Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems
Abstract
1. Introduction
2. Experimental Setup and Methods
2.1. Modeling of the SCR System
2.1.1. Reaction Mechanism of SCR
2.1.2. Diesel SCR System Simulation Model
2.2. Data Collection
2.3. Method
2.3.1. Time-Series Modeling with LSTM and Multi-Head Attention
2.3.2. LSTM Neural Network
2.3.3. Multi-Head Attention Mechanism
2.4. Constrained Optimization Framework
Evaluation Metrics
3. Result Analysis and Discussion
3.1. Evaluation of LSTM-Attention-Based Emission Prediction Models
3.2. Dynamic Multi-Objective Optimization for SCR Emission Control
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cunanan, C.; Tran, M.-K.; Lee, Y.; Kwok, S.; Leung, V.; Fowler, M. A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technol. 2021, 3, 474–489. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, Z.; Liu, H.; Wang, H.; Zheng, Z.; Wang, C.; Sun, X.; Xu, L.; Yao, M. Machine learning-based design of target property-oriented fuels using explainable artificial intelligence. Energy 2024, 300, 131583. [Google Scholar] [CrossRef]
- Li, W.; Dong, Z.; Miao, L.; Wu, G.; Deng, Z.; Zhao, J.; Huang, W. On-road evaluation and regulatory recommendations for NOx and particle number emissions of China VI heavy-duty diesel trucks: A case study in Shenzhen. Sci. Total Environ. 2024, 928, 172427. [Google Scholar] [CrossRef] [PubMed]
- Andrych-Zalewska, M. Analysis of exhaust emission processes during the Real Driving Emissions test. Arch. Transp. 2023, 66, 123–148. [Google Scholar] [CrossRef]
- Guan, B.; Zhan, R.; Lin, H.; Huang, Z. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust. Appl. Therm. Eng. 2014, 66, 395–414. [Google Scholar] [CrossRef]
- Ning, J. Active Disturbance Estimation and Compensation for Improving Diesel Aftertreatment Performance. Doctoral Dissertation, McMaster University, Hamilton, ON, Canada, 2017. [Google Scholar]
- Wang, T.; Huang, Z.; Luo, X.; Hu, J.; Wang, Z.; Cheng, Y. Model-based NH 3 Adaptation Method for SCR Control. Int. J. Automot. Technol. 2022, 23, 1621–1637. [Google Scholar] [CrossRef]
- Holmer, O.; Eriksson, L. Selective Catalytic Reduction Catalyst Modeling for Control Purposes. Energies 2022, 15, 8182. [Google Scholar] [CrossRef]
- Colombo, M.; Nova, I.; Tronconi, E. Detailed kinetic modeling of the NH3–NO/NO2 SCR reactions over a commercial Cu-zeolite catalyst for Diesel exhausts after treatment. Catal. Today 2012, 197, 243–255. [Google Scholar] [CrossRef]
- Gao, Z.; Pihl, J.; LaClair, T.; Fricke, B. Global kinetic modeling of NH3-SCR with two sites of NH3 storage on Cu-SSZ-13. Chem. Eng. J. 2021, 406, 127120. [Google Scholar] [CrossRef]
- Bozbağ, S.E.; Şanlı, D.; Özener, B.; Hisar, G.; Erkey, C. Development of a model based strategy for catalyst screening to control NOx and N2O emissions in NH3-SCR process towards Eu7 readiness. J. Environ. Chem. Eng. 2023, 11, 110232. [Google Scholar] [CrossRef]
- Dorscheidt, F.; Düzgün, M.; Claßen, J.; Krysmon, S.; Pischinger, S.; Görgen, M.; Dönitz, C.; Nijs, M. Hardware-in-the-Loop Based Virtual Emission Calibration for a Gasoline Engine. SAE Technical Paper. 6 April 2021.
- Shiyu, L.; Boyuan, W.; Zexian, G.; Buyu, W.; Zhaohuan, Z.; Xiao, M.; Chen-Teng, C.; Peng, W.; Xin, H.; Xingyu, S. Experimental investigation of urea injection strategy for close-coupled SCR aftertreatment system to meet ultra-low NOx emission regulation. Appl. Therm. Eng. 2022, 205, 117994. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Yang, L.; Chen, G.; He, S. Intelligent optimization of diesel engine Selective catalytic reduction urea injection based on multi-model state estimation to reduce NH3 slip and NOx emission. Fuel 2024, 365, 131188. [Google Scholar] [CrossRef]
- Zhu, X.; Du, J.; Yu, Z.; Cheng, Y.-B.; Wang, Y. NOx emission and control in ammonia combustion: State-of-the-art review and future perspectives. Energy Fuels 2023, 38, 43–60. [Google Scholar] [CrossRef]
- Sarkar, B.; Gundlapally, S.R.; Koutsivitis, P.; Wahiduzzaman, S. Performance evaluation of neural networks in modeling exhaust gas aftertreatment reactors. Chem. Eng. J. 2022, 433, 134366. [Google Scholar] [CrossRef]
- Hu, B.; Liu, C.; Yang, Y.; Wang, B.; Cai, D.; Xu, W. Adaptive internal model control of SCR denitration system based on multi-objective optimization. IEEE Access 2022, 10, 24769–24785. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Liu, Y.; Xu, Z.; Qu, X. A review of machine learning approaches for electric vehicle energy consumption modelling in urban transportation. Renew. Energy 2024, 234, 121243. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, S.; Liu, B. A hybrid algorithm combining data-driven and simulation-based reinforcement learning approaches to energy management of hybrid electric vehicles. IEEE Trans. Transp. Electrif. 2023, 10, 1257–1273. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, G.; Wang, Y.; Zeng, B.; Yu, X.; He, S. Prediction model for transient NOx emission of diesel engine based on CNN-LSTM network. Energies 2023, 16, 5347. [Google Scholar] [CrossRef]
- Guo, Y.; Mao, Z. Long-term prediction model for NOx emission based on LSTM–Transformer. Electronics 2023, 12, 3929. [Google Scholar] [CrossRef]
- Sun, J.; Ren, H.; Duan, Y.; Yang, X.; Wang, D.; Tang, H. Fusion of multi-layer attention mechanisms and CNN-LSTM for fault prediction in marine diesel engines. J. Mar. Sci. Eng. 2024, 12, 990. [Google Scholar] [CrossRef]
- Åberg, A.; Widd, A.; Abildskov, J.; Huusom, J.K. Methodology for Analysing the NOx-NH3 Trade-off for the Heavy-duty Automotive SCR Catalyst. IFAC-Pap. 2017, 50, 5998–6003. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, W.; Mao, C.; Xu, Y.; Lu, K.; Ye, Y.; Guan, W.; Pan, M.; Tan, D. Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF. Energy 2024, 294, 130899. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Z.; Zhang, H.; Shan, J. Multi-objective optimization of an electrical injector in Urea-SCR system. Proc. Inst. Mech. Eng. Part D 2024. [Google Scholar] [CrossRef]
- Liu, B.; Yan, F.; Hu, J.; Turkson, R.F.; Lin, F. Modeling and multi-objective optimization of NOx conversion efficiency and NH3 slip for a diesel engine. Sustainability 2016, 8, 478. [Google Scholar] [CrossRef]
- Fan, L.; Shi, W.; Jing, J.; Dong, Z.; Yuan, J.; Qu, L. An Artificial Intelligence Strategy for multi-objective optimization of Urea-SCR for vehicle diesel engine by RSM-VIKOR. Energy 2025, 317, 134667. [Google Scholar] [CrossRef]
- Pant, A.; Schmieg, S.J. Kinetic model of NOx SCR using urea on commercial Cu-zeolite catalyst. Ind. Eng. Chem. Res. 2011, 50, 5490–5498. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Tao, C.; Gao, S.; Shang, M.; Wu, W.; Zhao, D.; Yan, R. Get The Point of My Utterance! Learning Towards Effective Responses with Multi-Head Attention Mechanism. In Proceedings of the 27th International Joint Conference on Artificial Intelligence and 23rd European Conference on Artificial Intelligence (IJCAI-ECAI 2018), Stockholm, Sweden, 13–19 July 2018; pp. 4418–4424. [Google Scholar]
- Zhang, K.; Zhao, J.; Zhu, Y. MPC case study on a selective catalytic reduction in a power plant. J. Process Control 2018, 62, 1–10. [Google Scholar] [CrossRef]
- Hedrick, E.; Hedrick, K.; Bhattacharyya, D.; Zitney, S.E.; Omell, B. Reinforcement learning for online adaptation of model predictive controllers: Application to a selective catalytic reduction unit. Comput. Chem. Eng. 2022, 160, 107727. [Google Scholar] [CrossRef]
Number | Reaction |
---|---|
1 | NH3 + S→NH3‧S |
2 | NH3·S→NH3 + S |
3 | 2NH3 + 2.5O2→2NO + 3H2O |
4 | NO + 0.5O2→NO2 |
5 | 4NH3‧S + 4NO+O2→4N2 + 6H2O + 4S |
6 | 2NH3‧S + NO+NO2→2N2 + 3H2O + 2S |
7 | 4NH3‧S + 3NO2→3.5N2 + 6H2O + 4S |
8 | 2NH3‧S + 2NO2→N2 + N2O + 3H2O + 2S |
A/N Ratio | NH3 * | NOx | Comprehensive Evaluation |
---|---|---|---|
0.85 | 92.17% | −85.52% | 3.32% |
1.45 | −354.15% | 22.60% | −165.78% |
Optim | 34.40% | 11.15% | 22.77% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wu, J.; Yao, D.; Wu, F.; Wang, L.; Lou, H.; He, H. Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems. Processes 2025, 13, 2029. https://doi.org/10.3390/pr13072029
Li W, Wu J, Yao D, Wu F, Wang L, Lou H, He H. Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems. Processes. 2025; 13(7):2029. https://doi.org/10.3390/pr13072029
Chicago/Turabian StyleLi, Weiqi, Jie Wu, Dongwei Yao, Feng Wu, Lei Wang, Hua Lou, and Haibin He. 2025. "Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems" Processes 13, no. 7: 2029. https://doi.org/10.3390/pr13072029
APA StyleLi, W., Wu, J., Yao, D., Wu, F., Wang, L., Lou, H., & He, H. (2025). Neural Network-Based Control Optimization for NH3 Leakage and NOx Emissions in SCR Systems. Processes, 13(7), 2029. https://doi.org/10.3390/pr13072029