Process Design and Modeling of Low-Carbon Energy Systems
1. Renewable Energy Prediction and Optimization
2. Carbon Trading and Multi-Energy System
3. Thermal Transmission and Nanomaterials
4. Conclusions and Future Directions
- (1)
- Cross-Sector Integration: Deeper coupling of electricity, hydrogen, and thermal networks to maximize resource synergy;
- (2)
- Scalability: Translating laboratory-scale innovations (e.g., nanomaterials) into industrial applications;
- (3)
- Policy Alignment: Developing adaptive regulatory frameworks to incentivize low-carbon investments and community participation.
Conflicts of Interest
References
- Saraji, M.K.; Streimikiene, D. Challenges to the Low Carbon Energy Transition: A Systematic Literature Review and Research Agenda. Energy Strategy Rev. 2023, 49, 101163. [Google Scholar]
- Belaid, F.; Al-Sarihi, A.; Al-Mestneer, R. Balancing climate mitigation and energy security goals amid converging global energy crises: The role of green investments. Renew. Energy 2023, 205, 534–542. [Google Scholar]
- Wu, C.; Gu, W.; Jiang, P.; Li, Z.; Cai, H.; Li, B. Combined Economic Dispatch Considering the Time-Delay of District Heating Network and Multi-Regional Indoor Temperature Control. IEEE Trans. Sustain. Energy 2018, 9, 118–127. [Google Scholar]
- Shi, Y.; Li, W.; Fan, G.; Zhang, L.; Yang, F. Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation. Energy Eng. 2024, 121, 461–482. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Li, J.; Zhang, Y.; Pan, P.; Bian, J.; Yu, Z. Bi-level optimization model of hydrogen-blended gas units and multi-type energy storage system considering low-carbon operation. Energy 2025, 314, 134162. [Google Scholar] [CrossRef]
- Qiu, M.; Su, H.; Chen, M.; Ming, Z.; Yang, L.T. Balance of security strength and energy for a PMU monitoring system in smart grid. IEEE Commun. Mag. 2012, 50, 142–149. [Google Scholar]
- Zhu, M.; Xu, C.; Dong, S.; Tang, K.; Gu, C. An Integrated Multi-Energy Flow Calculation Method for Electricity-Gas-Thermal Integrated Energy Systems. Prot. Control Mod. Power Syst. 2021, 6, 1–12. [Google Scholar] [CrossRef]
- Ren, Y.; Suganthan, P.N.; Srikanth, N. Ensemble Methods for Wind and Solar Power Forecasting-A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2015, 50, 82–91. [Google Scholar] [CrossRef]
- Lei, J.; Ma, H.; Qin, G.; Guo, Z.; Xia, P.; Hao, C. A Comprehensive Review on the Power Supply System of Hydrogen Production Electrolyzers for Future Integrated Energy Systems. Energies 2024, 17, 935. [Google Scholar] [CrossRef]
- Lockwood, T. A Compararitive Review of Next-generation Carbon Capture Technologies for Coal-fired Power Plant. Energy Procedia 2017, 114, 2658–2670. [Google Scholar]
- Wu, C.; Gu, W.; Yi, Z. Competitive Equilibrium Analysis for Renewables Integration in Dynamic Combined Heat and Power Trading Market. IEEE Trans. Power Syst. 2024, 39, 53–65. [Google Scholar]
- Liu, L.; Li, Y. Research on a Photovoltaic Power Prediction Model Based on an IAO-LSTM Optimization Algorithm. Processes 2023, 11, 1957. [Google Scholar] [CrossRef]
- Chen, X.; Ge, Y.; Zhang, Y.; Qian, T. Leveraging Transformer-Based Non-Parametric Probabilistic Prediction Model for Distributed Energy Storage System Dispatch. Processes 2023, 12, 779. [Google Scholar]
- Fan, J.X.; Li, S.; Liu, S.J.; Deng, X.Q.; Zhu, X.P. Maximum Power Point Tracking Constraint Conditions and Two Control Methods for Isolated Photovoltaic Systems. Processes 2023, 11, 3245. [Google Scholar] [CrossRef]
- Yang, J.; Pang, F.; Xiang, H.; Li, D.; Gu, B. A Novel Hybrid Deep Learning Model for Forecasting Ultra-Short-Term Time Series Wind Speeds for Wind Turbines. Processes 2023, 11, 3247. [Google Scholar] [CrossRef]
- Jing, X.; Ji, L.; Xie, H. Bi-Level Inverse Robust Optimization Dispatch of Wind Power and Pumped Storage Hydropower Complementary Systems. Processes 2023, 12, 729. [Google Scholar]
- Yang, C.; Zhang, J.; Jiang, W.; Wang, L.; Zhang, H.; Yi, Z.; Lin, F. Reinforcement Learning and Stochastic Optimization with Deep Learning-Based Forecasting on Power Grid Scheduling. Processes 2023, 11, 3188. [Google Scholar] [CrossRef]
- Yi, Z.K.; Xu, Y.; Wu, C. Model-Free Economic Dispatch for Virtual Power Plants: An Adversarial Safe Reinforcement Learning Approach. IEEE Trans. Power Syst. 2023, 39, 3153–3168. [Google Scholar]
- Zhu, M.; Sun, Y.; Lu, Y.; Sang, L.; Yi, Z.K.; Xu, Y.; Ma, K. The Value of Energy Storage in Facilitating Renewables: A Northeast Area Analysis. Processes 2023, 11, 3449. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.H.; Liu, J.H.; Yin, S.; Chen, X.; She, L.H.; Fu, Z.X.; Liu, H.M. Distributed Shared Energy Storage Double-Layer Optimal Configuration for Source-Grid Co-Optimization. Processes 2023, 11, 2194. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, Y.; Yang, C.; Zhu, Q.; Zhou, L.; Dong, X.F.; Li, J.T.; Zhu, J.P. Optimal Allocation Method of Circuit Breakers and Switches in Distribution Networks Considering Load Level Variation. Processes 2023, 11, 2235. [Google Scholar] [CrossRef]
- Zhou, Y. Worldwide Carbon Neutrality Transition? Energy Efficiency, Renewable, Carbon Trading and Advanced Energy Policies. Energy Rev. 2023, 2, 100026. [Google Scholar]
- Wang, G.; Zhang, Z.; Lin, J. Multi-energy complementary power systems based on solar energy: A review. Renew. Sustain. Energy Rev. 2024, 199, 114464. [Google Scholar] [CrossRef]
- Santos, J.J.C.S.; Faria, P.R.d.; Belisario, I.C.; Dos Santos, R.G.; Barone, M.A. Thermoeconomic Modeling as a Tool for Internalizing Carbon Credits into Multiproduct System Analysis. Processes 2024, 12, 705. [Google Scholar] [CrossRef]
- Pan, W.; Li, Y.; Guo, Z.; Zhang, Y. Interdependent Expansion Planning for Resilient Electricity and Natural Gas Networks. Processes 2024, 12, 775. [Google Scholar] [CrossRef]
- Yang, D.; Wang, S.; Wang, W.; Zhang, W.; Yu, P.; Kong, W. Regional Operation of Electricity-Hythane Integrated Energy System Considering Coupled Energy and Carbon Trading. Processes 2024, 12, 2245. [Google Scholar] [CrossRef]
- She, X.; Cong, L.; Nie, B.; Leng, G.; Peng, H.; Chen, Y.; Zhang, X.; Wen, T.; Yang, H.; Luo, Y. Energy-efficient and-economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review. Appl. Energy 2018, 232, 157–186. [Google Scholar] [CrossRef]
- Vakiloroaya, V.; Samali, B.; Pishghadam, K. A comparative study on the effect of different strategies for energy saving of air-cooled vapor compression air conditioning systems. Energy Build. 2014, 74, 163–172. [Google Scholar] [CrossRef]
- Ren, S.D.; Jia, X.H.; Zhang, J.T.; Xin, D.B.; Peng, X.Y. Analysis of Heat Transfer of the Gas Head Cover of Diaphragm Compressors for Hydrogen Refueling Stations. Processes 2024, 11, 2274. [Google Scholar] [CrossRef]
- He, S.; Liu, H.Y.; Zhang, Y.; Liu, H.L.; Chen, W. Investigation of the Interface Effects and Frosting Mechanism of Nanoporous Alumina Sheets. Processes 2023, 11, 2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Yi, Z.; Lin, C. Process Design and Modeling of Low-Carbon Energy Systems. Processes 2025, 13, 1119. https://doi.org/10.3390/pr13041119
Wu C, Yi Z, Lin C. Process Design and Modeling of Low-Carbon Energy Systems. Processes. 2025; 13(4):1119. https://doi.org/10.3390/pr13041119
Chicago/Turabian StyleWu, Chenyu, Zhongkai Yi, and Chenhui Lin. 2025. "Process Design and Modeling of Low-Carbon Energy Systems" Processes 13, no. 4: 1119. https://doi.org/10.3390/pr13041119
APA StyleWu, C., Yi, Z., & Lin, C. (2025). Process Design and Modeling of Low-Carbon Energy Systems. Processes, 13(4), 1119. https://doi.org/10.3390/pr13041119