Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors
Abstract
1. Introduction
2. Material and Methods
2.1. Material
2.2. Method
2.3. Characterization
2.4. Antimicrobial Activity
2.4.1. Preparation of Culture Media
2.4.2. Antimicrobial Activity Assays
2.4.3. Minimum Inhibitory Concentration (MIC) Determination
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mishra, P.K.; Mishra, H.; Ekielski, A.; Talegaonkar, S.; Vaidya, B. Zinc oxide nanoparticles: A promising nanomaterial for biomedical applications. Drug Discov. Today 2017, 22, 1825–1834. [Google Scholar] [CrossRef] [PubMed]
- Vandebriel, R.J.; de Jong, W.H. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol. Sci. Appl. 2012, 5, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Chaudhry, S.A.; Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B-Biol. 2017, 166, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Xiao, X.; Peng, T.; Jiang, C. Controllable synthesis and optical properties of connected zinc oxide nanoparticles. Chem.-Asian J. 2010, 5, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Kotresh, M.G.; Patil, M.K.; Inamdar, S.R. Reaction temperature based synthesis of ZnO nanoparticles using co-precipitation method: Detailed structural and optical characterization. Optik 2021, 243, 167506. [Google Scholar] [CrossRef]
- Lakshmi, S.J.; Bai, R.R.S.; Sharanagouda, H.; Nidoni, U.K. A review study of zinc oxide nanoparticles synthesis from plant extracts. Green Chem. Technol. Lett 2017, 3, 26–37. [Google Scholar] [CrossRef]
- Asif, N.; Fatima, S.; Aziz Md, N.; Zaki, A.; Fatma, T. Biofabrication and characterization of cyanobacteria derived ZnO NPs for their bioactivity comparison with commercial chemically synthesized nanoparticles. Bioorganic Chem. 2021, 113, 104999. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Ahmad, M.; Namvar, F.; Namvar, F.; Mohamad, R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett. 2014, 116, 275–277. [Google Scholar] [CrossRef]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Fazelian, N.; Yousefzadi, M.; Movafeghi, A. Algal Response to Metal Oxide Nanoparticles: Analysis of Growth, Protein Content, and Fatty Acid Composition. BioEnergy Res. 2020, 13, 944–954. [Google Scholar] [CrossRef]
- Mohd Esa, Y.A.; Sapawe, N. A short review on zinc metal nanoparticles synthesize by green chemistry via natural plant extracts. Mater. Today Proc. 2020, 31, 386–393. [Google Scholar] [CrossRef]
- Zeghoud, S.; Hemmami, H.; Ben Seghir, B.; Ben Amor, I.; Kouadri, I.; Rebiai, A.; Messaoudi, M.; Ahmed, S.; Pohl, P.; Simal-Gandara, J. A Review on Biogenic Green Synthesis of ZnO Nanoparticles by Plant Biomass and their Applications. Mater. Today Commun. 2022, 33, 104747. [Google Scholar] [CrossRef]
- Lallo da Silva, B.; Abuçafy, M.P.; Manaia, E.B.; Junior, J.A.O.; Chiari-Andréo, B.G.; Rodrigues Pietro, R.C.L.; Chiavacci, L.A. Relationship Between Structure And Antimicrobial Activity Of Zinc Oxide Nanoparticles: An Overview. Int. J. Nanomed. 2019, 14, 9395–9410. [Google Scholar] [CrossRef] [PubMed]
- Karaköse, E.; Çolak, H.; Duman, F. Green synthesis and antimicrobial activity of ZnO nanostructures Punica granatum shell extract. Green Process. Synth. 2017, 6, 317–323. [Google Scholar] [CrossRef]
- Mondelaers, D.; Vanhoyland, G.; Van den Rul, H.; D’Haen, J.; Van Bael, M.K.; Mullens, J.; Van Poucke, L.C. Synthesis of ZnO nanopowder via an aqueous acetate-citrate gelation method. Mater. Res. Bull. 2002, 37, 901–914. [Google Scholar] [CrossRef]
- Petchsomrit, A.; Chanthathamrongsiri, N.; Jiangseubchatveera, N.; Manmuan, S.; Leelakanok, N.; Plianwong, S.; Siranontana, N.; Sirirak, T. Extraction, antioxidant activity, and hydrogel formulation of marine Cladophora glomerata. Algal Res.-Biomass Biofuels Bioprod. 2023, 71, 103011. [Google Scholar] [CrossRef]
- Remmal, A.; Bouchikhi, T.; Rhayour, K.; Ettayebi, M.; Tantaoui-Elaraki, A. Improved Method for the Determination of Antimicrobial Activity of Essential Oils in Agar Medium. J. Essent. Oil Res. 1993, 5, 179–184. [Google Scholar] [CrossRef]
- Pfaller, M.A.; Messer, S.A.; Coffmann, S. Comparison of visual and spectrophotometric methods of MIC endpoint determinations by using broth microdilution methods to test five antifungal agents, including the new triazole D0870. J. Clin. Microbiol. 1995, 33, 1094–1097. [Google Scholar] [CrossRef] [PubMed]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. Int. Sch. Res. Not. 2012, 1, 372505. [Google Scholar] [CrossRef]
- Kuznetsova Yu, V.; Kazantseva, A.A.; Kazantseva, A.A.; Rempel, A.A.; Rempel, A.A. Zeta Potential, Size, and Semiconductor Properties of Zinc Sulfide Nanoparticles in a Stable Aqueous Colloid Solution. Russ. J. Phys. Chem. A 2016, 90, 864–869. [Google Scholar] [CrossRef]
- Kaszuba, M.; Corbett, J.C.W.; Watson, F.M.; Jones, A.S. High-concentration zeta potential measurements using light-scattering techniques. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 4439–4451. [Google Scholar] [CrossRef] [PubMed]
- Rafiaei, S.M. Evaluation of (GdxY1−x)VO4: Er3+ (x = 0, 0.25, 0.5, 0.75, 1) compounds: Study of crystal structure, microstructure, luminescence and adsorption properties. Ceram. Int. 2022, 48, 14913–14919. [Google Scholar] [CrossRef]
- Rafiaei, S.M.; Duman, F. Synthesis of MgAl2O4: Eu3+ Nano-phosphors through the Use of Aniline and Hydrazine Fuels: Study of Structural and Optical Characteristics through Calcination. J. Mater. Eng. Perform. 2024, 34, 1–8. [Google Scholar] [CrossRef]
- Rafiaei, S.M. Piperidine and isobutyl-nitrite fuels for the combustion synthesis of nanomaterials: A study of crystal structure, microstructure, thermodynamics, and optical properties. J. Mol. Struct. 2024, 1312, 138583. [Google Scholar] [CrossRef]
- Algarni, T.S.; Abduh, N.A.Y.; Kahtani, A.A.; Aouissi, A. Photocatalytic degradation of some dyes under solar light irradiation using ZnO nanoparticles synthesized from Rosmarinus officinalis extract. Green Chem. Lett. Rev. 2022, 15, 460–473. [Google Scholar] [CrossRef]
- Ahmad, T.; Pandey, V.; Husain, M.S.; Adiba; Munjal, S. Structural and spectroscopic analysis of pure phase hexagonal wurtzite ZnO nanoparticles synthesized by sol-gel. Mater. Today Proc. 2022, 49, 1694–1697. [Google Scholar] [CrossRef]
- Rago, I.; Chandraiahgari, C.R.; Bracciale, M.P.; De Bellis, G.; Zanni, E.; Cestelli Guidi, M.; Sali, D.; Broggi, A.; Palleschi, C.; Sarto, M.S.; et al. Zinc oxide microrods and nanorods: Different antibacterial activity and their mode of action against Gram-positive bacteria. RSC Adv. 2014, 4, 56031–56040. [Google Scholar] [CrossRef]
- Jiang, S.; Lin, K.; Cai, M. ZnO Nanomaterials: Current Advancements in Antibacterial Mechanisms and Applications. Front. Chem. 2020, 8, 580. [Google Scholar] [CrossRef] [PubMed]
- Arefi, M.R.; Rezaei-Zarchi, S.; Imani, S. Synthesis of ZnO nanoparticles and their antibacterial effects. Afr. J. Biotechnol. 2012, 11, 8520–8526. [Google Scholar] [CrossRef]
Microorganism | C. glomerata Extract | Zinc Acetate–Precursored ZnO— Inhibition Zone (mm) | Zinc Chloride–Precursored ZnO—Inhibition Zone (mm) | Vancomycin (10 μg) |
---|---|---|---|---|
B. subtilis | - | 14.5 ± 2.12 | 12.2 ± 4.1 | 8 ± 1.4 |
E. coli | - | 14.5 ± 3.5 | 14 ± 3.1 | - |
E. aerogenes | - | 10.5 ± 0.71 | 12.2 ± 2.11 | - |
K. pneumoniae | - | 11.0 ± 1.41 | 13.8 ± 2.1 | - |
L. monocytogenes | - | 18.5 ± 4.95 | 20.1 ± 3.9 | - |
P. vulgaris | - | 21 ± 1.41 * | 24.2 ± 2.5 * | - |
S. aureus | - | 11.5 ± 0.71 | 12.8 ± 4.9 | 12 ± 0.00 |
C. albicans | - | - | 10.1 ± 2.5 | - |
C. parap | - | - | - | - |
Concentrations (ppm) | L. monocytogenes ATCC 19115 | E. coli ATCC 25922 | E. aerogenes ATCC 13048 | P. vulgaris ATCC 8427 | B. subtilis ATCC 29213 | K. pneumonia ATCC 13883 | S. aureus ATCC 25923 |
---|---|---|---|---|---|---|---|
100 | - | - | - | - | - | - | - |
50 | - | - | - | - | - | - | - |
25 | - | + | - | + | + | - | + |
12.5 | - | + | + | + | + | + | + |
6.25 | - | + | + | + | + | + | + |
3125 | - | + | + | + | + | + | + |
1.56 | + | + | + | + | + | + | + |
0.78 | + | + | + | + | + | + | + |
0.39 | + | + | + | + | + | + | + |
0.19 | + | + | + | + | + | + | + |
0.09 | + | + | + | + | + | + | + |
0.045 | + | + | + | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezen, G.; Aktan, R. Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors. Processes 2025, 13, 2350. https://doi.org/10.3390/pr13082350
Sezen G, Aktan R. Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors. Processes. 2025; 13(8):2350. https://doi.org/10.3390/pr13082350
Chicago/Turabian StyleSezen, Göksal, and Ramazan Aktan. 2025. "Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors" Processes 13, no. 8: 2350. https://doi.org/10.3390/pr13082350
APA StyleSezen, G., & Aktan, R. (2025). Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors. Processes, 13(8), 2350. https://doi.org/10.3390/pr13082350