Optimized Extraction of Saponins from Camelia Oleifera Using Ultrasonic-Assisted Enzymes and Their Surface Performance Evaluation
Abstract
:1. Overview
2. Materials and Methods
2.1. Materials
2.2. Instruments and Apparatus
2.3. Pre-Treatment of Camellia Oleifera Cakes
2.4. Ultrasonic Combined with Enzyme Extraction
2.5. Determination of Saponin
2.6. FT-IR Analysis
2.7. Single Factor Experiment
2.8. Experimental Design of RSM
2.9. Purification of Tea Saponin
2.10. Measurement of Surface Tension and Experiment of Influencing Factors
2.11. Foam Properties of Saponin
2.12. Synergistic Effect of Saponin and Rhamnolipid Compounding System
3. Results and Discussion
3.1. Single-Factor Experimental Analysis
3.2. RSM (Box–Behnken) Optimization
3.3. Analysis of Infrared Spectra
3.4. Measurement of Surface Tension at Different Temperature
3.5. Effect of pH on Surface Tension
3.6. Effect of Salt Ion Concentration on Surface Tension
3.7. Effect of Water Hardness on Surface Tension
3.8. Foam Properties of Saponin
3.9. Composite Effects of Camellia Oleifera Saponin and Rhamnolipid Surfactants
3.10. Determination of Foam Properties of Saponin Solution at Different Concentrations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Zhu, F.; Chen, B.; Su, E.; Chen, Y.; Cao, F. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review. Food Res. Int. 2022, 156, 111159. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wu, Y.; Gao, Y.; Jiang, Z.; Zhao, Z.; Zeng, W.; Xie, M.; Liu, S.; Liu, R.; Chao, Y.; et al. Valorization of Camellia oleifera oil processing byproducts to value-added chemicals and biobased materials: A critical review. Green Energy Environ. 2024, 9, 28–53. [Google Scholar] [CrossRef]
- Lei-Ting, M.; Ya-Hui, Q.; Zhen-Dong, S.; Qiang, Z.; Feng, Y. Extraction of tea saponin and surface performance of its solutions. J. Tianjin Polytech. Univ. 2016, 35, 32–36. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Qin, P.; Shen, J.; Wei, J.; Chen, Y. A critical review of the bioactive ingredients and biological functions of Camellia oleifera oil. Curr. Res. Food Sci. 2024, 8, 100753. [Google Scholar] [CrossRef]
- An, L.; Wang, G.; Jia, H.; Liu, C.; Sui, W.; Si, C. Fractionation of Enzymatic Hydrolysis Lignin by Sequential Extraction for Enhancing Antioxidant Performance. Int. J. Biol. Macromol. 2017, 99, 674–681. [Google Scholar] [CrossRef]
- Wu, H.; Li, C.; Li, Z.; Liu, R.; Zhang, A.; Xiao, Z.; Ma, L.; Li, J.; Deng, S. Simultaneous extraction of oil and tea saponin from Camellia oleifera Abel. seeds under subcritical water conditions. Fuel Process. Technol. 2018, 174, 88–94. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, N.; Zhao, Y.; Jin, H.; Sun, G.; Yu, J.; Zhang, H.; Shao, J.; Yu, M.; Yang, D.; et al. The Extraction Using Deep Eutectic Solvents and Evaluation of Tea Saponin. Biology 2024, 13, 438. [Google Scholar] [CrossRef]
- López-Salazar, H.; Camacho-Díaz, B.H.; Arenas Ocampo, M.L.; Jiménez-Aparicio, A.R. Microwave-Assisted Extraction of Functional Compounds from Plants: A Review. BioResources 2023, 18, 6614–6638. [Google Scholar] [CrossRef]
- Javid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the Adoption of Industry 4.0 Technologies in Improving Environmental Sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, Z.; Yan, X.; Xie, J.; Yu, Q.; Chen, Y. Extraction Optimization of Tea Saponins from Camellia Oleifera Seed Meal with Deep Eutectic Solvents: Composition Identification and Properties Evaluation. Food Chem. 2023, 403, 136681. [Google Scholar] [CrossRef] [PubMed]
- Dessie, W.; Luo, X.; Wang, M.; Liao, Y.; Li, Z.; Khan, M.R.; Qin, Z. Enhancing the valorization efficiency of Camellia oil extraction wastes through sequential green acid pretreatment and solid-state fermentation-based enzymatic hydrolysis. Ind. Crops Prod. 2024, 217, 118893. [Google Scholar] [CrossRef]
- Singh, L.; Singh, B.; Balodi, S.; Kewlani, P.; Bhatt, I.D. Synergistic effects of enzyme-based ultrasonic-assisted extraction of phenolic compounds from Rhododendron arboreum and evaluation of thermal kinetic stability. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100395. [Google Scholar] [CrossRef]
- Cano-Lamadrid, M.; Martínez-Zamora, L.; Mozaffari, L.; Bueso, M.C.; Kessler, M.; Artés-Hernández, F. Response Surface Methodology to Optimize the Extraction of Carotenoids from Horticultural By-Products—A Systematic Review. Foods 2023, 12, 4456. [Google Scholar] [CrossRef]
- Li, G.; Li, M.; Yan, Z.; Zhu, Q.; Cai, J.; Wang, S.; Yuan, Y.; Chen, Y.; Deng, S. Extraction of Oils and Phytochemicals from Camellia Oleifera Seeds: Trends, Challenges, and Innovations. Processes 2022, 10, 1849. [Google Scholar] [CrossRef]
- Guo, X.; Qiao, Q.; Jin, Y.; Lei, H.; Guo, K.; Zhao, Z.; Li, P.; Liu, A.; Sun, R. Optimization of ultrasound-assisted extraction of two saponins from Paris polyphylla var. yunnanensis leaves using response surface methodology. Front. Sustain. Food Syst. 2024, 8, 1424285. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef]
- Yolandani; Ma, H.; Li, Y.; Liu, D.; Zhou, H.; Liu, X.; Wan, Y.; Zhao, X. Ultrasound-assisted limited enzymatic hydrolysis of high concentrated soy protein isolate: Alterations on the functional properties and its relation with hydrophobicity and molecular weight. Ultrason. Sonochem. 2023, 95, 106414. [Google Scholar] [CrossRef]
- Carreira-Casais, A.; Otero, P.; Garcia-Perez, P.; Garcia-Oliveira, P.; Pereira, A.G.; Carpena, M.; Soria-Lopez, A.; Simal-Gandara, J.; Prieto, M.A. Benefits and Drawbacks of Ultrasound-Assisted Extraction for the Recovery of Bioactive Compounds from Marine Algae. Int. J. Environ. Res. Public Health 2021, 18, 9153. [Google Scholar] [CrossRef]
- Bui, T.D.; Do, L.T.K.; Dang, T.N.D.; Pham, V.D.; Hoang, V.C. Recovery of Saponins, Phenolic Compounds, and Antioxidant Capacity from Curculigo Orchioides Gaertn Rhizomes by Different Extraction Methods. Appl. Sci. 2024, 14, 7535. [Google Scholar] [CrossRef]
- Castro-Puyana, M.; Marina, M.L.; Plaza, M. Water as green extraction solvent: Principles and reasons for its use. Curr. Opin. Green Sustain. Chem. 2017, 5, 31–36. [Google Scholar] [CrossRef]
- Lajoie, L.; Fabiano-Tixier, A.-S.; Chemat, F. Water as Green Solvent: Methods of Solubilization and Extraction of Natural Products—Past, Present and Future Solutions. Pharmaceuticals 2022, 15, 1507. [Google Scholar] [CrossRef]
- Plattes, M.; Koehler, C.; Galle, T. Purely ultrasonic enzyme extraction from activated sludge in an ultrasonic cleaning bath. MethodsX 2017, 4, 214–217. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, S.; Wan, F.; Zhou, Y.; Wang, Z.; Fan, G.; Wang, P.; Luo, H.; Liao, S.; He, L.; et al. Quantitative Analysis of Camellia oleifera Saponins and Aqueous Two-Phase Extraction and Separation. Molecules 2023, 28, 2132. [Google Scholar] [CrossRef]
- Cao, J.; Wu, G.; Wang, L.; Cao, F.; Jiang, Y.; Zhao, L. Oriented Deep Eutectic Solvents as Efficient Approach for Selective Extraction of Bioactive Saponins from Husks of Xanthoceras sorbifolia Bunge. Antioxidants 2022, 11, 736. [Google Scholar] [CrossRef]
- Holland, C.; Ryden, P.; Edwards, C.H.; Grundy, M.M.-L. Plant Cell Walls: Impact on Nutrient Bioaccessibility and Digestibility. Foods 2020, 9, 201. [Google Scholar] [CrossRef]
- Alba, A.T.; Allaño-González, M.J.; Palma, M.; Barbero, G.F.; Carrera, C. Enhancing Efficiency of Enzymatic-Assisted Extraction Method for Evaluating Bioactive Compound Analysis in Mulberry: An Optimization Approach. Agronomy 2023, 13, 2548. [Google Scholar] [CrossRef]
- Hu, J.-L.; Nie, S.-P.; Huang, D.-F.; Li, C.; Xie, M.-Y. Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. Int. J. Food Sci. Technol. 2012, 47, 1676–1687. [Google Scholar] [CrossRef]
- Mujahid, R.; Riaz, A.; Insyani, R.; Kim, J. A Centrifugation-First Approach for Recovering High-Yield Bio-Oil with High Caloric Values in Biomass Liquefaction: A Case Study of Sewage Sludge. Fuel 2020, 262, 116628. [Google Scholar] [CrossRef]
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Caballero, A.H.; Acosta, N. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, X.; Zhang, Z.; Chen, L.; Zhang, Y.; Wang, C.; Yang, X.; Qu, Y.; Xiong, Y. Optimisation of Ethanol-Reflux Extraction of Saponins from Steamed Panax notoginseng by Response Surface Methodology and Evaluation of Hematopoiesis Effect. Molecules 2018, 23, 1206. [Google Scholar] [CrossRef]
- Rai, S.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Characterization of Saponins from the Leaves and Stem Bark of Jatropha curcas L. for Surface-Active Properties. Heliyon 2023, 9, e15807. [Google Scholar] [CrossRef]
- Coşkun, N.; Saritas, S.; Jaouhari, Y.; Bordiga, M.; Karav, S. The Impact of Freeze Drying on Bioactivity and Physical Properties of Food Products. Appl. Sci. 2024, 14, 9183. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, Y.; Tao, L.; Zhang, X.; Hao, F.; Zhao, S.; Han, L.; Bai, C. Recent Advances in Separation and Analysis of Saponins in Natural Products. Separations 2022, 9, 163. [Google Scholar] [CrossRef]
- Son, H.L.; Phuong, V.N.L.; Minh, T.V. Application of Response Surface Methodology for Optimizing the Extraction Conditions of Total Saponins from Polyscias fruticosa (L.) Harms Planted in Southern Vietnam. Asian J. Biotechnol. Bioresour. Technol. 2023, 9, 20–30. [Google Scholar] [CrossRef]
- Zhang, N.; Si, S.; Tao, L.; Li, J.; Li, J.; Du, H. Preparation and Performance Evaluation of Environmental-Friendly, Temperature-Resistant and Salt-Resistant Tea Saponin Foaming Agent. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 1564–1585. [Google Scholar] [CrossRef]
- Xie, J.; Huang, W.; Wu, X. Effect of Tea Saponin on the Foaming Properties of Pea Protein. Food Funct. 2023, 14, 4339–4353. [Google Scholar] [CrossRef]
- Saleh, Z.S.; Hossain, M.M. A study of the separation of proteins from multicomponent mixtures by a semi-batch foaming process. Chem. Eng. Process. Process Intensif. 2001, 40, 371–378. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Yang, C.-H.; Chang, M.-S.; Chou, Y.-P.; Huang, Y.-C. Foam Properties and Detergent Abilities of the Saponins from Camellia Oleifera. Int. J. Mol. Sci. 2010, 11, 4417–4425. [Google Scholar] [CrossRef]
- GB/T 7462-94; Foaming Power Determination of Surfactant Improvement of Ross-Miles Method. State Administration of Quality Supervision and Inspection: Beijing, China; China Standard Publisher: Beijing, China, 1994.
Independent Variable | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Extraction temperature (A) | 50 | 55 | 60 |
Extraction time (B) | 90 | 120 | 150 |
Solvent-to-material ratio (C) | 5:1 | 10:1 | 15:1 |
Enzyme concentration (D) | 0.4 | 0.6 | 0.8 |
Standard Order | Temperature, °C | Time, min | Solvent-to-Material Ratio, mL/g | Enzyme, % | Yield, mg/g |
---|---|---|---|---|---|
1 | 50 | 90 | 15 | 0.6 | 64.32 |
2 | 60 | 90 | 15 | 0.6 | 66.88 |
3 | 60 | 150 | 15 | 0.6 | 65.58 |
4 | 60 | 150 | 15 | 0.6 | 69.45 |
5 | 55 | 120 | 10 | 0.4 | 60.23 |
6 | 55 | 120 | 20 | 0.4 | 61.09 |
7 | 55 | 120 | 10 | 0.8 | 68.21 |
8 | 55 | 120 | 20 | 0.8 | 68.93 |
9 | 50 | 120 | 15 | 0.4 | 61.80 |
10 | 60 | 120 | 15 | 0.4 | 66.33 |
11 | 50 | 120 | 15 | 0.8 | 66.06 |
12 | 60 | 120 | 15 | 0.8 | 69.63 |
13 | 55 | 90 | 10 | 0.6 | 63.21 |
14 | 55 | 150 | 10 | 0.6 | 64.55 |
15 | 55 | 90 | 20 | 0.6 | 63.92 |
16 | 55 | 150 | 20 | 0.6 | 66.51 |
17 | 50 | 120 | 10 | 0.6 | 64.19 |
18 | 60 | 120 | 10 | 0.6 | 66.75 |
19 | 50 | 120 | 20 | 0.6 | 65.04 |
20 | 60 | 120 | 20 | 0.6 | 69.61 |
21 | 55 | 90 | 15 | 0.4 | 60.21 |
22 | 55 | 150 | 15 | 0.4 | 61.35 |
23 | 55 | 90 | 15 | 0.8 | 66.70 |
24 | 55 | 150 | 15 | 0.8 | 69.24 |
25 | 55 | 120 | 15 | 0.6 | 68.22 |
26 | 55 | 120 | 15 | 0.6 | 69.59 |
27 | 55 | 120 | 15 | 0.6 | 68.76 |
28 | 55 | 120 | 15 | 0.6 | 67.81 |
29 | 55 | 120 | 15 | 0.6 | 66.56 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 228.33 | 14 | 16.31 | 14.09 | <0.0001 |
A-Temperature | 39.10 | 1 | 39.10 | 33.78 | <0.0001 |
B-Extraction time | 10.91 | 1 | 10.91 | 9.42 | 0.0083 |
C-Solvent-to-material ratio | 5.28 | 1 | 5.28 | 4.56 | 0.0508 |
D-Enzyme concentration | 118.82 | 1 | 118.82 | 102.66 | <0.0001 |
AB | 0.4290 | 1 | 0.4290 | 0.3707 | 0.5524 |
AC | 1.01 | 1 | 1.01 | 0.8727 | 0.3660 |
AD | 0.2304 | 1 | 0.2304 | 0.1991 | 0.6623 |
BC | 0.3906 | 1 | 0.3906 | 0.3375 | 0.5705 |
BD | 0.4900 | 1 | 0.4900 | 0.4234 | 0.5258 |
CD | 0.0049 | 1 | 0.0049 | 0.0042 | 0.9490 |
A2 | 0.0143 | 1 | 0.0143 | 0.0123 | 0.9131 |
B2 | 20.14 | 1 | 20.14 | 17.40 | 0.0009 |
C2 | 19.23 | 1 | 19.23 | 16.62 | 0.0011 |
D2 | 26.71 | 1 | 26.71 | 23.08 | 0.0003 |
Residual | 16.20 | 14 | 1.16 | / | / |
Lack of Fit | 11.12 | 10 | 1.11 | 0.8740 | 0.6095 |
Pure Error | 5.09 | 4 | 1.27 | / | / |
Cor Total | 244.53 | 28 | / | / | / |
Mass Fraction of Saponin X1, % | CMCtheory, g/L | CMCactual, g/L | γCMCactual, mN/m | Y, % |
---|---|---|---|---|
0 | / | 0.80 | 25.29 | / |
1 | 0.80 | 0.70 | 24.15 | 12.50 |
2 | 0.79 | 0.50 | 23.70 | 36.71 |
4 | 0.78 | 0.40 | 22.56 | 48.72 |
10 | 0.77 | 0.40 | 22.78 | 48.05 |
30 | 0.71 | 0.30 | 22.68 | 57.75 |
50 | 0.65 | 0.20 | 22.75 | 69.23 |
75 | 0.58 | 0.40 | 25.17 | 31.03 |
100 | / | 0.50 | 39.61 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Ebrahim, Z.M.S.; Tao, L.; Shi, W.; Li, W.; Lu, W. Optimized Extraction of Saponins from Camelia Oleifera Using Ultrasonic-Assisted Enzymes and Their Surface Performance Evaluation. Processes 2025, 13, 1063. https://doi.org/10.3390/pr13041063
Zhang N, Ebrahim ZMS, Tao L, Shi W, Li W, Lu W. Optimized Extraction of Saponins from Camelia Oleifera Using Ultrasonic-Assisted Enzymes and Their Surface Performance Evaluation. Processes. 2025; 13(4):1063. https://doi.org/10.3390/pr13041063
Chicago/Turabian StyleZhang, Na, Zaid Mohammed Sulaiman Ebrahim, Lei Tao, Wenyang Shi, Wenxin Li, and Wenlong Lu. 2025. "Optimized Extraction of Saponins from Camelia Oleifera Using Ultrasonic-Assisted Enzymes and Their Surface Performance Evaluation" Processes 13, no. 4: 1063. https://doi.org/10.3390/pr13041063
APA StyleZhang, N., Ebrahim, Z. M. S., Tao, L., Shi, W., Li, W., & Lu, W. (2025). Optimized Extraction of Saponins from Camelia Oleifera Using Ultrasonic-Assisted Enzymes and Their Surface Performance Evaluation. Processes, 13(4), 1063. https://doi.org/10.3390/pr13041063