler duty (kJ/h) | 26,773 | 25,244 | 27,472 | 28,344 |
Reboiler duty (MJ/kg CO2) | 5.93 | 5.97 | 5.35 | 6.24 |
CO2 removal (%) | 72.57 | 68.08 | 83.45 | 72.46 |
Adjusted Results | MEA | PZ | MEA + PZ (5:1) | MDEA + PZ (5:1) |
---|---|---|---|---|
Outlet CO2 concentration (%) in treated gas stream | 0.53 | 1.57 | 0.49 | 1.59 |
Outlet CO2 flow rate (kg/h) | 5.54 | 4.40 | 5.58 | 4.41 |
Stripper reboiler duty (kJ/h) | 25,565 | 25,260 | 23,783 | 22,037 |
Reboiler duty (MJ/kg CO2) | 4.61 | 5.74 | 4.28 | 5 |
CO2 removal (%) | 90.33 | 71.03 | 90.75 | 70.74 |
Adjusted Results | PZ | MDEA + PZ |
---|---|---|
Outlet CO2 concentration (%) in treated gas stream | 0.549 | 0.553 |
Outlet CO2 flow rate (kg/h) | 5.520 | 5.519 |
Stripper reboiler duty (kJ/h) | 29,800 | 25,380 |
Reboiler duty (MJ/kg CO2) | 5.40 | 4.60 |
CO2 removal (%) | 90.21 | 90.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elmarghni, S.; Ansarpour, M.; Borhani, T.N. Effect of Different Amine Solutions on Performance of Post-Combustion CO2 Capture. Processes 2025, 13, 2521. https://doi.org/10.3390/pr13082521
Elmarghni S, Ansarpour M, Borhani TN. Effect of Different Amine Solutions on Performance of Post-Combustion CO2 Capture. Processes. 2025; 13(8):2521. https://doi.org/10.3390/pr13082521
Chicago/Turabian StyleElmarghni, Sara, Meisam Ansarpour, and Tohid N. Borhani. 2025. "Effect of Different Amine Solutions on Performance of Post-Combustion CO2 Capture" Processes 13, no. 8: 2521. https://doi.org/10.3390/pr13082521
APA StyleElmarghni, S., Ansarpour, M., & Borhani, T. N. (2025). Effect of Different Amine Solutions on Performance of Post-Combustion CO2 Capture. Processes, 13(8), 2521. https://doi.org/10.3390/pr13082521