Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes
Abstract
1. Introduction
ΔH° = 204 kJ/mol | (R1) | |
ΔH° = 74 kJ/mol | (R2) |
ΔH° = 247 kJ/mol | (R3) | |
ΔH° = 172 kJ/mol | (R4) | |
ΔH° = 41 kJ/mol | (R5) |
2. Catalysts for Photoconversion
2.1. General Mechanism of Photocatalysis and Photocatalyst Engineering
2.2. TiO2−Based Catalysts
2.3. ZrO2−Based Catalysts
2.4. C3N4−Based Catalysts
2.5. Other Catalysts
3. Reactor and Process Design
4. Conclusions
Funding
Conflicts of Interest
Abbreviations
A | Aqueous phase |
AI | Artificial intelligence |
APE | Apparent photon efficiency |
AQY | Apparent quantum yield |
BG | Band gap |
CB | Conduction band |
COF | Covalent organic framework |
FB | Fluidized bed |
G | Gas phase |
GO | Graphene oxide |
IR | Infrared |
MOF | Metal–organic framework |
NIR | Near−infrared |
L | Liquid phase |
LDH | Layered double hydroxide |
LED | Light−emission diode |
PE | Photonic efficiency |
QE | Quantum efficiency |
TEOA | Triethanolamine |
Umf | Minimum fluidization velocity |
Ut | Terminal velocity |
UV | Ultraviolet |
VB | Valence band |
VS | Visible |
References
- Boscherini, M.; Storione, A.; Minelli, M.; Miccio, F.; Doghieri, F. New Perspectives on Catalytic Hydrogen Production by the Reforming, Partial Oxidation and Decomposition of Methane and Biogas. Energies 2023, 16, 6375. [Google Scholar] [CrossRef]
- Großmann, K.; Treiber, P.; Karl, J. Steam Methane Reforming at Low S/C Ratios for Power−to−Gas Applications. Int. J. Hydrogen Energy 2016, 41, 17784–17792. [Google Scholar] [CrossRef]
- Meloni, E.; Martino, M.; Palma, V. A Short Review on Ni Based Catalysts and Related Engineering Issues for Methane Steam Reforming. Catalysts 2020, 10, 352. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Z.; Hu, Y.H. Steam Reforming of Methane: Current States of Catalyst Design and Process Upgrading. Renew. Sust. Energy Rev. 2021, 149, 111330. [Google Scholar] [CrossRef]
- Wang, S.; Nabavi, S.A.; Clough, P.T. A Review on Bi/Polymetallic Catalysts for Steam Methane Reforming. Int. J. Hydrogen Energy 2023, 48, 15879–15893. [Google Scholar] [CrossRef]
- Lu, H.; Shi, X.; Costa, M.; Huang, C. Carcinogenic Effect of Nickel Compounds. Mol. Cell. Biochem. 2005, 279, 45–67. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Joseph, B.; Kuhn, J.; Ozcan, S. Biogas Reforming to Syngas: A Review. iScience 2020, 23, 101082. [Google Scholar] [CrossRef]
- Jung, S.; Lee, J.; Moon, D.H.; Kim, K.H.; Kwon, E.E. Upgrading Biogas into Syngas through Dry Reforming. Renew. Sustain. Energy Rev. 2021, 143, 110949. [Google Scholar] [CrossRef]
- Minh, D.P.; Siang, T.J.; Vo, D.V.N.; Phan, T.S.; Ridart, C.; Nzihou, A.; Grouset, D. Hydrogen Production from Biogas Reforming: An Overview of Steam Reforming, Dry Reforming, Dual Reforming, and Tri−Reforming of Methane. In Hydrogen Supply Chain: Design, Deployment and Operation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 111–166. ISBN 9780128111970. [Google Scholar]
- Aramouni, N.A.K. Carbon Mitigation in the Dry Reforming of Methane. Ph.D. Thesis, University of Limerick, Limerick, Ireland, 2020. [Google Scholar]
- De Caprariis, B.; Bassano, C.; Deiana, P.; Palma, V.; Petrullo, A.; Scarsella, M.; De Filippis, P. Carbon Dioxide Reforming of Tar during Biomass Gasification. Chem. Eng. Trans. 2014, 37, 97–102. [Google Scholar] [CrossRef]
- Guan, G.; Kaewpanha, M.; Hao, X.; Abudula, A. Catalytic Steam Reforming of Biomass Tar: Prospects and Challenges. Renew. Sustain. Energy Rev. 2016, 58, 450–461. [Google Scholar] [CrossRef]
- Abdelaal, A.; Villot, A.; Patuzzi, F.; Baratieri, M.; Gerente, C. Steam Reforming of Main Tar Compounds over Industrial Gasification Char. Fuel 2025, 384, 133986. [Google Scholar] [CrossRef]
- Sutthiumporn, K.; Maneerung, T.; Kathiraser, Y.; Kawi, S. CO2 Dry-Reforming of Methane over La0.8Sr 0.2Ni0.8M0.2O3 Perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of Lattice Oxygen on C-H Activation and Carbon Suppression. Int. J. Hydrogen Energy 2012, 37, 11195–11207. [Google Scholar] [CrossRef]
- Muraza, O.; Galadima, A. A Review on Coke Management during Dry Reforming of Methane. Int. J. Energy Res. 2015, 39, 1196–1216. [Google Scholar] [CrossRef]
- Aramouni, N.A.K.; Touma, J.G.; Tarboush, B.A.; Zeaiter, J.; Ahmad, M.N. Catalyst Design for Dry Reforming of Methane: Analysis Review. Renew. Sustain. Energy Rev. 2018, 82, 2570–2585. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A Review of Recent Developments in Hydrogen Production via Biogas Dry Reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Han, B.; Wang, F.; Zhang, L.; Wang, Y.; Fan, W.; Xu, L.; Yu, H.; Li, Z. Syngas Production from Methane Steam Reforming and Dry Reforming Reactions over Sintering−Resistant Ni@SiO2 Catalyst. Res. Chem. Intermed. 2020, 46, 1735–1748. [Google Scholar] [CrossRef]
- Manan, W.N.; Wan Isahak, W.N.R.; Yaakob, Z. CeO2−Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review. Catalysts 2022, 12, 452. [Google Scholar] [CrossRef]
- Chaghouri, M.; Hany, S.; Cazier, F.; Tidahy, H.L.; Gennequin, C.; Abi−Aad, E. Impact of Impurities on Biogas Valorization through Dry Reforming of Methane Reaction. Int. J. Hydrogen Energy 2022, 47, 40415–40429. [Google Scholar] [CrossRef]
- Phan, T.S.; Pham Minh, D. New Performing Hydroxyapatite−Based Catalysts in Dry−Reforming of Methane. Int. J. Hydrogen Energy 2023, 48, 30770–30790. [Google Scholar] [CrossRef]
- Haug, L.; Thurner, C.; Bekheet, M.F.; Ploner, K.; Bischoff, B.; Gurlo, A.; Kunz, M.; Sartory, B.; Penner, S.; Klötzer, B. Pivotal Role of Ni/ZrO2 Phase Boundaries for Coke-Resistant Methane Dry Reforming Catalysts. Catalysts 2023, 13, 804. [Google Scholar] [CrossRef]
- Wang, K.; Ren, X.; Yin, G.; Hu, E.; Zhang, H. Recent Advances in Plasma−Based Methane Reforming for Syngas Production. Curr. Opin. Green Sustain. Chem. 2024, 50, 100981. [Google Scholar] [CrossRef]
- Fan, L.; Li, C.; van Biert, L.; Zhou, S.-H.; Tabish, A.N.; Mokhov, A.; Aravind, P.V.; Cai, W. Advances on Methane Reforming in Solid Oxide Fuel Cells. Renew. Sustain. Energy Rev. 2022, 166, 112646. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, B.; Jiang, Y.J.; Zhou, Y.; Sun, X.; Wang, Y.; Zhu, W. Photocatalytic Conversion of Methane: Current State of the Art, Challenges, and Future Perspectives. ACS Environ. Au 2023, 3, 252–276. [Google Scholar] [CrossRef]
- Ahasan, M.R.; Hossain, M.M.; Ding, X.; Wang, R. Non−Equilibrium Plasma−Assisted Dry Reforming of Methane over Shape−Controlled CeO2 Supported Ruthenium Catalysts. J. Mater. Chem. A 2023, 11, 10993–11009. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, N.; Lin, Y.; Mao, X.; Zhong, H.; Chang, Z.; Shneider, M.N.; Ju, Y. Enhancements of Electric Field and Afterglow of Non−Equilibrium Plasma by Pb(ZrxTi1−x)O3 Ferroelectric Electrode. Nat. Commun. 2024, 15, 3092. [Google Scholar] [CrossRef]
- Beil, S.B.; Bonnet, S.; Casadevall, C.; Detz, R.J.; Eisenreich, F.; Glover, S.D.; Kerzig, C.; Næsborg, L.; Pullen, S.; Storch, G.; et al. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS Au 2024, 4, 2746–2766. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Sundaram, B. A Review of the Photocatalysis Process Used for Wastewater Treatment. Mater. Today Proc. 2024, 102, 393–409. [Google Scholar] [CrossRef]
- Kobielusz, M.; Mikrut, P.; Macyk, W. Photocatalytic Synthesis of Chemicals. In Materials for Sustainable Energy. Advances in Inorganic Chemistry; van Eldik, R., Macyk, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 72, pp. 93–144. ISBN 978-0-12-815077-1. [Google Scholar]
- Yao, Y.; Gao, X.; Li, Z.; Meng, X. Photocatalytic Reforming for Hydrogen Evolution: A Review. Catalysts 2020, 10, 335. [Google Scholar] [CrossRef]
- Shoji, S.; Peng, X.; Yamaguchi, A.; Watanabe, R.; Fukuhara, C.; Cho, Y.; Yamamoto, T.; Matsumura, S.; Yu, M.W.; Ishii, S.; et al. Photocatalytic Uphill Conversion of Natural Gas beyond the Limitation of Thermal Reaction Systems. Nat. Catal. 2020, 3, 148–153. [Google Scholar] [CrossRef]
- Zhang, L.; Kuang, P.; Yu, J. Introductory Chapter: Fundamentals of Photocatalysis and Electrocatalysis. In Graphene Oxide−Metal Oxide and other Graphene Oxide−Based Composites in Photocatalysis and Electrocatalysis; Jiaguo, Y., Liuyang, Z., Panyong, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–30. [Google Scholar]
- Lian, H.-Y.; Li, X.-S.; Liu, J.-L.; Zhu, X.; Zhu, A.-M. Oxidative Pyrolysis Reforming of Methanol in Warm Plasma for an On−Board Hydrogen Production. Int. J. Hydrogen Energy 2017, 42, 13617–13624. [Google Scholar] [CrossRef]
- Cvetinović, D.; Erić, A.; Anđelković, J.; Ćetenović, N.; Jovanović, M.; Bakić, V. Economic Viability of Hydrogen Production via Plasma Thermal Degradation of Natural Gas. Processes 2025, 13, 1888. [Google Scholar] [CrossRef]
- Escribà−Gelonch, M.; Osorio−Tejada, J.; Yu, L.; Wanten, B.; Bogaerts, A.; Hessel, V. Techno−Economic and Life−Cycle Assessment for Syngas Production Using Sustainable Plasma−Assisted Methane Reforming Technologies. Energy Environ. Sci. 2025, 18, 6043–6062. [Google Scholar] [CrossRef]
- Ameta, R.; Solanki, M.S.; Benjamin, S.; Ameta, S.C. Photocatalysis. In Advanced Oxidation Processes for Waste Water Treatment; Elsevier: Amsterdam, The Netherlands, 2018; pp. 135–175. [Google Scholar]
- Yang, X.; Wang, D. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693. [Google Scholar] [CrossRef]
- Li, Z.; Yi, Z.; Li, Z.; Zou, Z. Photocatalytic and Thermocatalytic Conversion of Methane. Sol. RRL 2021, 5, 2000596. [Google Scholar] [CrossRef]
- Song, H.; Ye, J. Direct Photocatalytic Conversion of Methane to Value−Added Chemicals. Trends Chem. 2022, 4, 1094–1105. [Google Scholar] [CrossRef]
- Cho, Y.; Yamaguchi, A.; Miyauchi, M. Photocatalytic Methane Reforming: Recent Advances. Catalysts 2020, 11, 18. [Google Scholar] [CrossRef]
- Kulandaivalu, T.; Mohamed, A.R.; Ali, K.A.; Mohammadi, M. Photocatalytic Carbon Dioxide Reforming of Methane as an Alternative Approach for Solar Fuel Production−a Review. Renew. Sustain. Energy Rev. 2020, 134, 110363. [Google Scholar] [CrossRef]
- Wang, P.; Shi, R.; Zhao, J.; Zhang, T. Photodriven Methane Conversion on Transition Metal Oxide Catalyst: Recent Progress and Prospects. Adv. Sci. 2024, 11, e2305471. [Google Scholar] [CrossRef]
- Lei, Y.; Sala, X.; García−Antón, J.; Muñoz, J. A Review on Photocatalytic Methane Conversion Systems: From Fundamental Mechanisms to the Emerging Role of Ferroelectric Materials. J. Mater. Chem. A 2025, 13, 12712–12745. [Google Scholar] [CrossRef]
- Xu, S.; Huang, X.; Lu, H. Photocatalytic Reforming of Biomass for Hydrogen Production: A Comprehensive Overview. Fuel Process. Technol. 2024, 255, 108057. [Google Scholar] [CrossRef]
- Pan, H.; Li, J.; Wang, Y.; Xia, Q.; Qiu, L.; Zhou, B. Solar−driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. Adv. Sci. 2024, 11, e2402651. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xu, Q.; Zeng, G. Developments of Photo−/Electro−catalysis Based on Covalent Organic Frameworks: A Review. Electron 2024, 2, e39. [Google Scholar] [CrossRef]
- Sahu, J.; Prusty, D.; Mansingh, S.; Parida, K. A Review on Alloyed Quantum Dots and Their Applications as Photocatalysts. Int. J. Hydrogen Energy 2023, 48, 29097–29118. [Google Scholar] [CrossRef]
- Luo, J.; Selopal, G.S.; Tong, X.; Wang, Z. Colloidal Quantum Dots and Two−dimensional Material Heterostructures for Photodetector Applications. Electron 2024, 2, e30. [Google Scholar] [CrossRef]
- Yang, H. A Short Review on Heterojunction Photocatalysts: Carrier Transfer Behavior and Photocatalytic Mechanisms. Mater. Res. Bull. 2021, 142, 111406. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, S.; Fan, Y.; Tang, Z. Best Practices for Experiments and Reports in Photocatalytic Methane Conversion. Angew. Chem. Int. Ed. 2024, 63, e202404658. [Google Scholar] [CrossRef]
- Khodadadian, F.; de Boer, M.W.; Poursaeidesfahani, A.; van Ommen, J.R.; Stankiewicz, A.I.; Lakerveld, R. Design, Characterization and Model Validation of a LED−Based Photocatalytic Reactor for Gas Phase Applications. Chem. Eng. J. 2018, 333, 456–466. [Google Scholar] [CrossRef]
- Wang, D.; Mueses, M.A.; Márquez, J.A.C.; Machuca−Martínez, F.; Grčić, I.; Peralta Muniz Moreira, R.; Li Puma, G. Engineering and Modeling Perspectives on Photocatalytic Reactors for Water Treatment. Water Res. 2021, 202, 117421. [Google Scholar] [CrossRef]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic Reactors and It’s Comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Binjhade, R.; Mondal, R.; Mondal, S. Continuous Photocatalytic Reactor: Critical Review on the Design and Performance. J. Environ. Chem. Eng. 2022, 10, 107746. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, W.; Zhang, Y.; Pan, C.; Xu, J.; Zhu, Y.; Lou, Y. Research Progress on Methane Conversion Coupling Photocatalysis and Thermocatalysis. Carbon Energy 2021, 3, 519–540. [Google Scholar] [CrossRef]
- Li, M.; Sun, Z.; Hu, Y.H. Thermo−Photo Coupled Catalytic CO2 Reforming of Methane: A Review. Chem. Eng. J. 2022, 428, 131222. [Google Scholar] [CrossRef]
- Tavasoli, A.V.; Preston, M.; Ozin, G. Photocatalytic Dry Reforming: What Is It Good For? Energy Environ. Sci. 2021, 14, 3098–3109. [Google Scholar] [CrossRef]
- Kisch, H. Semiconductor Photocatalysis—Mechanistic and Synthetic Aspects. Angew. Chem. Int. Ed. 2013, 52, 812–847. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J. Chapter 1−Principles of Photocatalysis. In S−Scheme Heterojunction Photocatalysts: Fundamentals and Applications. Interface Science and Technology; Yu, J., Zhang, L., Wang, L., Zhu, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; Volume 35, pp. 1–52. [Google Scholar]
- Ayyub, M.M.; Rao, C.N.R. Design of Efficient Photocatalysts through Band Gap Engineering. In Nanostructured Photocatalysts−From Materials to Applications in Solar Fuels and Environmental Remediation; Boukherroub, R., Robertson, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–18. [Google Scholar]
- Tuama, A.N.; Alzubaidi, L.H.; Jameel, M.H.; Abass, K.H.; bin Mayzan, M.Z.H.; Salman, Z.N. Impact of Electron–Hole Recombination Mechanism on the Photocatalytic Performance of ZnO in Water Treatment: A Review. J. Sol.−Gel. Sci. Technol. 2024, 110, 792–806. [Google Scholar] [CrossRef]
- Yuan, J.; Li, H.; Wang, G.; Zhang, C.; Wang, Y.; Yang, L.; Li, M.; Lu, J. Adsorption, Isolated Electron/Hole Transport, and Confined Catalysis Coupling to Enhance the Photocatalytic Degradation Performance. Appl. Catal. B Environ. 2022, 303, 120892. [Google Scholar] [CrossRef]
- Tu, H.; Tian, B.; Chen, S.; Xu, J.; Yang, J.; Zhao, Z.; Chen, S.; Wu, J. Enhancing Photocatalytic Efficiency through Surface Modification to Manipulate Internal Electron−Hole Distribution. NPJ Clean Water 2025, 8, 48. [Google Scholar] [CrossRef]
- Akhter, P.; Arshad, A.; Saleem, A.; Hussain, M. Recent Development in Non−Metal−Doped Titanium Dioxide Photocatalysts for Different Dyes Degradation and the Study of Their Strategic Factors: A Review. Catalysts 2022, 12, 1331. [Google Scholar] [CrossRef]
- Fang, W.; Yan, J.; Wei, Z.; Liu, J.; Guo, W.; Jiang, Z.; Shangguan, W. Account of Doping Photocatalyst for Water Splitting. Chin. J. Catal. 2024, 60, 1–24. [Google Scholar] [CrossRef]
- Flores, N.M.; Pal, U.; Galeazzi, R.; Sandoval, A. Effects of Morphology, Surface Area, and Defect Content on the Photocatalytic Dye Degradation Performance of ZnO Nanostructures. RSC Adv. 2014, 4, 41099–41110. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, M.; You, J.; Liu, G.; Wang, L. Defect Engineering in Photocatalysts and Photoelectrodes: From Small to Big. Acc. Mater. Res. 2022, 3, 1127–1136. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y. The Design of TiO2 Nanostructures (Nanoparticle, Nanotube, and Nanosheet) and Their Photocatalytic Activity. J. Phys. Chem. C 2014, 118, 12727–12733. [Google Scholar] [CrossRef]
- Gao, P.; Li, A.; Sun, D.D.; Ng, W.J. Effects of Various TiO2 Nanostructures and Graphene Oxide on Photocatalytic Activity of TiO2. J. Hazard. Mater. 2014, 279, 96–104. [Google Scholar] [CrossRef]
- Lincho, J.; Zaleska−Medynska, A.; Martins, R.C.; Gomes, J. Nanostructured Photocatalysts for the Abatement of Contaminants by Photocatalysis and Photocatalytic Ozonation: An Overview. Sci. Total Environ. 2022, 837, 155776. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Li, H.; Gao, H.; Li, A.; Li, T.; Cheng, S.; Wang, J.; Kasemchainan, J.; Yi, J.; Zhao, F.; et al. Recent Advances in Metal−Loaded MOFs Photocatalysts: From Single Atom, Cluster to Nanoparticle. Chin. Chem. Lett. 2024, 36, 110142. [Google Scholar] [CrossRef]
- Hamdan, S.; Wigglesworth, M.J.; Muscetta, M.; Ma, R.; Helal, M.I.; Martsinovich, N.; Palmisano, G.; Vernuccio, S. Unravelling the Photoactivity of Metal−Loaded TiO2 for Hydrogen Production: Insights from a Combined Experimental and Computational Analysis. Int. J. Hydrogen Energy 2025, 118, 394–406. [Google Scholar] [CrossRef]
- Balapure, A.; Ray Dutta, J.; Ganesan, R. Recent Advances in Semiconductor Heterojunctions: A Detailed Review of the Fundamentals of Photocatalysis, Charge Transfer Mechanism and Materials. RSC Appl. Interfaces 2024, 1, 43–69. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al−Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Salazar−Marín, D.; Oza, G.; Real, J.A.D.; Cervantes−Uribe, A.; Pérez−Vidal, H.; Kesarla, M.K.; Torres, J.G.T.; Godavarthi, S. Distinguishing between Type II and S−Scheme Heterojunction Materials: A Comprehensive Review. Appl. Surf. Sci. Adv. 2024, 19, 100536. [Google Scholar] [CrossRef]
- Yuan, Y.; Guo, R.; Hong, L.; Ji, X.; Lin, Z.; Li, Z.; Pan, W. A Review of Metal Oxide−Based Z−Scheme Heterojunction Photocatalysts: Actualities and Developments. Mater. Today Energy 2021, 21, 100829. [Google Scholar] [CrossRef]
- Kumari, P.; Bahadur, N.; Kong, L.; O’Dell, L.A.; Merenda, A.; Dumée, L.F. Engineering Schottky−like and Hetero−junction Materials for Enhanced Photocatalysis Performance—A Review. Mater Adv. 2022, 3, 2309–2323. [Google Scholar] [CrossRef]
- Rao, V.N.; Reddy, N.L.; Kumari, M.M.; Cheralathan, K.K.; Ravi, P.; Sathish, M.; Neppolian, B.; Reddy, K.R.; Shetti, N.P.; Prathap, P.; et al. Sustainable Hydrogen Production for the Greener Environment by Quantum Dots−Based Efficient Photocatalysts: A Review. J. Environ. Manag. 2019, 248, 109246. [Google Scholar] [CrossRef]
- Sun, P.; Xing, Z.; Li, Z.; Zhou, W. Recent Advances in Quantum Dots Photocatalysts. Chem. Eng. J. 2023, 458, 141399. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef]
- Dharma, H.N.C.; Jaafar, J.; Widiastuti, N.; Matsuyama, H.; Rajabsadeh, S.; Othman, M.H.D.; Rahman, M.A.; Jafri, N.N.M.; Suhaimin, N.S.; Nasir, A.M.; et al. A Review of Titanium Dioxide (TiO2)−Based Photocatalyst for Oilfield−Produced Water Treatment. Membranes 2022, 12, 345. [Google Scholar] [CrossRef] [PubMed]
- Arun, J.; Nachiappan, S.; Rangarajan, G.; Alagappan, R.P.; Gopinath, K.P.; Lichtfouse, E. Synthesis and Application of Titanium Dioxide Photocatalysis for Energy, Decontamination and Viral Disinfection: A Review. Environ. Chem. Lett. 2023, 21, 339–362. [Google Scholar] [CrossRef]
- Martín−Sómer, M.; Pablos, C.; van Grieken, R.; Marugán, J. Influence of Light Distribution on the Performance of Photocatalytic Reactors: LED vs. Mercury Lamps. Appl. Catal. B Environ. 2017, 215, 1–7. [Google Scholar] [CrossRef]
- Masoud, N.M.; Murnick, D.E. High Efficiency Fluorescent Excimer Lamps: An Alternative to Mercury Based UVC Lamps. Rev. Sci. Instrum. 2013, 84, 123108. [Google Scholar] [CrossRef]
- Hölz, K.; Lietard, J.; Somoza, M.M. High−Power 365 Nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography. ACS Sustain. Chem. Eng. 2017, 5, 828–834. [Google Scholar] [CrossRef]
- Pelayo, D.; Rivero, M.J.; Santos, G.; Gómez, P.; Ortiz, I. Techno−Economic Evaluation of UV Light Technologies in Water Remediation. Sci. Total Environ. 2023, 868, 161376. [Google Scholar] [CrossRef]
- Rehman, S.; Ullah, R.; Butt, A.M.; Gohar, N.D. Strategies of Making TiO2 and ZnO Visible Light Active. J. Hazard. Mater. 2009, 170, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.G.; Devi, L.G. Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211–13241. [Google Scholar] [CrossRef] [PubMed]
- Hashemizadeh, I.; Golovko, V.B.; Choi, J.; Tsang, D.C.W.; Yip, A.C.K. Photocatalytic Reduction of CO2 to Hydrocarbons Using Bio−Templated Porous TiO2 Architectures under UV and Visible Light. Chem. Eng. J. 2018, 347, 64–73. [Google Scholar] [CrossRef]
- Al Zoubi, W.; Salih Al−Hamdani, A.A.; Sunghun, B.; Ko, Y.G. A Review on TiO2−Based Composites for Superior Photocatalytic Activity. Rev. Inorg. Chem. 2021, 41, 213–222. [Google Scholar] [CrossRef]
- Arora, I.; Chawla, H.; Chandra, A.; Sagadevan, S.; Garg, S. Advances in the Strategies for Enhancing the Photocatalytic Activity of TiO2: Conversion from UV−Light Active to Visible−Light Active Photocatalyst. Inorg. Chem. Commun. 2022, 143, 109700. [Google Scholar] [CrossRef]
- Tinoco Navarro, L.K.; Jaroslav, C. Enhancing Photocatalytic Properties of TiO2 Photocatalyst and Heterojunctions: A Comprehensive Review of the Impact of Biphasic Systems in Aerogels and Xerogels Synthesis, Methods, and Mechanisms for Environmental Applications. Gels 2023, 9, 976. [Google Scholar] [CrossRef]
- Chauke, N.M.; Mohlala, R.L.; Ngqoloda, S.; Raphulu, M.C. Harnessing Visible Light: Enhancing TiO2 Photocatalysis with Photosensitizers for Sustainable and Efficient Environmental Solutions. Front. Chem. Eng. 2024, 6, 1356021. [Google Scholar] [CrossRef]
- Acharya, R.; Pani, P. Visible Light Susceptible Doped TiO2 Photocatalytic Systems: An Overview. Mater. Today Proc. 2022, 67, 1276–1282. [Google Scholar] [CrossRef]
- Prakash, J.; Sun, S.; Swart, H.C.; Gupta, R.K. Noble Metals−TiO2 Nanocomposites: From Fundamental Mechanisms to Photocatalysis, Surface Enhanced Raman Scattering and Antibacterial Applications. Appl. Mater. Today 2018, 11, 82–135. [Google Scholar] [CrossRef]
- Yadav, M.; Basheer, H.S.; Ágfalvi, Á.; Ábrahámné, K.B.; Kiss, J.; Halasi, G.; Sápi, A.; Kukovecz, Á.; Kónya, Z. Noble Metals−Deposited TiO2 Photocatalysts for Photoreduction of CO2: Exploration of Surface Chemistry and a Reflection on the Importance of Wavelength Dependence. Appl. Catal. A Gen. 2023, 668, 119434. [Google Scholar] [CrossRef]
- Blanco−Vega, M.P.; Guzmán−Mar, J.L.; Villanueva−Rodríguez, M.; Maya−Treviño, L.; Garza−Tovar, L.L.; Hernández−Ramírez, A.; Hinojosa−Reyes, L. Photocatalytic Elimination of Bisphenol A under Visible Light Using Ni−Doped TiO2 Synthesized by Microwave Assisted Sol−Gel Method. Mater. Sci. Semicond. Process. 2017, 71, 275–282. [Google Scholar] [CrossRef]
- Baruah, M.; Ezung, S.L.; Sharma, S.; Bora Sinha, U.; Sinha, D. Synthesis and Characterization of Ni−Doped TiO2 Activated Carbon Nanocomposite for the Photocatalytic Degradation of Anthracene. Inorg. Chem. Commun. 2022, 144, 109905. [Google Scholar] [CrossRef]
- Sood, S.; Umar, A.; Mehta, S.K.; Kansal, S.K. Highly Effective Fe−Doped TiO2 Nanoparticles Photocatalysts for Visible−Light Driven Photocatalytic Degradation of Toxic Organic Compounds. J. Colloid Interface Sci. 2015, 450, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Moradi, V.; Jun, M.B.G.; Blackburn, A.; Herring, R.A. Significant Improvement in Visible Light Photocatalytic Activity of Fe Doped TiO2 Using an Acid Treatment Process. Appl. Surf. Sci. 2018, 427, 791–799. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Hong, Z.; Ahmad, M.; Zhang, Y.; Khalid, S. Cu−Doped TiO2 Nanoparticles/Graphene Composites for Efficient Visible−Light Photocatalysis. Ceram. Int. 2013, 39, 7107–7113. [Google Scholar] [CrossRef]
- Clarizia, L.; Spasiano, D.; Di Somma, I.; Marotta, R.; Andreozzi, R.; Dionysiou, D.D. Copper Modified−TiO2 Catalysts for Hydrogen Generation through Photoreforming of Organics. A Short Review. Int. J. Hydrogen Energy 2014, 39, 16812–16831. [Google Scholar] [CrossRef]
- Iwasaki, M.; Hara, M.; Kawada, H.; Tada, H.; Ito, S. Cobalt Ion−Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci. 2000, 224, 202–204. [Google Scholar] [CrossRef]
- Binas, V.D.; Sambani, K.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Synthesis and Photocatalytic Activity of Mn−Doped TiO2 Nanostructured Powders under UV and Visible Light. Appl. Catal. B Environ. 2012, 113–114, 79–86. [Google Scholar] [CrossRef]
- Sudrajat, H.; Babel, S.; Ta, A.T.; Nguyen, T.K. Mn−Doped TiO2 Photocatalysts: Role, Chemical Identity, and Local Structure of Dopant. J. Phys. Chem. Solids 2020, 144, 109517. [Google Scholar] [CrossRef]
- Xie, J.; Jiang, D.; Chen, M.; Li, D.; Zhu, J.; Lü, X.; Yan, C. Preparation and Characterization of Monodisperse Ce−Doped TiO2 Microspheres with Visible Light Photocatalytic Activity. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 107–114. [Google Scholar] [CrossRef]
- Tahir, B.; Tahir, M.; Amin, N.A.S. Tailoring Performance of La−Modified TiO2 Nanocatalyst for Continuous Photocatalytic CO2 Reforming of CH4 to Fuels in the Presence of H2O. Energy Convers. Manag. 2018, 159, 284–298. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Kujirai, T.; Fujita, T.; Abe, H.; Miyauchi, M. Steam Reforming of Methane by Titanium Oxide Photocatalysts with Hollow Spheres. Sustain. Energy Fuels 2024, 8, 516–523. [Google Scholar] [CrossRef]
- Al−Madanat, O.; Alsalka, Y.; Curti, M.; Dillert, R.; Bahnemann, D.W. Mechanistic Insights into Hydrogen Evolution by Photocatalytic Reforming of Naphthalene. ACS Catal. 2020, 10, 7398–7412. [Google Scholar] [CrossRef]
- Genco, A.; García−López, E.I.; Megna, B.; Ania, C.; Marcì, G. Nb2O5 Based Photocatalysts for Efficient Generation of H2 by Photoreforming of Aqueous Solutions of Ethanol. Catal. Today 2025, 447, 115147. [Google Scholar] [CrossRef]
- Eisapour, M.; Huang, R.; Roostaei, T.; Zhao, H.; Hu, J.; Chen, Z. Sandwich−like Heterojunction of NiO−Ni−TiO2 for Simultaneous Production of Hydrogen and Value−Added Products from Glycerol Photoreforming. Environ. Surf. Interfaces 2025, 3, 46–54. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Fan, Y.; Sun, X.; Qiao, P.; Xiao, X.; Zhang, Q.; Tian, C.; Jiang, B. Regulating the Local Electronic Structure by Constructing Ni–O–Ni Sites Confined in TiO2 for Selective Photocatalytic Glycerol Reforming. J. Energy Chem. 2025, 108, 129–137. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, Z.-Y.; Zheng, H.-Y.; Xu, K.-D.; Hu, Z.; Lei, Y. Enhanced Photothermal Catalytic Performance of Dry Reforming of Methane over Ni/Mesoporous TiO2 Composite Catalyst. Chem. Eng. J. 2022, 429, 132507. [Google Scholar] [CrossRef]
- He, Z.; Gong, K.; Dai, Y.; Niu, Q.; Lin, T.; Zhong, L. Regulating Crystal Phase of TiO2 to Enhance Catalytic Activity of Ni/TiO2 for Solar−Driven Dry Reforming of Methane. J. Fuel Chem. Technol. 2024, 52, 1203–1213. [Google Scholar] [CrossRef]
- Belda−Marco, S.; Ayala, P.; Myakala, S.N.; Eder, D.; Lillo−Ródenas, M.Á.; Cherevan, A.; Román−Martínez, M.C. Production of H2 and Organic Acids by Cellulose Photo−Reforming with TiO2−Bimetallic (CuNi) Co−Catalysts: Metal Loading and Photodeposition Sequence Effects. Environ. Res. 2025, 271, 121141. [Google Scholar] [CrossRef]
- Muscetta, M.; Clarizia, L.; Race, M.; Andreozzi, R.; Marotta, R.; Di Somma, I. Visible−Light Driven Systems: Effect of the Parameters Affecting Hydrogen Production through Photoreforming of Organics in Presence of Cu2O/TiO2 Nanocomposite Photocatalyst. Appl. Sci. 2023, 13, 2337. [Google Scholar] [CrossRef]
- Umair, M.; Ruiz−Aguirre, A.; Berruti, I.; Rodríguez, S.M.; Palmisano, L.; Loddo, V.; Bellardita, M. Biomass Derivatives Photoreforming in Pilot Plant Scale to Obtain H2 under Green Conditions by Using Ball Milling Cu2O−TiO2 P25 Photocatalysts. Chem. Eng. J. 2025, 504, 158585. [Google Scholar] [CrossRef]
- Khan, A.; Le Pivert, M.; Ranjbari, A.; Dragoe, D.; Bahena−Uribe, D.; Colbeau−Justin, C.; Herrero, C.; Rutkowska−Zbik, D.; Deschamps, J.; Remita, H. Cu−Based MOF/TiO2 Composite Nanomaterials for Photocatalytic Hydrogen Generation and the Role of Copper. Adv. Funct. Mater. 2025, 2021. [Google Scholar] [CrossRef]
- Qian, H.; Yuan, B.; Liu, Y.; Wang, L.; Zhu, R.; Dong, P. Effect of Cu Valence States on Conduction Band Position and Reduction Selectivity of TiO2−Based Heterojunction Photocatalysts. iScience 2025, 28, 112697. [Google Scholar] [CrossRef]
- Belda−Marco, S.; Lillo−Ródenas, M.Á.; Román−Martínez, M.C. Optimization of Active Sites in TiO2−Cu Photocatalysts for H2 Generation via Cellulose Photo−Reforming. ChemCatChem 2025, 17, e202500250. [Google Scholar] [CrossRef]
- Liu, X.; Bao, C.; Zhu, Z.; Zheng, H.; Song, C.; Xu, Q. Thermo−Photo Synergic Effect on Methanol Steam Reforming over Mesoporous Cu/TiO2–CeO2 Catalysts. Int. J. Hydrogen Energy 2021, 46, 26741–26756. [Google Scholar] [CrossRef]
- Fan, H.; Su, J.; Zhao, E.; Zheng, Y.; Chen, Z. Photocatalytic Selective Oxidation of Glycerol to Formic Acid and Formaldehyde over Surface Cobalt−Doped Titanium Dioxide. J. Colloid Interface Sci. 2025, 684, 140–147. [Google Scholar] [CrossRef]
- Pei, M.; Zhang, M.; Tian, J.; Yang, Y.; Liu, E. Photocatalytic H2 Production over CoxNi0.85−xSe Decorated TiO2 S−Scheme Heterojunction. J. Alloys Compd. 2025, 1010, 177266. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Ghazali, A.A.; Mohd Yassin, M.Y.; Abdullah, S. Optimization of Hydrogen Production by Photocatalytic Steam Methane Reforming over Lanthanum Modified Titanium (IV) Oxide Using Response Surface Methodology. Int. J. Hydrogen Energy 2019, 44, 20700–20710. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Han, C.; Yan, M.; Ji, G.; Wang, W. Efficient Photo−Oxidation of C(Sp3)−H Bonds on Visible−Light−Responsive W−Doped TiO2 Nanocrystals Promoted by the Photochromic Effect. Inorg. Chem. Front. 2025. [Google Scholar] [CrossRef]
- Hu, Y.H.; Wang, J.H.; Chen, Y.; Tang, J.P.; Wang, Z.Y.; Yuan, Y.J. Solar Driven Conversion of Agricultural Biomass to H2 over Few−Layer MoS2 Modified Ultra−Small TiO2 Nanoparticle Photocatalysts. J. Mater. Chem. A 2025, 13, 13402–13409. [Google Scholar] [CrossRef]
- Falara, P.P.; Chatzikonstantinou, N.; Zourou, A.; Tsipas, P.; Sakellis, E.; Alexandratou, E.; Nasikas, N.K.; Kordatos, K.V.; Antoniadou, M. Optimizing Carbon Dot−TiO2 Nanohybrids for Enhanced Photocatalytic Hydrogen Evolution. Materials 2025, 18, 1023. [Google Scholar] [CrossRef] [PubMed]
- Udaibah, W.; Anggoro, D.D.; Prasetyaningrum, A.; Bafaqeer, A.; Amin, N.A.S. An Enhanced Production of Biomethane from Cellulose Photoreforming Driven by Titania Morphological Modification. React. Kinet. Mech. Catal. 2025, 138, 1–17. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, W.; Li, S.; Wang, S.; Fan, Y.; Wang, F.; Qiu, X.; Zhu, Y.; Zhang, Y.; Long, C.; et al. Elevating Photooxidation of Methane to Formaldehyde via TiO2 Crystal Phase Engineering. J. Am. Chem. Soc. 2022, 144, 15977–15987. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, J.; Che, L.; Shi, L. Crystal Phase Engineering of TiO2 for Efficient Photocatalytic Non−Oxidative Methane Coupling. Chem. Eur. J. 2025, 31, e202500216. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Q.; Wang, W.; Wang, K. Study on the Synergism of Steam Reforming and Photocatalysis for the Degradation of Toluene as a Tar Model Compound under Microwave−Metal Discharges. Energy 2018, 155, 815–823. [Google Scholar] [CrossRef]
- Aldeen, E.M.S.; Jalil, A.A.; Mim, R.S.; Alhebshi, A.; Hassan, N.S.; Saravanan, R. Altered Zirconium Dioxide Based Photocatalyst for Enhancement of Organic Pollutants Degradation: A Review. Chemosphere 2022, 304, 135349. [Google Scholar] [CrossRef]
- Rani, V.; Sharma, A.; Kumar, A.; Singh, P.; Thakur, S.; Singh, A.; Van Le, Q.; Nguyen, V.H.; Raizada, P. ZrO2−Based Photocatalysts for Wastewater Treatment: From Novel Modification Strategies to Mechanistic Insights. Catalysts 2022, 12, 1418. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Y.; Cao, D.; Liu, Q.; Cai, W. Photothermal Dry Reforming of Ethanol over Rod−like Ni/ZrO2 Catalysts. Mol. Catal. 2024, 564, 114308. [Google Scholar] [CrossRef]
- Du, Z.; Pan, F.; Yang, X.; Fang, L.; Gang, Y.; Fang, S.; Li, T.; Hu, Y.H.; Li, Y. Efficient Photothermochemical Dry Reforming of Methane over Ni Supported on ZrO2 with CeO2 Incorporation. Catal. Today 2023, 409, 31–41. [Google Scholar] [CrossRef]
- Cheng, J.; Liu, X.; Li, T.; Li, D.; Jiang, Z.; Xu, D.; Patel, B.; Guo, Y. Ce Doping Boosted Photothermal Synergistic Catalytic Reforming of CH4 and CO2 into Syngas over Ni/ZrO2 at Medium−Low Temperature. Int. J. Hydrogen Energy 2024, 53, 1433–1444. [Google Scholar] [CrossRef]
- Tengfei, L.; Cheng, J.; Li, D.; Xu, D.; Patel, B.; Guo, Y. Syngas Production from Photothermal Synergistic Dry Reforming of CH4 over a Core−Shell Structured Ni/CeO2–ZrO2@SiO2 Catalyst. Int. J. Hydrogen Energy 2024, 67, 1194–1205. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Li, D.; Li, T.; Guo, Y. Tailored Interfaces Promoting Photo−Activation of Molecular Enclosed CO2 on MOF−Derived Ni/CeZrO2 for Photothermal Synergistic Dry Reforming of Methane. Chem. Eng. J. 2025, 512, 162499. [Google Scholar] [CrossRef]
- Meng, L.; Jia, Y.; Wu, S. Efficient Photothermal Catalytic Methane Dry Reforming over Rich Oxygen Vacancy Catalysts. ChemComm 2025, 61, 2301–2304. [Google Scholar] [CrossRef]
- García−Mendoza, C.; Oros−Ruiz, S.; Ramírez−Rave, S.; Morales−Mendoza, G.; López, R.; Gómez, R. Synthesis of Bi2S3 Nanorods Supported on ZrO2 Semiconductor as an Efficient Photocatalyst for Hydrogen Production under UV and Visible Light. J. Chem. Technol. Biotechnol. 2017, 92, 1503–1510. [Google Scholar] [CrossRef]
- Yu, X.; Yang, L.; Xuan, Y.; Liu, X.L.; Zhang, K. Solar−Driven Low−Temperature Reforming of Methanol into Hydrogen via Synergetic Photo− and Thermocatalysis. Nano Energy 2021, 84, 105953. [Google Scholar] [CrossRef]
- Speltini, A.; Scalabrini, A.; Maraschi, F.; Sturini, M.; Pisanu, A.; Malavasi, L.; Profumo, A. Improved Photocatalytic H2 Production Assisted by Aqueous Glucose Biomass by Oxidized G−C3N4. Int. J. Hydrogen Energy 2018, 43, 14925–14933. [Google Scholar] [CrossRef]
- García−López, E.I.; Palmisano, L.; Marcì, G. Overview on Photoreforming of Biomass Aqueous Solutions to Generate H2 in the Presence of G−C3N4−Based Materials. ChemEngineering 2023, 7, 11. [Google Scholar] [CrossRef]
- Zhu, G.; Shu, Y.; Zhou, M. Photocatalytic Conversion of Biomass over Modified Graphitic Carbon Nitride Catalysts for Environmental Sustainability—A Review. Glob. Environ. Sci. 2025, 1, 19–35. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, L.; Peng, J.; Gong, W.; Sun, W. Advance in the Modification of G−C3N4−Based Composite for Photocatalytic H2 Production. Carbon Lett. 2025, 35, 417–440. [Google Scholar] [CrossRef]
- Speltini, A.; Gualco, F.; Maraschi, F.; Sturini, M.; Dondi, D.; Malavasi, L.; Profumo, A. Photocatalytic Hydrogen Evolution Assisted by Aqueous (Waste)Biomass under Simulated Solar Light: Oxidized g−C3N4 vs. P25 Titanium Dioxide. Int. J. Hydrogen Energy 2019, 44, 4072–4078. [Google Scholar] [CrossRef]
- Bianchini, P.; Profumo, A.; Cerri, L.; Tedesco, C.; Malavasi, L.; Speltini, A. Exploiting Rice Industry Wastewater for More Sustainable Sunlight−Driven Photocatalytic Hydrogen Production Using a Graphitic Carbon Nitride Polymorph. RSC Sustain. 2025, 3, 1149–1156. [Google Scholar] [CrossRef]
- Lazaar, N.; Wu, S.; Qin, S.; Hamrouni, A.; Bikash Sarma, B.; Doronkin, D.E.; Denisov, N.; Lachheb, H.; Schmuki, P. Single−Atom Catalysts on C3N4: Minimizing Single Atom Pt Loading for Maximized Photocatalytic Hydrogen Production Efficiency. Angew. Chem. Int. Ed. 2025, 64, e202416453. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zhang, X.; Lin, X.; Liu, E.; Wang, L.; Shi, W.; Duan, X. Ultrathin 2D G−C3N4 Nanosheets for Visible−Light Photocatalytic Reforming of Cellulose into H2 under Neutral Conditions. J. Chem. Technol. Biotechnol. 2022, 97, 1717–1725. [Google Scholar] [CrossRef]
- Gao, Y.; Shi, M.; Yang, J.; Wang, Y.; Liu, B. Fabrication of SnS2/C3N5 Heterojunction Photocatalyst for Highly Efficient Hydrogen Production and Organic Pollutant Degradation. J. Fuel Chem. Technol. 2025, 53, 336–347. [Google Scholar] [CrossRef]
- Bu, F.; Yuan, R.; Zhang, Z.; Wang, J.; Liu, J.; Yong, Y.C. Viologen Doping Induced Charge Storage in Carbon Nitride for Enhanced Photocatalytic Hydrogen Production. Inorg. Chem. Front. 2024, 12, 801–811. [Google Scholar] [CrossRef]
- Li, L.; Shi, X.; Liu, L.; Tu, Y.; Liu, Y.; Zhang, Y.; Yang, H.B.; Dou, S.; Liu, B. Modulation of Single−Iron−Atom Coordination Environment toward Three−Electron Oxygen Reduction for Photocatalytic CH4 Conversion to CH3OH. Small 2025, 21, e2500835. [Google Scholar] [CrossRef]
- Tahir, M.; Ali Khan, A.; Bafaqeer, A.; Kumar, N.; Siraj, M.; Fatehmulla, A. Highly Stable Photocatalytic Dry and Bi−Reforming of Methane with the Role of a Hole Scavenger for Syngas Production over a Defective Co−Doped g−C3N4 Nanotexture. Catalysts 2023, 13, 1140. [Google Scholar] [CrossRef]
- Ali Khan, A.; Tahir, M.; Khan, N. Process Optimization and Kinetic Study for Solar−Driven Photocatalytic Methane Bi−Reforming over TiO2/Ti3C2 Supported CoAlLa−LDH−g−C3N4 Dual S−Scheme Nanocomposite. Energy Convers. Manag. 2023, 286, 117021. [Google Scholar] [CrossRef]
- Tasleem, S.; Tahir, M. Constructing LaxCoyO3 Perovskite Anchored 3D G−C3N4 Hollow Tube Heterojunction with Proficient Interface Charge Separation for Stimulating Photocatalytic H2 Production. Energy Fuels 2021, 35, 9727–9746. [Google Scholar] [CrossRef]
- Cheng, T.; Zhu, J.; Chen, C.; Hu, Y.; Wu, L.; Zhang, M.; Cui, L.; Dai, Y.; Zhang, X.; Tian, Y.; et al. Construction of Advanced S−Scheme Heterojunction Interface Composites of Bimetallic Phosphate MnMgPO4 with C3N4 Surface with Remarkable Performance in Photocatalytic Hydrogen Production and Pollutant Degradation. Coatings 2025, 15, 103. [Google Scholar] [CrossRef]
- Mohanty, C.; Samal, A.; Kumar, J.; Behera, A.K.; Das, R.; Das, N. Design and First−Principles Investigation of Step−Scheme (S−Scheme) g−C3N4/α−MnO2 Nanojunction for Polystyrene Photoreforming into Value−Added Chemicals and Hydrogen. Int. J. Hydrogen Energy 2025, 120, 628–641. [Google Scholar] [CrossRef]
- Ikreedeegh, R.R.; Tahir, M. Facile Fabrication of Well−Designed 2D/2D Porous g−C3N4–GO Nanocomposite for Photocatalytic Methane Reforming (DRM) with CO2 towards Enhanced Syngas Production under Visible Light. Fuel 2021, 305, 121558. [Google Scholar] [CrossRef]
- Xie, Z.K.; Jia, Y.J.; Huang, Y.Y.; Xu, D.B.; Wu, X.J.; Chen, M.; Shi, W.D. Near−Infrared Light−Driven Photocatalytic Reforming Lignocellulose into H2 and Chemicals over Heterogeneous Carbon Nitride. ACS Catal. 2023, 13, 13768–13776. [Google Scholar] [CrossRef]
- Chung, W.C.; Tsao, I.Y.; Chang, M.B. Novel Plasma Photocatalysis Process for Syngas Generation via Dry Reforming of Methane. Energy Convers. Manag. 2018, 164, 417–428. [Google Scholar] [CrossRef]
- Chung, W.C.; Lee, Y.E.; Chang, M.B. Syngas Production via Plasma Photocatalytic Reforming of Methane with Carbon Dioxide. Int. J. Hydrogen Energy 2019, 44, 19153–19161. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Sannino, D.; Puga, F.; Navío, J.A.; Hidalgo, M.C. LaFeO3 Modified with Ni for Hydrogen Evolution via Photocatalytic Glucose Reforming in Liquid Phase. Catalysts 2021, 11, 1558. [Google Scholar] [CrossRef]
- Dong, X.; Zhu, X.; Lin, F.; Yan, B.; Li, J.; Chen, G. UV–Vis−Enhanced Photothermal Catalytic Reforming of Biomass Model Tar via LaMnxNi1−xO3 Perovskite Catalyst. Chem. Eng. J. 2023, 457, 141112. [Google Scholar] [CrossRef]
- Tavasoli, A.; Gouda, A.; Zahringer, T.; Li, Y.F.; Quaid, H.; Viasus Perez, C.J.; Song, R.; Sain, M.; Ozin, G. Enhanced Hybrid Photocatalytic Dry Reforming Using a Phosphated Ni−CeO2 Nanorod Heterostructure. Nat. Commun. 2023, 14, 1435. [Google Scholar] [CrossRef]
- Balsamo, S.A.; La Greca, E.; Calà Pizzapilo, M.; Sciré, S.; Fiorenza, R. CeO2−RGO Composites for Photocatalytic H2 Evolution by Glycerol Photoreforming. Materials 2023, 16, 747. [Google Scholar] [CrossRef]
- Iannaco, M.C.; Mottola, S.; Vaiano, V.; Iervolino, G.; De Marco, I. CeO2−CuO Composites Prepared via Supercritical Antisolvent Precipitation for Photocatalytic Hydrogen Production from Lactic Acid Aqueous Solution. J. CO2 Util. 2024, 85, 102878. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Lv, X.; Chen, J.; Jia, H. Maximum Photoresponse in Enhancing Photothermocatalytic Toluene Oxidation: Modulation of Cu+−Ov−Ce3+ and Surface Lattice Oxygen via Cu/CeO2 Shape Effect. Appl. Catal. B Environ. 2025, 371, 125253. [Google Scholar] [CrossRef]
- Aoun, N.; García−López, E.I.; Boucheloukh, H.; Boulekroune, M.; Sehili, T.; Marcì, G. SrNiO3 Perovskite/CeO2 Composites as Heterogeneous Photocatalysts for the 2−Propanol Oxidation in Gas–Solid Regime. J. Photochem. Photobiol. A Chem. 2025, 458, 115930. [Google Scholar] [CrossRef]
- Li, A.; Ma, J.; Hong, M.; Sun, R. Enhanced CeO2 Oxygen Defects Decorated with AgInS2 Quantum Dots Form an S−Scheme Heterojunction for Efficient Photocatalytic Selective Oxidation of Xylose. Appl. Catal. B Environ. 2024, 348, 123834. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Yin, Z.; Zhang, M.; Yu, G.; Luo, Q.; Chen, H.; Tang, B.; Li, K.; Zhang, Z.; et al. Non−Noble CeO2/CdS/NiS Heterojunction for Photoredox−Catalyzed Plastic Waste Selective Synthesis and Hydrogen Production from Natural Seawater. Fuel 2025, 385, 134143. [Google Scholar] [CrossRef]
- Li, T.; Guo, X.; Zhang, L.; Yan, T.; Jin, Z. 2D CoP Supported 0D WO3 Constructed S−Scheme for Efficient Photocatalytic Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46, 20560–20572. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, M.; Wang, Z.; Chen, X.; Dai, W.; Fu, X. Visible Photocatalytic Hydrogen Production from CH3OH over CuO/WO3: The Effect of Electron Transfer Behavior of the Adsorbed CH3OH. Chem. Eng. J. 2023, 459, 141616. [Google Scholar] [CrossRef]
- Alaoui, C.; Karmaoui, M.; Bekka, A.; Edelmannova, M.F.; Gallardo, J.J.; Navas, J.; Touati, W.; Kadi Allah, I.; Figueiredo, B.; Labrincha, J.A.; et al. TiO2/WO3/Graphene for Photocatalytic H2 Generation and Benzene Removal: Widely Employed Still an Ambiguous System. J. Photochem. Photobiol. A Chem. 2023, 445, 115020. [Google Scholar] [CrossRef]
- Albukhari, S.M.; Al−Hajji, L.A.; Ismail, A.A. Construction of N−n Heterojunction Copper Manganese Spinel/Mesoporous WO3 Photocatalyst for Efficient H2 Evolution Rate from Aqueous Glycerol. Renew. Energy 2024, 228, 120649. [Google Scholar] [CrossRef]
- Ye, X.; Dong, Y.; Zhang, Z.; Zeng, W.; Zhu, B.; Zhang, T.; Gao, Z.; Dai, A.; Guan, X. Syngas Production by Photoreforming of Formic Acid with 2D VxW1−xN1.5 Solid Solution as an Efficient Cocatalyst. Front. Energy 2024, 18, 640–649. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, J.; Li, Y.; Cao, H. Highly Efficient UV−Visible−Infrared Light−Driven Photothermocatalytic Steam Biomass Reforming to H2 on Ni Nanoparticles Loaded on Mesoporous Silica. Energy Environ. Sci. 2022, 15, 3041–3050. [Google Scholar] [CrossRef]
- Zhong, M.; Li, Y.; Wu, J.; Hu, Q.; Hu, Y.; Du, Q.; Ji, C.; Cao, H.; Ji, L. Light Promotion and Different Reaction Pathways Enhance Photothermocatalytic Syngas Production for Cellulose Steam Reforming over Ni/θ−Al2O3. Adv. Funct. Mater 2024, 34, 2405453. [Google Scholar] [CrossRef]
- Levenspiel, O. Chapter 19—The Packed Bed Catalytic Reactor. In Chemical Reaction Engineering; Levenspiel, O., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1998; Volume 1, ISBN 978-0-471-25424-9. [Google Scholar]
- Liu, L.; Li, Y.; He, J.; Wang, Q.; Deng, J.; Chen, X.; Yu, C. Progress on Gas−Solid Phase Photoreactor and Its Application in CO2 Reduction. Green Chem. Eng. 2024, 5, 290–306. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Park, H.-J.; Park, S.; Kim, J.Y.; Jeong, Y.W.; Yang, H.H.; Choi, Y.; Yeom, M.; Song, D.; et al. Practical Scale Evaluation of a Photocatalytic Air Purifier Equipped with a Titania−Zeolite Composite Bead Filter for VOC Removal and Viral Inactivation. Environ. Res. 2022, 204, 112036. [Google Scholar] [CrossRef]
- Nguyen, T.-V.; Wu, J.C.S. Photoreduction of CO2 to Fuels under Sunlight Using Optical−Fiber Reactor. Sol. Energy Mater. Sol. Cells 2008, 92, 864–872. [Google Scholar] [CrossRef]
- Tong, K.; Chen, L.; Yang, L.; Du, X.; Yang, Y. Energy Transport of Photocatalytic Carbon Dioxide Reduction in Optical Fiber Honeycomb Reactor Coupled with Trough Concentrated Solar Power. Catalysts 2021, 11, 829. [Google Scholar] [CrossRef]
- Kunii, D.; Levenspiel, O. Chapter 1—Introduction. In Fluidization Engineering; Butterworth−Heinemann; Elsevier: Newton, MA, USA, 1991; Volume 1, pp. 1–13. [Google Scholar]
- Lee, J.K.; Park, D. Hydrogen Production from Fluidized Bed Steam Reforming of Hydrocarbons. Korean J. Chem. Eng. 1998, 15, 658–662. [Google Scholar] [CrossRef]
- Zambrano, D.; Soler, J.; Herguido, J.; Menéndez, M. Conventional and Improved Fluidized Bed Reactors for Dry Reforming of Methane: Mathematical Models. Chem. Eng. J. 2020, 393, 124775. [Google Scholar] [CrossRef]
- Zheng, H.; Jiang, X.; Gao, Y.; Tong, A.; Zeng, L. Chemical Looping Reforming: Process Fundamentals and Oxygen Carriers. Discov. Chem. Eng. 2022, 2, 5. [Google Scholar] [CrossRef]
- Gusmão, C.; Palharim, P.H.; Diniz, L.A.; de Assis, G.C.; de Carvalho e Souza, T.; Ramos, B.; Teixeira, A.C.S.C. Advances in Fluidized Bed Photocatalysis: Bridging Gaps, Standardizing Metrics, and Shaping Sustainable Solutions for Environmental Challenges. Ind. Eng. Chem. Res. 2024, 63, 14967–14982. [Google Scholar] [CrossRef]
- Rincón, G.J.; La Motta, E.J. A Fluidized−Bed Reactor for the Photocatalytic Mineralization of Phenol on TiO2−Coated Silica Gel. Heliyon 2019, 5, e01966. [Google Scholar] [CrossRef]
- Prieto, O.; Fermoso, J.; Irusta, R. Photocatalytic Degradation of Toluene in Air Using a Fluidized Bed Photoreactor. Int. J. Photoenergy 2007, 2007, 032859. [Google Scholar] [CrossRef]
- Vaiano, V.; Sannino, D.; Ciambelli, P. Steam Reduction of CO2 in a Photocatalytic Fluidized Bed Reactor. Chem. Eng. Trans. 2015, 43, 1003–1008. [Google Scholar] [CrossRef]
- Costa, A.L.; Ortelli, S.; Blosi, M.; Albonetti, S.; Vaccari, A.; Dondi, M. TiO2 Based Photocatalytic Coatings: From Nanostructure to Functional Properties. Chem. Eng. J. 2013, 225, 880–886. [Google Scholar] [CrossRef]
- Kunii, D. Levenspiel Octave Chapter 3—Fluidization and Mapping of Regimes. In Fluidization Engineering; Butterworth−Heinemann; Elsevier: Newton, MA, USA, 1991; Volume 1, pp. 61–94. ISBN 978-0-08-050664-7. [Google Scholar]
- Ammendola, P.; Chirone, R. Aeration and Mixing Behaviours of Nano−Sized Powders under Sound Vibration. Powder Technol. 2010, 201, 49–56. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, W.; Cao, Y.; Gai, H.; Zhu, Q. Diverse Gas−Solid Magnetized Fluidized Beds with Different Magnetic Fields. Powder Technol. 2024, 433, 119241. [Google Scholar] [CrossRef]
- Ruoppolo, G.; Miccio, F.; Chirone, R. Fluidized Bed Cogasification of Wood and Coal Adopting Primary Catalytic Method for Tar Abatement. Energy Fuels 2010, 24, 2034–2041. [Google Scholar] [CrossRef]
- Xiong, H.; Dong, Y.; Liu, D.; Long, R.; Kong, T.; Xiong, Y. Recent Advances in Porous Materials for Photocatalytic CO2 Reduction. J. Phys. Chem. Lett. 2022, 13, 1272–1282. [Google Scholar] [CrossRef]
- Miccio, F.; Boscherini, M.; Minelli, M.; Doghieri, F. A Comparative Investigation on Mixing and Dispersion in Fluidized Bed Equipped with a Conical Distributor for Catalytic Processes. J. Ind. Eng. Chem. 2025; preprint. [Google Scholar] [CrossRef]
- Rizzuti, L.; Yue, P.L. The Measurement of Light Transmission through an Irradiated Fluidised Bed. Chem. Eng. Sci. 1983, 38, 1241–1249. [Google Scholar] [CrossRef]
- Braham, R.J.; Harris, A.T. A Complete Multi−Scale Simulation of Light Absorption within a Fluidized Bed Photoreactor Using Integrated Particle, Fluid and Photon Behaviour Models. Phys. Chem. Chem. Phys. 2013, 15, 12373. [Google Scholar] [CrossRef]
- Svoboda, K.; Kalisz, S.; Miccio, F.; Wieczorek, K.; Pohořelý, M. Simplified Modeling of Circulating Flow of Solids between a Fluidized Bed and a Vertical Pneumatic Transport Tube Reactor Connected by Orifices. Powder Technol. 2009, 192, 65–73. [Google Scholar] [CrossRef]
- Lolli, A.; Blosi, M.; Ortelli, S.; Costa, A.L.; Zanoni, I.; Bonincontro, D.; Carella, F.; Albonetti, S. Innovative Synthesis of Nanostructured Composite Materials by a Spray−Freeze Drying Process: Efficient Catalysts and Photocatalysts Preparation. Catal. Today 2019, 334, 193–202. [Google Scholar] [CrossRef]
- Tran, A.; Aguirre, A.; Durand, H.; Crose, M.; Christofides, P.D. CFD Modeling of a Industrial−Scale Steam Methane Reforming Furnace. Chem. Eng. Sci. 2017, 171, 576–598. [Google Scholar] [CrossRef]
- Garland, J.R.; van Helmond, P. Steam Reformer Tube Assembly and Method of Assembling or Retrofitting Same. U.S. Patent 8,776,344B2, 15 July 2014. [Google Scholar]
- Fonseca, J.D.; Camargo, M.; Commenge, J.-M.; Falk, L.; Gil, I.D. Trends in Design of Distributed Energy Systems Using Hydrogen as Energy Vector: A Systematic Literature Review. Int. J. Hydrogen Energy 2019, 44, 9486–9504. [Google Scholar] [CrossRef]
- Jaison, A.; Mohan, A.; Lee, Y.-C. Machine Learning−Enhanced Photocatalysis for Environmental Sustainability: Integration and Applications. Mater. Sci. Eng. R Rep. 2024, 161, 100880. [Google Scholar] [CrossRef]
- Mowbray, M.; Vallerio, M.; Perez−Galvan, C.; Zhang, D.; Del Rio Chanona, A.; Navarro−Brull, F.J. Industrial Data Science—A Review of Machine Learning Applications for Chemical and Process Industries. React. Chem. Eng. 2022, 7, 1471–1509. [Google Scholar] [CrossRef]
Catalyst | Raw Material | Phase | T (°C) | Product (Max Yield) | Max Light Efficiency (%) | Wavelength | Source |
---|---|---|---|---|---|---|---|
Pt−Rh2O3−TiO2 hollow spheres | Methane | G | 300 | H2 19.8 mmol/(g·h) | 3.51 | UV light (Hg−Xe lamp) | [109] |
Pt−TiO2 | Naphthalene | A | 25 | − | PE 0.97% H2 production PE 0.33% naphthalene conversion | Simulated sunlight (Xe lamp) | [110] |
Pt−Nb2O5−TiO2 | Ethanol | A | 25 (UV light) 40 (Natural sunlight) | H2 138 mmol/(g·h) UV light H2 40 mmol/(g·h) natural sunlight | AQY 44% (UV light) AQY 85% (UV fraction of sunlight). | 365 nm Natural sunlight | [111] |
NiO−Ni−TiO2 heterojunction | Glycerol | A | − | H2 24.5 mmol/(g·h) dihydroxyacetone, glyceraldehyde | − | Simulated sunlight (Xe lamp) | [112] |
MOF−derived (O−Ni2)/TiO2 | Glycerol | A | 10 | H2 2.5426 mmol/(g·h) CO 0.3617 mmol/(g·h) | − | 365 nm | [113]. |
Ni/mesoporous TiO2 | Methane | G | 500–600 | H2 44.85 mmol/(g·h) CO 68.78 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [114] |
Ni−TiO2 | Methane | G | − | H2 87.4 mmol/(g·h) CO 220.2 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [115] |
CuNi/TiO2 | Cellulose | A | 15 | H2 0.489 mmol/(g·h) CO2 0.224 mmol/(g·h) Sugars * Anions ** | − | 365 nm | [116] |
Cu2O−TiO2 | Methanol, ethanol, ethylene glycol, formic acid, glycerol, lactic acid | A | 20–80 | H2 250 μmol/L | 8 | >400 nm Natural sunlight | [117] |
Cu2O−TiO2 (P25) | Glycerol, glucose, ethanol | A | Max 45 | H2 7.54 mmol/(g·h) Carboxylic acids | 1.7 | Natural sunlight | [118] |
Cu−based MOF/TiO2 | Methanol | A | − | H2 13.24 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [119] |
Cu2O/TiO2, Cu2O/TiO2/Cu TiO2/Cu heterojunctions | Methanol | A | − | H2 0.27953 mmol/(g·h) CO 0.01058 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [120] |
Cu−TiO2 (one−pot hydrothermal method) | Cellulose | A | 25 | H2 2.752 mmol/(g·h) CO2 1653 mmol/(g·h) Sugars Organic acids | 365 nm | [121] | |
Mesoporous Cu/TiO2−CeO2 | Methanol | G | 200–300 | H2 78.8 mmol/(g·h) | − | UV light (280–400 nm) | [122] |
Co−TiO2 | Glycerol acetonitrile | A | 34.85 | Formic acid 57% Formaldehyde 21% | − | 365 nm | [123] |
CoxNi1−xSe/TiO2 | TEOA | A | 30 | H2 10.079 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [124] |
La−TiO2 | Methane | G | − | H2 1.458 mmol/(g·h) | − | UV light (Hg lamp) | [125] |
W−TiO2 | Ethylbenzene | A | 25 | Acetophenone 235 mmol/g | 0.7 | 437 nm | [126] |
MoS2−TiO2 | α−cellulose biomass *** | A | Max 60 | H2 1.653 mmol/(g·h) (cellulose) H2 0.05 mmol/(g·h) (corncob) | AQY 5.62% 380 nm | Simulated sunlight (Xe lamp) | [127] |
Carbon dot−TiO2 | Ethanol | A | − | H2 0.5436 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [128] |
TiO2 nanotubes | Cellulose | A | − | CH4 17.020 mmol/g CO 213,690 mmol/g Glucose | − | Simulated sunlight (Xe lamp) | [129] |
Biphasic TiO2 | Methane | A | 25 | Formaldehyde 24.27 mmol/g | QE 3.28% 313 nm QE 2.52% 365 nm | Simulated sunlight (Xe lamp) | [130] |
MOF−derived engineered TiO2 | Methane | G | − | C2H6 0.0037 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [131] |
Anatase TiO2 | Toluene | G | − | 98% toluene abatement H2 yield > 60% | − | UV−VS light generated by microwave–metal discharge | [132] |
Catalyst | Raw Material | Phase | T (°C) | Product (Max Yield) | Max Light Efficiency (%) | Wavelength | Source |
---|---|---|---|---|---|---|---|
Ni/ZrO2 rods | Ethanol | G | 350–550 | Max ethanol conversion = 70% H2 and CO selectivity > 40% | − | Simulated sunlight (Xe lamp) | [135] |
Ni−CeO2−ZrO2 | Methane | G | 700 | H2 713 mmol/(g·h) CO 693 mmol/(g·h) | − | Simulated sunlight | [136] |
Ni−Ce−ZrO2 | Methane | G | 400–600 | H2 83.8 mmol/(g·h) CO 59.1 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [137] |
Ni/CeO2–ZrO2@SiO2 core–shell structure | Methane | G | 400–600 | H2 137.0 mmol/(g·h) CO 182.9 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [138] |
MOF−derived Ni/CeZrO2 | Methane | G | 400–650 | H2 171.7 mmol/(g·h) CO 182.6 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [139] |
Ni/La2Zr2O7 | Methane | G | 700 | H2 4572 mmol/(g·h) CO 5946 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [140] |
Bi2S3 nanorods/ZrO2 | Methanol | A | − | H2 4.440 mmol/(g·h) in UV light H2 1.476 mmol/(g·h) in vs. light | 254 nm UV light (high pressure Hg lamp pen−ray) 540 nm vs. light (blue LED lamps) | [141] | |
Cu/Zn/Zr oxide nanocatalysts | Methanol | G | 130 | H2 67.37 mmol/(g·h) | 45.6% solar–chemical conversion efficiency | Simulated sunlight (Xe lamp) | [142] |
Catalyst | Raw Material | Phase | T (°C) | Product (Max Yield) | Max Light Efficiency (%) | Wavelength | Source |
---|---|---|---|---|---|---|---|
Pt−oxidized g−C3N4 | Glucose | A | − | H2 1.370 mmol/(g·h) | AQY 0.8% (native pH) AQY 1.3% (pH 11). | Simulated sunlight, natural sunlight | [147] |
Pt−Poly(heptazine imide)−C3N4 | Glucose, rice milk wastewater | A | − | H2 1.000 mmol/(g·h) (glucose) H2 0.150 mmol/(g·h) (rice milk wastewater) H2 0.11P5 mmol/(g·h) (rice milk wastewater, natural sunlight) | − | Simulated sunlight, natural sunlight | [148] |
Single−atom Pt−C3N4 | TEOA | A | − | H2 1660 mmol/(gPt·h) | − | LED 365 nm | [149] |
Pt−2D C3N4 nanosheet | Cellulose | A | − | H2 0.09433 mmol/(g·h) in NaOH 3M | Xe lamp with a UV cut−off filter (400 nm < λ < 780 nm) | [150] | |
Pt−SnS2/C3N5 | TEOA | A | 60 | H2 0.9225 mmol/(g·h) | − | Xe lamp with a vs. light cut−off filter (λ: 400−780 nm) | [151] |
Pt−methyl viologen−C3N4 | TEOA | A | − | H2 1.65 mmol/(g·h) | − | Xe lamp with a UV cut−off filter (λ > 420 nm) | [152] |
Fe−C3N4 | Methane | A | 25 | Methanol 0.92827 mmol/g | − | Simulated sunlight (Xe lamp) | [153] |
Co−C3N4 | Methane, methanol | G | Methane dry reforming: CO 0.555 mmol/(g·h) H2 0.0412 mmol/(g·h) Methanol bi−reforming: CO 0.771 mmol/(g·h) H2 0.444 mmol/(g·h) | − | Hg lamp | [154] | |
g−C3N4/TiO2A/R@Ti3C2/CoAlLa−LDH | Methane | G | 27 | H2 0.04150 mmol/(g·h) CO 0.03734 mmol/(g·h) | AQY 0.407% CO AQY 0.363% H2 | Xe lamp 420 nm | [155] |
LaxCoyO3−3D g−C3N4 hollow tube | Methanol | A | 25 | H2 0.070 mmol/(g·h) | APE 0.58% | Xe lamp λ ≥ 420 nm | [156] |
MnMgPO3−C3N4 | Methylene blue, oxytetracycline, tetracycline | A | 25 | H2 3.595 mmol/(g·h) | − | VS light (Xe lamp) | [157] |
α−MnO2/g−C3N4 | Polystyrene | A | − | H2 12.6 mmol/(g·h) benzaldehyde, benzoic acid, toluene, benzene, and carbonic acid | − | Xe lamp | [158] |
GO−g−C3N4 | Methane | G | − | H2 0.03024 mmol/(g·h) (0.25% wt. GO) CO 0.3991 mmol/(g·h) (0.5% wt. GO) | AQY 0.9% (0.5% wt. GO) | Simulated sunlight (Xe lamp) | [159] |
g−C3N4−Cx carbon ring Modified C3N4 | α−cellulose Lignocellulose | A | 25 | H2 2.1 μmol/h (NIR irradiation) mannose, galacturonic acid, glucuronic acid, galactose, lactic acid, formic acid, and 5−hydroxymethyl furfural | AQE 4.7% at 550 nm | Xe arc lamp coupled with a λ ≥ 630 and λ ≥ 800 nm filter | [160] |
Catalyst | Raw Material | Phase | T (°C) | Product (Max Yield) | Max Light Efficiency (%) | Wavelength | Source |
---|---|---|---|---|---|---|---|
NiTiO3, LaFeO3 AgNbO3 | Methane | G | 650–680 | LaFeO3 calcined at 600 °C: CH4 conversion 61.9% CO2 conversion 61.9% H2 selectivity 82.5% CO selectivity 69.9% | − | Light from plasma generation system, simulated sunlight (Xe lamp) | [161] |
LaFeO3 | Methane | G | 650–680 | CH4 conversion 53.5% CO2 conversion 40.0% H2 selectivity 85.0% Co selectivity 71.8% | − | Light from plasma generation system | [162] |
Ni−LaFeO3 | Glucose | A | − | H2 2.573 mmol/L | − | UV lamps (emission peak at 365 nm) | [163] |
LaMnxNi1−xO3 | Toluene | G | 400 | 90% toluene conversion | − | Xe lamps λ = 350–780 nm | [164] |
Phosphated Ni−CeO2 nanorod | Methane | G | 350 | Stable H2 and CO rate ≈ 5 mmol/(g·h) at 48 suns for sample with P/Ce = 0.65 | − | UV light, red light, blue light, green light | [165] |
Au−CeO2−rGO | Glycerol | A | − | H2 0.270 mmol/(g·h) | − | Simulated sunlight (Xe lamp) | [166] |
CuO−CeO2 | Lactic acid | A | 450 | H2 ≈ 2.6 mmol/(g·h) | AQY 0.459% | UV light 365 nm | [167] |
Cu−CeO2 | Toluene | A | 200–231 | Toluene conversion 89.9% | − | Simulated sunlight (Xe lamp) | [168] |
SrNiO3/CeO2 | 2−propanol | G | − | 100% propanol conversion | − | UV lamp 365 nm Xe lamp 315–400 nm | [169] |
AgInS2 quantum dots−CeO2 | Xylose | A | 30–80 | Xylonic acid yield 60.0% CO 3.6899 mmol/(g·h) | − | VS light | [170] |
CeO2/CdS/NiS | Polylactic acid hydrolysate | A | 6 | H2 32.40 mmol/(g·h) pyruvate, acetate, and formate | − | VS light (Xe lamp) | [171] |
2D CoP supported 0D WO3 | TEOA | A | − | H2 0.21863 mmol in 5 h | AQY 2.02% 520 nm | VS light 450, 475, 500, 520 and 550 nm | [172] |
CuO/WO3 | Methanol | L | 25 | H2 0.0996 mmol/(g·h) | − | VS light | [173] |
TiO2/WO3/graphene | Benzene Methanol | A | − | H2 0.054 mmol/g in 4 h from methanol | − | Simulated sunlight | [174] |
Pt−CuMn2O4/WO3 | Glycerol | A | − | H2 3.472 mmol/(g·h) | − | Xe lamp λ > 420 nm | [175] |
2D VxW1−xN1.5 + CdS | Formic acid | A | 25 | H2 0.18404 μmol/h | − | Simulated sunlight (Xe lamp) | [176] |
Ni−SiO2 | Cellulose, rice straw, wheat straw, corn stalk, kitchen waste | 500–700 | Cellulose: H2 1966.2 mmol/(g·h) CO 1257.7 mmol/(g·h) Rice straw: H2 1488.1 mmol/(g·h) Wheat straw: H2 728.4 mmol/(g·h) Corn stalk: H2 1036.5 mmol/(g·h) Kitchen waste: H2 760.4 mmol/(g·h) | Light−to−fuel efficiency 5.5% (cellulose) | Xe lamp | [177] | |
Ni/θ−Al2O3, | Cellulose | A | 200–700 | H2 3776.3 mmol/(g·h) CO 2028.1 mmol/(g·h) | − | λ > 420 nm, and λ > 560 nm | [178] |
Two−Dimensional | Fluidized Bed | |
---|---|---|
Ease of construction | High | Low |
Catalytic device complexity | High | Moderate |
Pressure drop | Low | Moderate |
Scalability | High | Moderate |
Heat removal/supply | Moderate | High |
Mass transfer | Moderate | High |
Process integration | Low | High |
Process intensification | Low | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boscherini, M.; Miccio, F. Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes. Processes 2025, 13, 2150. https://doi.org/10.3390/pr13072150
Boscherini M, Miccio F. Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes. Processes. 2025; 13(7):2150. https://doi.org/10.3390/pr13072150
Chicago/Turabian StyleBoscherini, Mattia, and Francesco Miccio. 2025. "Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes" Processes 13, no. 7: 2150. https://doi.org/10.3390/pr13072150
APA StyleBoscherini, M., & Miccio, F. (2025). Photochemical Catalysts for Hydrocarbons and Biomass Derivates Reforming in Intensified Processes. Processes, 13(7), 2150. https://doi.org/10.3390/pr13072150