Investigation of Pyrolysis Characteristics, Reaction Kinetics, and Product Formation During Co-Pyrolysis of Biodegradable Plastic and Kitchen Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Sample Preparation
2.2. Analytical Methods
2.3. Kinetic Analytical Methods
2.3.1. Distributed Activation Energy Model (DAEM)
2.3.2. Flynn–Wall–Ozawa (FWO) Method
2.3.3. Starink Method
3. Results and Discussion
3.1. Thermogravimetric Analysis of Biodegradable Plastics and KW
3.2. Kinetic Analysis of Pyrolysis of Biodegradable Plastics and KW
3.3. TG-FTIR Analysis of Pyrolysis of Biodegradable Plastics and KW
3.4. GC-MS Analysis of Biodegradable Plastics and KW Co-Pyrolysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borrelle, S.B.; Ringma, J.; Law, K.L.; Monnahan, C.C.; Lebreton, L.; McGivern, A.; Murphy, E.; Jambeck, J.; Leonard, G.H.; Hilleary, M.A.; et al. Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution. Science 2020, 369, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The Global Threat from Plastic Pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Hu, Y.H. Advancements and Future Directions in Waste Plastics Recycling: From Mechanical Methods to Innovative Chemical Processes. Chem. Eng. J. 2024, 493, 152727. [Google Scholar] [CrossRef]
- Buitrago, N.R.; Gracia C, A. Colombia Acts to Combat Plastic Pollution. Science 2024, 386, 389. [Google Scholar] [CrossRef]
- Simon, N.; Raubenheimer, K.; Urho, N.; Unger, S.; Azoulay, D.; Farrelly, T.; Sousa, J.; Van Asselt, H.; Carlini, G.; Sekomo, C.; et al. A Binding Global Agreement to Address the Life Cycle of Plastics. Science 2021, 373, 43–47. [Google Scholar] [CrossRef]
- Manfra, L. Biodegradable Polymers: A Real Opportunity to Solve Marine Plastic Pollution? J. Hazard. Mater. 2021, 416, 125763. [Google Scholar] [CrossRef]
- Schneiderman, D.K.; Hillmyer, M.A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733–3749. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Kumar, M.; Kumar, V.; Sarsaiya, S.; Anerao, P.; Ghosh, P.; Singh, L.; Liu, H.; Zhang, Z.; Awasthi, M.K. A Comprehensive Review on Recent Advancements in Biodegradation and Sustainable Management of Biopolymers. Environ. Pollut. 2022, 307, 119600. [Google Scholar] [CrossRef]
- Shao, H.; Yu, M.; Zhao, L.; Wang, P.; Meng, X.; Ren, L. Impact of Hydrothermal Pretreatment on Enhancing Anaerobic Co-Digestion of Food Waste and Biodegradable Plastics. J. Environ. Chem. Eng. 2025, 13, 115205. [Google Scholar] [CrossRef]
- Wen, Z.; Hu, Y.; Li, H. Environmental Impact Assessment of Degradable Plastics Amd Policy Support Research Project Report; Tsinghua University: Beijing, China, 2022. [Google Scholar]
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty Years of Microplastic Pollution Research—What Have We Learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef]
- Huang, Y.; Han, M.; Bi, Z.; Gu, N.; Gu, D.; Hu, T.; Li, G.; Lu, J. Differentiating Low-Carbon Waste Management Strategies for Bio-Based and Biodegradable Plastics under Various Energy Decarbonization Scenarios. Waste Manag. 2025, 193, 328–338. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Li, H.; Lu, Y.; Zhang, B.; Zhang, H.; Zhang, S. Synergistic Effects of Economic Benefits, Resource Conservation and Carbon Mitigation of Kitchen Waste Recycling from the Perspective of Carbon Neutrality. Resour. Conserv. Recycl. 2023, 199, 107262. [Google Scholar] [CrossRef]
- Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S.T.; De Wilde, B.; Babu Padamati, R.; O’Connor, K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018, 52, 10441–10452. [Google Scholar] [CrossRef] [PubMed]
- Kakadellis, S.; Woods, J.; Harris, Z.M. Friend or Foe: Stakeholder Attitudes towards Biodegradable Plastic Packaging in Food Waste Anaerobic Digestion. Resour. Conserv. Recycl. 2021, 169, 105529. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Zhang, Z. Occurrence, Effects, and Biodegradation of Plastic Additives in Sludge Anaerobic Digestion: A Review. Environ. Pollut. 2021, 287, 117568. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Sun, Y.; Wang, Z.; Leeke, G.A.; Moretti, C.; Cheng, Z.; Wang, Y.; Li, N.; Mu, L.; et al. Replacing Traditional Plastics with Biodegradable Plastics: Impact on Carbon Emissions. Engineering 2024, 32, 152–162. [Google Scholar] [CrossRef]
- Rubi, R.V.; Patricia, A.D.; Michelle, H.; Shalimar, S.; Kirstie, I.C.; Jerry, G.O.; Erison, C.R.; Edgar, C.L.; Eric, H. Slow Pyrolysis of Buri Palm: Investigation of Pyrolysis Temperature and Residence Time Effects. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Saeaung, K.; Phusunti, N.; Phetwarotai, W.; Assabumrungrat, S.; Cheirsilp, B. Catalytic Pyrolysis of Petroleum-Based and Biodegradable Plastic Waste to Obtain High-Value Chemicals. Waste Manag. 2021, 127, 101–111. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, Y.; Chen, Q.; Zhang, C.; Wang, N.; Xu, Q. Product Distribution and Conversion Mechanism of Fossil-Based Biodegradable Plastics during Rapid Pyrolysis. Chem. Eng. J. 2024, 491, 152099. [Google Scholar] [CrossRef]
- Kim, S.; Yang, W.; Lee, H.S.; Tsang, Y.F.; Lee, J. Effectiveness of CO2-Mediated Pyrolysis for the Treatment of Biodegradable Plastics: A Case Study of Polybutylene Adipate Terephthalate/Polylactic Acid Mulch Film. J. Clean. Prod. 2022, 372, 133763. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Z.; Li, J.; Yan, B.; Chen, G. Pyrolysis of Food Waste and Food Waste Solid Digestate: A Comparative Investigation. Bioresour. Technol. 2022, 354, 127191. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, Y.; Zhao, C.; Liu, Y. Co-Pyrolysis of Poly (Lactic Acid) and Sugar Cane Bagasse: Kinetic and Thermodynamic Studies. Fuel 2024, 372, 132228. [Google Scholar] [CrossRef]
- Nardella, F.; Bellavia, S.; Mattonai, M.; Ribechini, E. Co-Pyrolysis of Biomass and Plastic: Synergistic Effects and Estimation of Elemental Composition of Pyrolysis Oil by Analytical Pyrolysis–Gas Chromatography/Mass Spectrometry. Bioresour. Technol. 2022, 354, 127170. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, K.; Chen, Z.; Wei, W.; Xu, B.; Ni, B.-J. Online TG-FTIR-MS Analysis of the Catalytic Pyrolysis of Polyethylene and Polyvinyl Chloride Microplastics. J. Hazard. Mater. 2023, 441, 129881. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Yu, Z.; Deng, T.; Chen, X.; Chen, L.; Dai, M. A Study on Catalytic Co-Pyrolysis of Kitchen Waste with Tire Waste over ZSM-5 Using TG-FTIR and Py-GC/MS. Bioresour. Technol. 2019, 289, 121585. [Google Scholar] [CrossRef]
- Yousef, S.; Eimontas, J.; Striūgas, N.; Mohamed, A.; Ali Abdelnaby, M. Pyrolysis Kinetic Behavior and TG-FTIR-GC–MS Analysis of End-Life Ultrafiltration Polymer Nanocomposite Membranes. Chem. Eng. J. 2022, 428, 131181. [Google Scholar] [CrossRef]
- Yan, M.; Liu, J.; Yoshikawa, K.; Jiang, J.; Zhang, Y.; Zhu, G.; Liu, Y.; Hantoko, D. Cascading Disposal for Food Waste by Integration of Hydrothermal Carbonization and Supercritical Water Gasification. Renew. Energy 2022, 186, 914–926. [Google Scholar] [CrossRef]
- Bach, Q.-V.; Chen, W.-H. Pyrolysis Characteristics and Kinetics of Microalgae via Thermogravimetric Analysis (TGA): A State-of-the-Art Review. Bioresour. Technol. 2017, 246, 88–100. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Huang, Q.; Cai, J. Thermogravimetric Characteristics and Kinetic of Plastic and Biomass Blends Co-Pyrolysis. Fuel Process. Technol. 2006, 87, 963–969. [Google Scholar] [CrossRef]
- Miura, K.; Maki, T. A Simple Method for Estimating f (E) and k0 (E) in the Distributed Activation Energy Model. Energy Fuels 1998, 12, 864–869. [Google Scholar] [CrossRef]
- Hu, S.; Ma, X.; Lin, Y.; Yu, Z.; Fang, S. Thermogravimetric Analysis of the Co-Combustion of Paper Mill Sludge and Municipal Solid Waste. Energy Convers. Manag. 2015, 99, 112–118. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Shiko, E.; Fan, X.; Zhou, Y.; Zhang, G.; Luo, X.; Hu, X. (Eric) Low-Cost DETA Impregnation of Acid-Activated Sepiolite for CO2 Capture. Chem. Eng. J. 2018, 353, 940–948. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, J.; Ding, Y.; Jiang, G.; Sun, L.; Lu, K. Effects of Heating Rate on Thermal Degradation Behavior and Kinetics of Representative Thermoplastic Wastes. J. Environ. Manag. 2022, 314, 115071. [Google Scholar] [CrossRef]
- Somerville, M.; Deev, A. The Effect of Heating Rate, Particle Size and Gas Flow on the Yield of Charcoal during the Pyrolysis of Radiata Pine Wood. Renew. Energy 2020, 151, 419–425. [Google Scholar] [CrossRef]
- Kumar, M.; Srivastava, N.; Upadhyay, S.N.; Mishra, P.K. Thermal Degradation of Dry Kitchen Waste: Kinetics and Pyrolysis Products. Biomass Conv. Bioref. 2023, 13, 2779–2796. [Google Scholar] [CrossRef]
- Han, B.; Chen, Y.; Wu, Y.; Hua, D.; Chen, Z.; Feng, W.; Yang, M.; Xie, Q. Co-Pyrolysis Behaviors and Kinetics of Plastics–Biomass Blends through Thermogravimetric Analysis. J. Therm. Anal. Calorim. 2014, 115, 227–235. [Google Scholar] [CrossRef]
- Sharypov, V.; Beregovtsova, N.; Kuznetsov, B.; Membrado, L.; Cebolla, V.; Marin, N.; Weber, J. Co-Pyrolysis of Wood Biomass and Synthetic Polymers Mixtures. Part III: Characterisation of Heavy Products. J. Anal. Appl. Pyrolysis 2003, 67, 325–340. [Google Scholar] [CrossRef]
- Yao, L.; Wu, B.; Fan, H.; Gu, J.; Yuan, H.; Xie, J. An Investigation on Synergistic Effects and Kinetic Characteristics of Pyrolysis of Kitchen Waste Components: Starch, Protein and Lipid. J. Environ. Chem. Eng. 2024, 12, 114619. [Google Scholar] [CrossRef]
- Ong, H.C.; Chen, W.-H.; Singh, Y.; Gan, Y.Y.; Chen, C.-Y.; Show, P.L. A State-of-the-Art Review on Thermochemical Conversion of Biomass for Biofuel Production: A TG-FTIR Approach. Energy Convers. Manag. 2020, 209, 112634. [Google Scholar] [CrossRef]
- Wang, X.; Sheng, L.; Yang, X. Pyrolysis Characteristics and Pathways of Protein, Lipid and Carbohydrate Isolated from Microalgae Nannochloropsis Sp. Bioresour. Technol. 2017, 229, 119–125. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, M.; Zhang, D. A Thermogravimetric Study of the Characteristics of Pyrolysis of Cellulose Isolated from Selected Biomass. Appl. Energy 2018, 220, 87–93. [Google Scholar] [CrossRef]
- Huang, X.; Yin, H.; Zhang, H.; Mei, N.; Mu, L. Pyrolysis Characteristics, Gas Products, Volatiles, and Thermo–Kinetics of Industrial Lignin via TG/DTG–FTIR/MS and in–Situ Py–PI–TOF/MS. Energy 2022, 259, 125062. [Google Scholar] [CrossRef]
- Feng, Y.; Wan, L.; Wang, S.; Yu, T.; Chen, D. The Emission of Gaseous Nitrogen Compounds during Pyrolysis of Meat and Bone Meal. J. Anal. Appl. Pyrolysis 2018, 130, 314–319. [Google Scholar] [CrossRef]
- Chen, H.; Xie, Y.; Chen, W.; Xia, M.; Li, K.; Chen, Z.; Chen, Y.; Yang, H. Investigation on Co-Pyrolysis of Lignocellulosic Biomass and Amino Acids Using TG-FTIR and Py-GC/MS. Energy Convers. Manag. 2019, 196, 320–329. [Google Scholar] [CrossRef]
- Niu, S.; Zhou, Y.; Yu, H.; Lu, C.; Han, K. Investigation on Thermal Degradation Properties of Oleic Acid and Its Methyl and Ethyl Esters through TG-FTIR. Energy Convers. Manag. 2017, 149, 495–504. [Google Scholar] [CrossRef]
- Zhang, F.; Sun, Y.; Li, J.; Su, H.; Zhu, Z.; Yan, B.; Cheng, Z.; Chen, G. Pyrolysis of 3D Printed Polylactic Acid Waste: A Kinetic Study via TG-FTIR/GC-MS Analysis. J. Anal. Appl. Pyrolysis 2022, 166, 105631. [Google Scholar] [CrossRef]
- Dong, N.; Hui, H.; Li, S.; Du, L. Study on Preparation of Aromatic-Rich Oil by Thermal Dechlorination and Fast Pyrolysis of PVC. J. Anal. Appl. Pyrolysis 2023, 169, 105817. [Google Scholar] [CrossRef]
- Worzakowska, M.; Sztanke, M.; Sztanke, K. Decomposition Course of Anticancer Active Imidazolidine-Based Hybrids with Diethyl Butanedioate Studied by TG/FTIR/QMS-Coupled Method. J. Anal. Appl. Pyrolysis 2019, 143, 104686. [Google Scholar] [CrossRef]
- Amin, M.K.; Boateng, J. Surface Functionalization of PLGA Nanoparticles for Potential Oral Vaccine Delivery Targeting Intestinal Immune Cells. Colloids Surf. B Biointerfaces 2023, 222, 113121. [Google Scholar] [CrossRef]
- Zong, P.; Jiang, Y.; Tian, Y.; Li, J.; Yuan, M.; Ji, Y.; Chen, M.; Li, D.; Qiao, Y. Pyrolysis Behavior and Product Distributions of Biomass Six Group Components: Starch, Cellulose, Hemicellulose, Lignin, Protein and Oil. Energy Convers. Manag. 2020, 216, 112777. [Google Scholar] [CrossRef]
- Sun, C.; Li, C.; Tan, H.; Zhang, Y. Synergistic Effects of Wood Fiber and Polylactic Acid during Co-Pyrolysis Using TG-FTIR-MS and Py-GC/MS. Energy Convers. Manag. 2019, 202, 112212. [Google Scholar] [CrossRef]
- Özsin, G.; Pütün, A.E. Insights into Pyrolysis and Co-Pyrolysis of Biomass and Polystyrene: Thermochemical Behaviors, Kinetics and Evolved Gas Analysis. Energy Convers. Manag. 2017, 149, 675–685. [Google Scholar] [CrossRef]
- Sun, C.; Chen, X.; Zheng, D.; Yao, W.; Tan, H.; Zhang, Y.; Liu, S. Exploring the Synergetic Effects of the Major Components of Biomass Additives in the Pyrolysis of Polylactic Acid. Green Chem. 2021, 23, 9014–9023. [Google Scholar] [CrossRef]
- Sánchez-Gómez, J.A.; Cabrera-Ruiz, J.; Hernández, S. Design and Optimization of an Intensified Process to Produce Acrylic Acid as Added Product Value from Glycerol Generated in the Biodiesel Production. Chem. Eng. Res. Des. 2022, 184, 543–553. [Google Scholar] [CrossRef]
- Ghadamyari, M.; Chaemchuen, S.; Zhou, K.; Dusselier, M.; Sels, B.F.; Mousavi, B.; Verpoort, F. One-Step Synthesis of Stereo-Pure l,l Lactide from l-Lactic Acid. Catal. Commun. 2018, 114, 33–36. [Google Scholar] [CrossRef]
- Shirai, M.A.; Müller, C.M.O.; Grossmann, M.V.E.; Yamashita, F. Adipate and Citrate Esters as Plasticizers for Poly(Lactic Acid)/Thermoplastic Starch Sheets. J. Polym. Environ. 2015, 23, 54–61. [Google Scholar] [CrossRef]
Number | KW/PLA/PBAT | Name as |
---|---|---|
1 | 6:0:0 | KW |
2 | 0:6:0 | PLA |
3 | 0:0:6 | PBAT |
4 | 2:4:0 | K2A4 |
5 | 2:2:2 | K2A2B2 |
6 | 2:0:4 | K2B4 |
7 | 4:2:0 | K4A2 |
8 | 4:1:1 | K4A1B1 |
9 | 4:0:2 | K4B2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Lin, Q.; Wenga, T.; Xue, Y.; Liu, Y.; Tai, L.; Xu, R.; Zhu, W.; de Caprariis, B.; Damizia, M.; et al. Investigation of Pyrolysis Characteristics, Reaction Kinetics, and Product Formation During Co-Pyrolysis of Biodegradable Plastic and Kitchen Waste. Processes 2025, 13, 1405. https://doi.org/10.3390/pr13051405
Zhou Y, Lin Q, Wenga T, Xue Y, Liu Y, Tai L, Xu R, Zhu W, de Caprariis B, Damizia M, et al. Investigation of Pyrolysis Characteristics, Reaction Kinetics, and Product Formation During Co-Pyrolysis of Biodegradable Plastic and Kitchen Waste. Processes. 2025; 13(5):1405. https://doi.org/10.3390/pr13051405
Chicago/Turabian StyleZhou, Yang, Qingru Lin, Terrence Wenga, Yixian Xue, Yuan Liu, Lingyu Tai, Run Xu, Wenhui Zhu, Benedetta de Caprariis, Martina Damizia, and et al. 2025. "Investigation of Pyrolysis Characteristics, Reaction Kinetics, and Product Formation During Co-Pyrolysis of Biodegradable Plastic and Kitchen Waste" Processes 13, no. 5: 1405. https://doi.org/10.3390/pr13051405
APA StyleZhou, Y., Lin, Q., Wenga, T., Xue, Y., Liu, Y., Tai, L., Xu, R., Zhu, W., de Caprariis, B., Damizia, M., & De Filippis, P. (2025). Investigation of Pyrolysis Characteristics, Reaction Kinetics, and Product Formation During Co-Pyrolysis of Biodegradable Plastic and Kitchen Waste. Processes, 13(5), 1405. https://doi.org/10.3390/pr13051405