Ecological Education—Design and Implementation of Burners Operating with Biofuels in Oxy-Thermal Processes for Industrial Furnaces
Abstract
:1. Introduction
2. Methods and Materials
2.1. Methods
2.2. Materials
2.3. Methods for Determining the Technical Performances of the Burner
- CO measuring range (H2 compensated): 0 to +10,000 ppm;
- CO low measuring range (H2 compensated): 0 to 500 ppm;
- NO measuring range: 0 to +4000 ppm;
- NO low measuring range: 0 to 300 ppm;
- NO2 measuring range: 0 to 500 ppm;
- SO2 measuring range: 0 to 50 00 ppm;
- Efficiency measuring range (Eta): 0 to +120%;
- Flue gas loss measuring range: 0 to +99.9%;
- Flue gas dew point measuring range: 0 to +99.9 °Ctd;
- H2S measuring range: 0 to 300 ppm;
- CO2 measuring range (infrared): 0 to +50 vol.%;
- Flow velocity measuring range: 0 to +40 m/s;
- Methane measuring range: 100 to 40,000 ppm;
- Propane measuring range: 100 to 21,000 ppm;
- Butane measuring range: 100 to 18,000 ppm.
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andres, R.J.; Boden, T.A.; Bréon, F.M.; Ciais, P.; Davis, S.; Erickson, D.; Gregg, J.S.; Jacobson, A.; Marland, G.; Miller, J.; et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 2012, 9, 1845–1871. [Google Scholar] [CrossRef]
- Chen, L.; Msigwa, G.; Yang, M.; Osman, A.I.; Fawzy, S.; Rooney, D.W.; Yap, P. Strategies to achieve a carbon neutral society: A review. Environ. Chem. Lett. 2022, 20, 2277–2319. [Google Scholar] [CrossRef] [PubMed]
- Biofuel Basics. Office of Energy Efficiency & Renewable Energy—US Department of Energy. 2023. Available online: https://www.energy.gov/eere/bioenergy/biofuel-basics (accessed on 23 February 2025).
- Sharmila, S.; Jeyanthi, L.R.; Ankush, S.D.R.; Kowsalya, E. Extraction of bioethanol from plant leaves. Pharm. Lett. 2016, 8, 97–99. [Google Scholar]
- Chandrakart, P.; Bisaria, V.S. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit. Rev. Biotechnol. 1998, 18, 295–331. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.; Ko, Y.; Huang, C.; Chiang, H. Effects of blending ethanol and gasoline on the performance of motorcycle catalysts and airborne pollutant emissions. Aerosol Air Qual. Res. 2019, 19, 539. [Google Scholar] [CrossRef]
- U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. Alternative Fuels Data Center. Ethanol Fuel Basics. 2023. Available online: https://afdc.energy.gov/fuels/ethanol-fuel-basics (accessed on 15 February 2025).
- Kohse-Höinghaus, K.; Osswald, P.; Cool, T.A.; Kasper, T.; Hansen, N.; Qi, F.; Westbrook, C.K.; Westmoreland, P.R. Biofuel combustion chemistry: From ethanol to biodiesel. Angew. Chem. Int. Ed. 2010, 49, 3572–3579. [Google Scholar] [CrossRef] [PubMed]
- Nicol, R.W.; Marchand, K.; Lubitz, W.D. Bioconversion of crude glycerol by fungi. Appl. Microbiol. Biotechnol. 2012, 93, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture. US Renewable Diesel Production Growth Drastically Impacts Global Feedstock Trade; International Agricultural Trade Report; US Department of Agriculture: Washington, DC, USA, 2024. [Google Scholar]
- Christoph, R.; Schmidt, B.; Steinberner, U.; Dilla, W.; Karinen, R. Glycerol. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; Volume 17, pp. 67–82. [Google Scholar]
- Cornejo, A.; Barrio, I.; Campoy, M.; Lazaro, J.; Navarrete, B. Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review. Renew. Sustain. Energy Rev. 2017, 79, 1400–1413. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook. Report Extract Data; The International Energy Agency (IEA): Paris, France, 2019. [Google Scholar]
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Caliskan, H.; Yildiz, I.; Mori, K. Chapter 10, Biofuels combustion in internal combustion engines. In Advances in Biofuels Production, Optimization and Applications; Elsevier: Amsterdam, Netherlands, 2024; pp. 185–205. [Google Scholar]
- Ramos, J.L.; Valdivia, M.; Garcia-Lorente, F.; Segura, A. Benefits and perspectives on the use of biofuels. Microb. Biotechnol. 2016, 9, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Axelbaum, R.L. Oxy-combustion of low-volatility liquid fuel with high water content. Energy Fuels 2015, 29, 1137–1142. [Google Scholar] [CrossRef]
- Mihaescu, L.; Cristea, E.D.; Panoiu, N. Swirl Burners: Theory, Construction, Use, 1st ed.; Technical Publishing House: Bucharest, Romania, 1986. [Google Scholar]
- ReportLinker. Global Biofuel Market Overview, October 2024–2028. 2024. Available online: https://www.reportlinker.com/market-report/Bioenergy/132956/Biofuel?term=biofuel%20outlook (accessed on 10 February 2025).
- Paunescu, L.; Surugiu, G.; Volceanov, E. Experimentally use of glycerol as a biofuel in oxy-combustion thermal process. Nonconvent. Technol. Rev. 2022, 26, 22–27. [Google Scholar]
- Elsayed, M.; Eraky, M.; Osman, A.I.; Wang, J.; Farghali, M.; Rashwan, A.; Yacoub, I.; Hanelt, D.; Abomohra, A. Sustainable valorization of waste glycerol into bioethanol and biodiesel through biocircular approaches: A review. Environ. Chem. Lett. 2024, 22, 609–634. [Google Scholar] [CrossRef]
- Froud, D.Y.; Syred, N. Characterisation of industrial swirl burners for efficient combustion of low calorific value gases. In Proceedings of the Institute of Energy Conference Held, London, UK, 4–5 December 1995. [Google Scholar]
- Basu, P.; Kefa, C.; Jestin, L. Swirl burners. In Boilers and Burners; Mechanical Engineering Series; Springer: Boston, MA, USA, 2000; pp. 212–242. [Google Scholar]
- Çengel, Y.A.; Boles, M.A.; Kanoglu, M. Thermodynamics: An Engineering Approach, 10th ed.; McGraw Hill: New York, NY, USA, 2024; ISBN 9781266664489. [Google Scholar]
- eMAG. Available online: https://www.emag.ro/search/etanol (accessed on 5 February 2025).
- Pei, S.K.; Mohamed, K.A.; Dand, A.W.; Mohd, W. Conversion of crude and pure glycerol into derivates: A feasibility evaluation. Renew. Sustain. Energy Rev. 2016, 63, 533–555. [Google Scholar] [CrossRef]
- Britannica. Ethanol—Chemical Compound. Available online: https://www.britannica.com/science/ethanol (accessed on 15 August 2022).
- Moron, W.; Rybak, W. NOx and SO₂ emissions of coals, biomass and their blends under different oxy-fuel atmospheres. Atmos. Environ. 2015, 116, 65–71. [Google Scholar] [CrossRef]
- Bohon, M.D.; Metzger, B.A.; Linak, W.P.; King, C.J.; Roberts, W.L. Glycerol combustion and emissions. Proc. Combust. Inst. 2011, 33, 2717–2724. [Google Scholar] [CrossRef]
- Stainmetz, S.A.; Herrington, J.S.; Winterrowd, C.K.; Roberts, W.L.; Wendt, J.O.L. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions. Proc. Combust. Inst. 2012, 34, 2749–2757. [Google Scholar] [CrossRef]
Parameter | Unit | Value |
---|---|---|
Burner heat power | kW | 51.5 |
Glycerin hourly flow | kg·h−1 | 10.10 |
Ethanol hourly flow | kg·h−1 | 1.15 |
Glycerin and ethanol mix pressure | bar | 0.4 |
Atomizing water flow | kg·h−1 | 79.5 |
Atomizing water pressure | bar | 1.6 |
Oxygen flow | m3·N·h−1 | 11.73 |
Oxygen pressure | mbar | 190 |
Biofuel mix speed in radial orifice | m·s−1 | 177 |
Biofuel spray speed in the annular section | m·s−1 | 210 |
Oxygen speed in the annular section | m·s−1 | 215 |
Waste gas speed at the exit from the burner | m·s−1 | 135 |
Cooling water flow | m3·h−1 | 1.9 |
Cooling water speed | m·s−1 | 1.4 |
Parameter | Thermal Regime | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Biofuel mix hourly flow (m3N·h−1) | 11.33 | 11.25 | 10.97 | 10.00 | 8.97 | 7.95 | 7.01 | 6.08 |
Oxygen flow (m3N·h−1) | 11.94 | 11.73 | 10.92 | 10.20 | 9.58 | 9.00 | 8.41 | 7.80 |
Atomizing water flow (kg·h−1) | 82.71 | 79.50 | 73.11 | 68.01 | 62.70 | 57.68 | 52.51 | 47.40 |
Waste gas pollution composition | ||||||||
NO (mg·(m3·N)−1) | 181 | 178 | 175 | 171 | 168 | 165 | 161 | 154 |
NO2 (mg·(m3·N)−1) | 197 | 193 | 190 | 186 | 184 | 180 | 175 | 169 |
CO (vol. %) | - | - | - | - | - | - | - | - |
Flame temperature (℃) | 1860 | 1850 | 1840 | 1835 | 1830 | 1820 | 1810 | 1790 |
Flame length (mm) | 570 | 560 | 550 | 540 | 520 | 500 | 470 | 450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ioana, A.; Paunescu, L.; Constantin, N.; Semenescu, A.; Canuta, I.L. Ecological Education—Design and Implementation of Burners Operating with Biofuels in Oxy-Thermal Processes for Industrial Furnaces. Processes 2025, 13, 1228. https://doi.org/10.3390/pr13041228
Ioana A, Paunescu L, Constantin N, Semenescu A, Canuta IL. Ecological Education—Design and Implementation of Burners Operating with Biofuels in Oxy-Thermal Processes for Industrial Furnaces. Processes. 2025; 13(4):1228. https://doi.org/10.3390/pr13041228
Chicago/Turabian StyleIoana, Adrian, Lucian Paunescu, Nicolae Constantin, Augustin Semenescu, and Ionela Luminita Canuta (Bucuroiu). 2025. "Ecological Education—Design and Implementation of Burners Operating with Biofuels in Oxy-Thermal Processes for Industrial Furnaces" Processes 13, no. 4: 1228. https://doi.org/10.3390/pr13041228
APA StyleIoana, A., Paunescu, L., Constantin, N., Semenescu, A., & Canuta, I. L. (2025). Ecological Education—Design and Implementation of Burners Operating with Biofuels in Oxy-Thermal Processes for Industrial Furnaces. Processes, 13(4), 1228. https://doi.org/10.3390/pr13041228