Comparative Genomics of Transporter Proteins in Lactic Acid Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acquisition of the LAB Proteome
2.2. Detection of Transport-Protein Homologs
2.3. Identification of Substrate Transporters
3. Results and Discussion
3.1. Overview of Transporter Types
3.2. α-Type Channel Proteins (TC Subclass 1.A)
3.3. β-Type Porins (TC Subclass 1.B)
3.4. Pore-Forming Toxins (TC Subclass 1.C)
3.5. Holins (TC Subclass 1.E)
3.6. Membrane-Bound Channels (TC Subclass 1.I)
3.7. Fungal Septal Pores (TC Subclass 1.Q)
3.8. Bacterial Micro/Nanocompartment Shell Protein Pores (TC Subclass 1.S)
3.9. Phage Portal Protein Subclass (TC Subclass 1.W)
3.10. Porters (Uniporters, Symporters, Antiporters) (TC Subclass 2.A)
3.11. Ion Gradient-Driven Energizers (TC Subclass 2.C)
3.12. P-P Bond Hydrolysis-Driven Transporters (TC Subclass 3.A)
3.13. Decarboxylation-Driven Transporters (TC Subclass 3.B)
3.14. Oxidoreduction-Driven Transporters (TC Subclass 3.D)
3.15. Light Absorption-Driven Transporters (TC Subclass 3.E)
3.16. Phosphotransfer-Driven Group Translocators (PTS) (TC Subclass 4.A)
3.17. Nicotinamide Ribonucleoside Uptake Transporters (TC Subclass 4.B)
3.18. Acyl CoA Ligase-Coupled Transporters (TC Subclass 4.C)
3.19. Polysaccharide Synthase/Exporters (TC Subclass 4.D)
3.20. Choline/Ethanolamine Phosphotransferase 1 (CEPT1) (TC Subclass 4.F)
3.21. Lysyl Phosphatidylglycerol Synthase/Flippases (TC Subclass 4.H)
3.22. Transmembrane 2-Electron Transfer Carriers (TC Subclass 5.A)
3.23. Transmembrane 1-Electron Transfer Carriers (TC Subclass 5.B)
3.24. Auxiliary Transport Proteins (TC Subclass 8.A)
3.25. Recognized Transporters of Unknown Biochemical Mechanisms (TC Subclass 9.A) and Putative Transport Proteins (TC Subclass 9.B)
3.26. Transport Substrates of the Six Strains
3.27. T4SS and T6SS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- George, F.; Daniel, C.; Thomas, M.; Singer, E.; Guilbaud, A.; Tessier, F.J.; Revol-Junelles, A.-M.; Borges, F.; Foligné, B. Occurrence and Dynamism of Lactic Acid Bacteria in Distinct Ecological Niches: A Multifaceted Functional Health Perspective. Front. Microbiol. 2018, 9, 2899. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef] [PubMed]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Weizman, Z.; Asli, G.; Alsheikh, A. Effect of a Probiotic Infant Formula on Infections in Child Care Centers: Comparison of Two Probiotic Agents. Pediatrics 2005, 115, 5–9. [Google Scholar] [CrossRef]
- Vincent, V.; Aghajari, N.; Pollet, N.; Boisson, A.; Boudebbouze, S.; Haser, R.; Maguin, E.; Rhimi, M. The acid tolerant and cold-active β-galactosidase from Lactococcus lactis strain is an attractive biocatalyst for lactose hydrolysis. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2013, 103, 701–712. [Google Scholar] [CrossRef]
- Apostolidis, E.; Kwon, Y.I.; Shinde, R.; Ghaedian, R.; Shetty, K. Inhibition of Helicobacter pylori by Fermented Milk and Soymilk Using Select Lactic Acid Bacteria and Link to Enrichment of Lactic Acid and Phenolic Content. Food Biotechnol. 2011, 25, 58–76. [Google Scholar] [CrossRef]
- Shao, L.; Wu, Z.; Zhang, H.; Chen, W.; Ai, L.; Guo, B. Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr. Polym. 2014, 107, 51–56. [Google Scholar] [CrossRef]
- Lin, T.-H.; Pan, T.-M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. J. Microbiol. Immunol. Infect. 2019, 52, 409–417. [Google Scholar] [CrossRef]
- Bleau, C.; Monges, A.; Rashidan, K.; Laverdure, J.-P.; Lacroix, M.; Van Calsteren, M.-R.; Millette, M.; Savard, R.; Lamontagne, L. Intermediate chains of exopolysaccharides from Lactobacillus rhamnosus RW-9595M increase IL-10 production by macrophages. J. Appl. Microbiol. 2010, 108, 666–675. [Google Scholar] [CrossRef]
- Wilck, N.; Matus, M.G.; Kearney, S.M.; Olesen, S.W.; Forslund, K.; Bartolomaeus, H.; Haase, S.; Mähler, A.; Balogh, A.; Markó, L.; et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017, 551, 585. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Q.; Dang, H.; Liu, X.; Tian, F.; Zhao, J.; Chen, Y.; Zhang, H.; Chen, W. Antidiabetic effect of Lactobacillus casei CCFM0412 on mice with type 2 diabetes induced by a high-fat diet and streptozotocin. Nutrition 2014, 30, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Kobyliak, N.; Falalyeyeva, T.; Bodnar, P.; Beregova, T. Probiotics Supplemented with Omega-3 Fatty Acids are More Effective for Hepatic Steatosis Reduction in an Animal Model of Obesity. Probiotics Antimicrob. Proteins 2016, 9, 123–130. [Google Scholar] [CrossRef] [PubMed]
- del Carmen, S.; LeBlanc, A.d.M.d.; Levit, R.; Azevedo, V.; Langella, P.; Bermúdez-Humarán, L.G.; LeBlanc, J.G. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int. Immunopharmacol. 2017, 42, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 2009, 10, 682–696. [Google Scholar] [CrossRef]
- Saier, M.H., Jr.; Reddy, V.S.; Tsu, B.V.; Ahmed, M.S.; Li, C.; Moreno-Hagelsieb, G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016, 44, D372–D379. [Google Scholar] [CrossRef]
- Azam, M.; Mohsin, M.; Ijaz, H.; Tulain, U.R.; Ashraf, M.A.; Fayyaz, A.; Abadeen, Z.; Kamran, Q. Lactic acid bacteria in traditional fermented Asian foods. Pak. J. Pharm. Sci. 2017, 30, 1803–1814. [Google Scholar]
- Reddy, V.S.; Saier, M.H., Jr. BioV Suite—A collection of programs for the study of transport protein evolution. FEBS J. 2012, 279, 2036–2046. [Google Scholar] [CrossRef]
- Ikeda, M.; Arai, M.; Lao, D.M.; Shimizu, T. Transmembrane topology prediction methods: A re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. Silico Biol. 2002, 2, 19–33. [Google Scholar]
- Zhai, Y.F.; Saier, M.H. A Web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J. Mol. Microbiol. Biotechnol. 2001, 3, 501–502. [Google Scholar]
- Saier, M.H., Jr. A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters. Microbiol. Mol. Biol. Rev. 2000, 64, 354. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H.; Reddy, B.L. Holins in Bacteria, Eukaryotes, and Archaea: Multifunctional Xenologues with Potential Biotechnological and Biomedical Applications. J. Bacteriol. 2015, 197, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Vollan, H.S.; Tannæs, T.; Vriend, G.; Bukholm, G. In Silico Structure and Sequence Analysis of Bacterial Porins and Specific Diffusion Channels for Hydrophilic Molecules: Conservation, Multimericity and Multifunctionality. Int. J. Mol. Sci. 2016, 17, 599. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.L.; Saier, M.H., Jr. Properties and Phylogeny of 76 Families of Bacterial and Eukaryotic Organellar Outer Membrane Pore-Forming Proteins. PLoS ONE 2016, 11, e0152733. [Google Scholar] [CrossRef]
- Reddy, B.L.; Saier, M.H., Jr. Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 2654–2671. [Google Scholar] [CrossRef]
- Saier, M.H., Jr. Microcompartments and Protein Machines in Prokaryotes. J. Mol. Microbiol. Biotechnol. 2013, 23, 243–269. [Google Scholar] [CrossRef]
- Tang, J.; Lander, G.C.; Olia, A.; Li, R.; Casjens, S.; Prevelige, P.; Cingolani, G.; Baker, T.S.; Johnson, J.E. Peering Down the Barrel of a Bacteriophage Portal: The Genome Packaging and Release Valve in P22. Structure 2011, 19, 496–502. [Google Scholar] [CrossRef]
- Boiangiu, C.D.; Jayamani, E.; Brügel, D.; Herrmann, G.; Kim, J.; Forzi, L.; Hedderich, R.; Vgenopoulou, I.; Pierik, A.J.; Steuber, J.; et al. Sodium Ion Pumps and Hydrogen Production in Glutamate Fermenting Anaerobic Bacteria. Microb. Physiol. 2005, 10, 105–119. [Google Scholar] [CrossRef]
- Granjon, T.; Maniti, O.; Auchli, Y.; Dahinden, P.; Buchet, R.; Marcillat, O.; Dimroth, P. Structure-Function Relations in Oxaloacetate Decarboxylase Complex. Fluorescence and Infrared Approaches to Monitor Oxomalonate and Na+ Binding Effect. PLoS ONE 2010, 5, e10935. [Google Scholar] [CrossRef]
- Brooijmans, R.J.W.; Poolman, B.; Schuurman-Wolters, G.K.; de Vos, W.M.; Hugenholtz, J. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J. Bacteriol. 2007, 189, 5203–5209. [Google Scholar] [CrossRef]
- Misra, S.K.; Aké, F.M.D.; Wu, Z.; Milohanic, E.; Cao, T.N.; Cossart, P.; Deutscher, J.; Monnet, V.; Archambaud, C.; Henry, C. Quantitative Proteome Analyses Identify PrfA-Responsive Proteins and Phosphoproteins in Listeria monocytogenes. J. Proteome Res. 2014, 13, 6046–6057. [Google Scholar] [CrossRef] [PubMed]
- Buyuktimkin, B.; Saier, M.H. Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species. Microb. Pathog. 2015, 88, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Stinson, B.; Thiyagarajan, N.; Lizotte-Waniewski, M.; Brew, K.; Acharya, K.R. Structures of Complexes of a Metal-independent Glycosyltransferase GT6 from Bacteroides ovatus with UDP-N-Acetylgalactosamine (UDP-GalNAc) and Its Hydrolysis Products. J. Biol. Chem. 2014, 289, 8041–8050. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.; Boiangiu, C.; Moses, S.; Bremer, E. Responses of Bacillus subtilis to Hypotonic Challenges: Physiological Contributions of Mechanosensitive Channels to Cellular Survival. Appl. Environ. Microbiol. 2008, 74, 2454–2460. [Google Scholar] [CrossRef]
- Biggin, P.C.; Sansom, M.S. Mechanosensitive Channels: Stress Relief. Curr. Biol. 2003, 13, R183–R185. [Google Scholar] [CrossRef]
- Stockbridge, R.B.; Robertson, J.L.; Kolmakova-Partensky, L.; Miller, C.; States, U. A family of fluoride-specific ion channels with dual-topology architecture. eLife 2013, 2, e01084. [Google Scholar] [CrossRef]
- Cang, C.; Aranda, K.; Seo, Y.-J.; Gasnier, B.; Ren, D. TMEM175 Is an Organelle K+ Channel Regulating Lysosomal Function. Cell 2015, 162, 1101–1112. [Google Scholar] [CrossRef]
- Krüger, V.; Becker, T.; Becker, L.; Montilla-Martinez, M.; Ellenrieder, L.; Vögtle, F.-N.; Meyer, H.E.; Ryan, M.T.; Wiedemann, N.; Warscheid, B.; et al. Identification of new channels by systematic analysis of the mitochondrial outer membrane. J. Cell Biol. 2017, 216, 3485–3495. [Google Scholar] [CrossRef]
- Checchetto, V.; Szabo, I. Novel Channels of the Outer Membrane of Mitochondria: Recent Discoveries Change Our View. BioEssays 2018, 40, e1700232. [Google Scholar] [CrossRef]
- Koliński, T.; Marek-Trzonkowska, N.; Trzonkowski, P.; Siebert, J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Central Eur. J. Immunol. 2016, 3, 317–323. [Google Scholar] [CrossRef]
- Polissi, A.; Sperandeo, P. The Lipopolysaccharide Export Pathway in Escherichia coli: Structure, Organization and Regulated Assembly of the Lpt Machinery. Mar. Drugs 2014, 12, 1023–1042. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Singh, P. Role of TlyA in the Biology of Uncultivable Mycobacteria. Comb. Chem. High Throughput Screen. 2022, 25, 1587–1594. [Google Scholar] [CrossRef] [PubMed]
- Oscáriz, J.C.; Cintas, L.; Holo, H.; Lasa, Ã.; Nes, I.F.; Pisabarro, A.G. Purification and sequencing of cerein 7B, a novel bacteriocin produced by Bacillus cereus Bc7. FEMS Microbiol. Lett. 2006, 254, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bie’nkowska-Szewczyk, K.; Lipi’nska, B.; Taylor, A. The R gene product of bacteriophage λ is the murein transglycosylase. Mol. Genet. Genom. 1981, 184, 111–114. [Google Scholar] [CrossRef]
- Veenhoff, L.M.; Heuberger, E.H.; Poolman, B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J. 2001, 20, 3056–3062. [Google Scholar] [CrossRef]
- Camarasa, C.; Bidard, F.; Bony, M.; Barre, P.; Dequin, S. Characterization of Schizosaccharomyces pombe Malate Permease by Expression in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2001, 67, 4144–4151. [Google Scholar] [CrossRef]
- Gournas, C.; Papageorgiou, I.; Diallinas, G. The nucleobase–ascorbate transporter (NAT) family: Genomics, evolution, structure–function relationships and physiological role. Mol. Biosyst. 2008, 4, 404–416. [Google Scholar] [CrossRef]
- Kutsukake, K.; Okada, T.; Yokoseki, T.; Iino, T. Sequence analysis of the flgA gene and its adjacent region in Salmonella typhimurium, and identification of another flagellar gene, flgN. Gene 1994, 143, 49–54. [Google Scholar]
- Rein, U.; Gueta, R.; Denger, K.; Ruff, J.; Hollemeyer, K.; Cook, A.M. Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 2005, 151, 737–747. [Google Scholar] [CrossRef]
- Yen, M.-R.; Tseng, Y.-H.; Nguyen, E.H.; Wu, L.-F.; Saier, M.H. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch. Microbiol. 2002, 177, 441–450. [Google Scholar] [CrossRef]
- Saurin, W.; Hofnung, M.; Dassa, E. Getting In or Out: Early Segregation Between Importers and Exporters in the Evolution of ATP-Binding Cassette (ABC) Transporters. J. Mol. Evol. 1999, 48, 22–41. [Google Scholar] [CrossRef] [PubMed]
- Wortham, B.W.; Patel, C.N.; Oliveira, M.A. Polyamines in bacteria: Pleiotropic effects yet specific mechanisms. Adv. Exp. Med. Biol. 2007, 603, 106–115. [Google Scholar] [PubMed]
- Dyla, M.; Kjærgaard, M.; Poulsen, H.; Nissen, P. Structure and Mechanism of P-Type ATPase Ion Pumps. Annu. Rev. Biochem. 2020, 89, 583–603. [Google Scholar] [CrossRef]
- Chan, H.; Babayan, V.; Blyumin, E.; Gandhi, C.; Hak, K.; Harake, D.; Kumar, K.; Lee, P.; Li, T.T.; Liu, H.Y.; et al. The P-Type ATPase Superfamily. Microb. Physiol. 2010, 19, 5–104. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr. Active transport in communication, protection and nutrition. J. Mol. Microbiol. Biotechnol. 2007, 12, 161–164. [Google Scholar] [CrossRef]
- Zhang, Q.; Padayatti, P.S.; Leung, J.H. Proton-Translocating Nicotinamide Nucleotide Transhydrogenase: A Structural Perspective. Front. Physiol. 2017, 8, 1089. [Google Scholar] [CrossRef]
- Tian, Y.; Gao, S.; Nagel, G. In Vivo and In Vitro Characterization of Cyclase and Phosphodiesterase Rhodopsins. Methods Mol. Biol. 2022, 2501, 325–338. [Google Scholar] [CrossRef]
- Zhang, Z.G.; Aboulwafa, M.; Smith, M.H.; Saier, M.H. The ascorbate transporter of Escherichia coli. J. Bacteriol. 2003, 185, 2243–2250. [Google Scholar] [CrossRef]
- Rodionov, D.A.; Gelfand, M.S. Identification of a bacterial regulatory system for ribonucleotide reductases by phylogenetic profiling. Trends Genet. 2005, 21, 385–389. [Google Scholar] [CrossRef]
- Henneberry, A.L.; Wistow, G.; McMaster, C.R. Cloning, Genomic Organization, and Characterization of a Human Cholinephosphotransferase. J. Biol. Chem. 2000, 275, 29808–29815. [Google Scholar] [CrossRef]
- Ernst, C.M.; Peschel, A. Broad--spectrum antimicrobial peptide resistance by MprF--mediated aminoacylation and flipping of phospholipids. Mol. Microbiol. 2011, 80, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.D.; Wu, H.C.; Rick, P.D. A Salmonella typhimurium genetic locus which confers copper tolerance on copper-sensitive mutants of Escherichia coli. J. Bacteriol. 1997, 179, 4977–4984. [Google Scholar] [CrossRef] [PubMed]
- Kimball, R.A.; Saier, M.H., Jr. Voltage-gated H + channels associated with human phagocyte superoxide-generating NADPH oxidases: Sequence comparisons, structural predictions, and phylogenetic analyses. Mol. Membr. Biol. 2002, 19, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Ohanyan, V.; Raph, S.M.; Dwenger, M.M.; Hu, X.; Pucci, T.; Mack, G.; Moore, J.B.; Chilian, W.M.; Bhatnagar, A.; Nystoriak, M.A. Myocardial Blood Flow Control by Oxygen Sensing Vascular Kvβ Proteins. Circ. Res. 2021, 128, 738–751. [Google Scholar] [CrossRef]
- Chamberlain, N.B.; Dimond, Z.; Hackstadt, T. Chlamydia trachomatis suppresses host cell store-operated Ca2+ entry and inhibits NFAT/calcineurin signaling. Sci. Rep. 2022, 12, 21406. [Google Scholar] [CrossRef]
- Inagaki, N.; Chihara, K.; Arimura, N.; Ménager, C.; Kawano, Y.; Matsuo, N.; Nishimura, T.; Amano, M.; Kaibuchi, K. CRMP-2 induces axons in cultured hippocampal neurons. Nat. Neurosci. 2001, 4, 781–782. [Google Scholar] [CrossRef]
- Cole, A.R.; Knebel, A.; Morrice, N.A.; Robertson, L.A.; Irving, A.J.; Connolly, C.N.; Sutherland, C. GSK-3 Phosphorylation of the Alzheimer Epitope within Collapsin Response Mediator Proteins Regulates Axon Elongation in Primary Neurons. J. Biol. Chem. 2004, 279, 50176–50180. [Google Scholar] [CrossRef]
- Lee, J.; Xu, Y.; Saidi, L.; Xu, M.; Zinsmaier, K.; Ye, Y. Abnormal triaging of misfolded proteins by adult neuronal ceroid lipofuscinosis-associated DNAJC5/CSPα mutants causes lipofuscin accumulation. Autophagy 2022, 19, 204–223. [Google Scholar] [CrossRef]
- Franca, R.; Veljkovic, E.; Walter, S.; Wagner, C.A.; Verrey, F. Heterodimeric amino acid transporter glycoprotein domains determining functional subunit association. Biochem. J. 2005, 388, 435–443. [Google Scholar] [CrossRef]
- Pandey, B.; Aarthy, M.; Sharma, M.; Singh, S.K.; Kumar, V. Computational analysis identifies druggable mutations in human rBAT mediated Cystinuria. J. Biomol. Struct. Dyn. 2021, 39, 5058–5067. [Google Scholar] [CrossRef]
- Rodionov, D.A.; Hebbeln, P.; Eudes, A.; ter Beek, J.; Rodionova, I.A.; Erkens, G.B.; Slotboom, D.J.; Gelfand, M.S.; Osterman, A.L.; Hanson, A.D.; et al. A Novel Class of Modular Transporters for Vitamins in Prokaryotes. J. Bacteriol. 2009, 191, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Guilfoyle, A.; Maher, M.J.; Rapp, M.; Clarke, R.; Harrop, S.; Jormakka, M. Structural basis of GDP release and gating in G protein coupled Fe2+ transport. EMBO J. 2009, 28, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Sato, S.; Kotani, H.; Tanaka, A.; Asamizu, E.; Nakamura, Y.; Miyajima, N.; Hirosawa, M.; Sugiura, M.; Sasamoto, S.; et al. Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions (supplement). DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 1996, 3, 185–209. [Google Scholar] [CrossRef]
- Doerrler, W.T.; Sikdar, R.; Kumar, S.; Boughner, L.A. New Functions for the Ancient DedA Membrane Protein Family. J. Bacteriol. 2013, 195, 3–11. [Google Scholar] [CrossRef]
- Llosa, M.; O’Callaghan, D. Euroconference on the Biology of Type IV Secretion Processes: Bacterial gates into the outer world. Mol. Microbiol. 2004, 53, 1–8. [Google Scholar] [CrossRef]
- Bianco, M.; Jacobs, M.; Salinas, S.; Salvay, A.; Ielmini, M.; Ielpi, L. Biophysical characterization of the outer membrane polysaccharide export protein and the polysaccharide co-polymerase protein from Xanthomonas campestris. Protein Expr. Purif. 2014, 101, 42–53. [Google Scholar] [CrossRef]
- Anderluh, G.; Lakey, J.H. Disparate proteins use similar architectures to damage membranes. Trends Biochem. Sci. 2008, 33, 482–490. [Google Scholar] [CrossRef]
- Rosado, C.J.; Buckle, A.M.; Law, R.H.P.; Butcher, R.E.; Kan, W.-T.; Bird, C.H.; Ung, K.; Browne, K.A.; Baran, K.; Bashtannyk-Puhalovich, T.A.; et al. A Common Fold Mediates Vertebrate Defense and Bacterial Attack. Science 2007, 317, 1548–1551. [Google Scholar] [CrossRef]
- Vieira, J.M.B.; Vallim, D.C.; Ferreira, E.O.; Seabra, S.H.; Vommaro, R.C.; Avelar, K.E.; De Souza, W.; Ferreira, M.C.S.; Domingues, R.M. Bacteroides fragilis interferes with iNOS activity and leads to pore formation in macrophage surface. Biochem. Biophys. Res. Commun. 2005, 326, 607–613. [Google Scholar] [CrossRef]
- Koskiniemi, S.; Lamoureux, J.G.; Nikolakakis, K.C.; de Roodenbeke, C.T.; Kaplan, M.D.; Low, D.A.; Hayes, C.S. Rhs proteins from diverse bacteria mediate intercellular competition. Proc. Natl. Acad. Sci. USA 2013, 110, 7032–7037. [Google Scholar] [CrossRef]
- Russell, A.B.; Peterson, S.B.; Mougous, J.D. Type VI secretion system effectors: Poisons with a purpose. Nat. Rev. Microbiol. 2014, 12, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Gottesman, M.M.; Pastan, I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 1993, 62, 385–427. [Google Scholar] [CrossRef]
- Schinkel, A.H. The physiological function of drug-transporting P-glycoproteins. Semin. Cancer Biol. 1997, 8, 161–170. [Google Scholar] [CrossRef] [PubMed]
Genus | Bacteria | Genome Accession Number | Genome Size (Mbp) | Total Number of Proteins | Number of Transporters | Proportion of Transporters (%) |
---|---|---|---|---|---|---|
Lactobacillus | Lactobacillus delbrueckii | GCA_001888925.1 | 1.9 | 1630 | 447 | 27.4 |
Streptococcus | Stretpococcus thermophilus | GCA_903886475.1 | 1.8 | 2009 | 446 | 22.2 |
Leuconostoc | Leuconostoc lactis | GCA_007954605.1 | 1.8 | 1703 | 359 | 21.1 |
Pediococcus | Pediococcus acidilactici | GCA_013127755.1 | 2 | 1901 | 525 | 27.6 |
Lactococcus | Lactococcus garvieae | GCA_016026695.1 | 2.1 | 1926 | 516 | 26.8 |
Bifidobacterium | Bifidobacterium lactis | GCA_000022965.1 | 1.9 | 1518 | 414 | 27.3 |
TC Subclass and Description | Number of Transporters | % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LD | ST | LL | PA | LG | BL | LD | ST | LL | PA | LG | BL | |
1.A: α-Type channels | 15 | 16 | 13 | 27 | 25 | 23 | 3.4 | 3.6 | 3.6 | 5.1 | 4.8 | 5.6 |
1.B: β-Barrel porins | 3 | 2 | 2 | 3 | 2 | 1 | 0.7 | 0.4 | 0.6 | 0.6 | 0.4 | 0.2 |
1.C: Pore-forming toxins (proteins and peptides) | 7 | 8 | 6 | 8 | 6 | 6 | 1.6 | 1.8 | 1.7 | 1.5 | 1.2 | 1.4 |
1.E: Holins | 0 | 2 | 2 | 7 | 8 | 3 | 0 | 0.4 | 0.6 | 1.3 | 1.6 | 0.7 |
1.I: Membrane-bounded channels | 1 | 1 | 2 | 1 | 3 | 2 | 0.2 | 0.2 | 0.6 | 0.2 | 0.6 | 0.5 |
1.Q: Fungal septal pores | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0.7 |
1.S: Bacterial micro/nanocompartment shell protein pores | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0.6 | 0 | 0 |
1.W: Phage portal protein subclass | 0 | 0 | 2 | 1 | 0 | 1 | 0 | 0 | 0.6 | 0.2 | 0 | 0.2 |
2.A: Porters (uniporters, symporters, antiporters) | 77 | 88 | 73 | 122 | 99 | 74 | 17.2 | 19.7 | 20.3 | 23.2 | 19.2 | 17.9 |
2.C: Ion gradient-driven energizers | 1 | 0 | 0 | 2 | 2 | 1 | 0.2 | 0 | 0 | 0.4 | 0.4 | 0.2 |
3.A: P-P bond hydrolysis-driven transporters | 205 | 222 | 149 | 172 | 185 | 181 | 45.9 | 49.8 | 41.5 | 32.8 | 35.9 | 43.7 |
3.B: Decarboxylation-driven transporters | 3 | 3 | 3 | 3 | 3 | 1 | 0.7 | 0.7 | 0.8 | 0.6 | 0.6 | 0.2 |
3.D: Oxidoreduction-driven transporters | 5 | 3 | 5 | 6 | 11 | 8 | 1.1 | 0.7 | 1.4 | 1.1 | 2.1 | 1.9 |
3.E: Light absorption-driven transporters | 4 | 5 | 3 | 5 | 4 | 3 | 0.9 | 1.1 | 0.8 | 1 | 0.8 | 0.7 |
4.A: Phosphotransfer-driven group translocators (PTS) | 19 | 9 | 8 | 49 | 30 | 0 | 4.3 | 2 | 2.2 | 9.3 | 5.9 | 0 |
4.B: Nicotinamide ribonucleoside uptake transporters | 0 | 1 | 1 | 1 | 2 | 0 | 0 | 0.2 | 0.3 | 0.2 | 0.4 | 0 |
4.C: Acyl CoA ligase-coupled transporters | 5 | 4 | 6 | 4 | 8 | 7 | 1.1 | 0.9 | 1.7 | 0.8 | 1.6 | 1.7 |
4.D: Polysaccharide synthase/exporters | 4 | 1 | 2 | 6 | 4 | 4 | 0.9 | 0.2 | 0.6 | 1.1 | 0.8 | 1 |
4.F: Choline/Ethanolamine phosphotransferase 1 (CEPT1) | 1 | 1 | 1 | 1 | 1 | 3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.2 | 0.7 |
4.H: Lysylphosphatidylglycerol synthase/flippases | 0 | 1 | 1 | 0 | 1 | 2 | 0 | 0.2 | 0.3 | 0 | 0.2 | 0.5 |
5.A: Transmembrane 2-electron transfer carriers | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 |
5.B: Transmembrane 1-electron transfer carriers | 2 | 2 | 4 | 1 | 12 | 2 | 0.4 | 0.4 | 1.1 | 0.2 | 2.3 | 0.5 |
8.A: Auxiliary transport proteins | 27 | 15 | 18 | 35 | 34 | 29 | 6 | 3.4 | 5 | 6.7 | 6.6 | 7 |
9.A: Recognized transporters of unknown biochemical mechanism | 8 | 6 | 5 | 3 | 10 | 5 | 1.8 | 1.3 | 1.4 | 0.6 | 1.9 | 1.2 |
9.B: Putative transport proteins | 60 | 56 | 53 | 64 | 66 | 55 | 13.4 | 12.6 | 14.8 | 12.2 | 12.8 | 13.3 |
Total | 447 | 446 | 359 | 525 | 516 | 414 | 100 | 100 | 100 | 100 | 100 | 100 |
TCID | Family | LD | ST | LL | PA | LG | BL |
---|---|---|---|---|---|---|---|
1.C.39 | The Membrane Attack Complex/Perforin (MACPF) | 1 | 1 | 0 | 1 | 1 | 0 |
1.C.57 | The Clostridial Cytotoxin (CCT) | 0 | 0 | 1 | 0 | 0 | 0 |
1.C.82 | HP2-20 | 1 | 1 | 1 | 1 | 1 | 1 |
1.C.95 | ESAT-6 | 0 | 0 | 0 | 0 | 0 | 1 |
1.C.102 | Cerein | 0 | 2 | 0 | 0 | 0 | 0 |
1.C.105 | The Bacillus thuringiensis Vegetative Insecticidal Protein-3 (Vip3) | 2 | 2 | 2 | 4 | 2 | 0 |
1.C.109 | TlyA | 1 | 1 | 1 | 1 | 1 | 1 |
1.C.113 | Hly III | 1 | 1 | 1 | 1 | 1 | 2 |
1.C.126 | HlyC | 1 | 0 | 0 | 0 | 0 | 1 |
Components | LD | ST | LL | PA | LG | BL |
---|---|---|---|---|---|---|
SecG | Y | Y | Y | Y | Y | Y |
SecY | Y | Y | Y | Y | Y | Y |
SecA | Y | Y | Y | Y | Y | Y |
Ffh | Y | Y | Y | Y | Y | - |
FtsY | Y | Y | Y | Y | Y | Y |
SecE | Y | - | Y | Y | - | Y |
Family | TCID | LD | ST | LL | PA | LG | BL |
---|---|---|---|---|---|---|---|
T4SS | 3.A.7.7 | 2 | 1 | 1 | 1 | 1 | 1 |
3.A.7.11 | 1 | 0 | 1 | 0 | 0 | 2 | |
3.A.7.13 | 0 | 0 | 0 | 1 | 1 | 0 | |
3.A.7.14 | 6 | 7 | 5 | 6 | 17 | 4 | |
3.A.7.16 | 1 | 1 | 1 | 1 | 1 | 0 | |
3.A.7.18 | 0 | 0 | 0 | 0 | 0 | 1 | |
3.A.7.19 | 1 | 2 | 4 | 5 | 5 | 1 | |
T6SS | 3.A.23.1 | 0 | 0 | 0 | 2 | 0 | 0 |
3.A.23.6 | 3 | 3 | 2 | 3 | 4 | 3 |
Substrate Category | Transport Proteins | |||||
---|---|---|---|---|---|---|
LD | ST | LL | PA | LG | BL | |
Anions | 23 | 23 | 20 | 18 | 14 | 23 |
Cations | 55 | 70 | 44 | 91 | 93 | 74 |
Electrons | 7 | 4 | 5 | 3 | 13 | 2 |
Water | 2 | 1 | 1 | 1 | 3 | 2 |
Amines | 5 | 16 | 8 | 11 | 5 | 3 |
Amino acids | 67 | 64 | 47 | 63 | 45 | 40 |
Carboxylates | 9 | 5 | 7 | 18 | 10 | 8 |
Non-selective | 7 | 4 | 4 | 6 | 5 | 10 |
Drugs | 41 | 46 | 34 | 49 | 42 | 33 |
Nucleobases, nucleosides, nucleotides | 13 | 8 | 16 | 8 | 22 | 6 |
Proteins, peptides | 69 | 73 | 53 | 68 | 54 | 53 |
Siderophores | 8 | 14 | 2 | 10 | 18 | 5 |
Sugars | 24 | 16 | 16 | 39 | 30 | 27 |
Sugar derivatives | 30 | 15 | 7 | 24 | 12 | 7 |
Lipids | 10 | 11 | 11 | 14 | 14 | 12 |
Sugar alcohols | 0 | 1 | 2 | 4 | 2 | 0 |
Vitamins | 16 | 10 | 12 | 15 | 16 | 10 |
Unknown | 61 | 65 | 60 | 83 | 118 | 99 |
Total | 447 | 446 | 349 | 525 | 516 | 414 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, Z.; Xu, M.; Hong, W.; Zhang, Z.; Yao, X.; Zhou, Z.; Han, Y. Comparative Genomics of Transporter Proteins in Lactic Acid Bacteria. Processes 2025, 13, 1204. https://doi.org/10.3390/pr13041204
Yi Z, Xu M, Hong W, Zhang Z, Yao X, Zhou Z, Han Y. Comparative Genomics of Transporter Proteins in Lactic Acid Bacteria. Processes. 2025; 13(4):1204. https://doi.org/10.3390/pr13041204
Chicago/Turabian StyleYi, Zhongkai, Min Xu, Wanjing Hong, Zhirong Zhang, Xu Yao, Zhijiang Zhou, and Ye Han. 2025. "Comparative Genomics of Transporter Proteins in Lactic Acid Bacteria" Processes 13, no. 4: 1204. https://doi.org/10.3390/pr13041204
APA StyleYi, Z., Xu, M., Hong, W., Zhang, Z., Yao, X., Zhou, Z., & Han, Y. (2025). Comparative Genomics of Transporter Proteins in Lactic Acid Bacteria. Processes, 13(4), 1204. https://doi.org/10.3390/pr13041204