Effect of Collagen Peptide and Polysaccharide Combination on Astringency Elimination, Appearance, and Syneresis in Persimmon Paste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Materials for Astringent Persimmon Juice (APJ) and Astringent Persimmon Paste (AP)
2.1.2. Protein-Rich Foods
2.1.3. Polysaccharide
2.1.4. Reagants for STC Assay
2.2. Astringent Persimmon Juice Liquid and Astringent Persimmon Paste Processing
2.3. Complex Formation with Soluble Tannins in APJ
2.4. Addition of Polysaccharide and Protein Combination and Heat/Freeze Treatment
2.5. STC Assay Method
2.6. External Appearance and Syneresis Rate
2.7. Statistical Analysis
3. Results and Discussion
3.1. Exploring Protein Materials That Bind to Tannins
3.2. Appearance of the Paste
3.3. Syneresis Rate of AP
3.4. Effect of Protein and Polysaccharide Addition on the STC of AP
3.5. Effect of Heat Treatment on the STC of AP
3.6. Effect of Freeze Treatment on the STC of AP
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Astringent persimmon paste |
P–T | Protein–tannin |
BSA | Bovine serum albumin |
EGCG | Epigallocatechin gallate |
APJ | Astringent persimmon juice |
CTN | Catechin |
eq | Equivalent |
FW | Fresh weight |
STC | Soluble tannin content |
CP3100 | SCP-3100 |
CP5100 | SCP-5100 |
NP100 | Nippi Collagen 100 |
GA | Guar gum + CP3100 |
GB | Guar gum + CP5100 |
GC | Guar gum + NP100 |
XA | Xanthan gum + CP3100 |
XB | Xanthan gum + CP5100 |
XC | Xanthan gum + NP100 |
NH | Non-heating |
References
- Giordani, E.; Doumett, S.; Nin, S.; Del Bubba, M. Selected primary and secondary metabolites in fresh persimmon (Diospyros kaki Thunb.): A review of analytical methods and current knowledge of fruit composition and health benefits. Food Res. Int. 2011, 44, 1752–1767. [Google Scholar] [CrossRef]
- Cortes, V.; Rodriguez, A.; Blasco, J.; Rey, B.; Besada, C.; Cubero, S.; Salvador, A.; Talens, P.; Aleixos, N. Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy. J. Food Eng. 2017, 204, 27–37. [Google Scholar] [CrossRef]
- Yamada, M.; Taira, S.; Ohtsuki, M.; Sato, A.; Iwanami, H.; Yakushiji, H.; Wang, R.Z.; Yang, Y.; Li, G.C. Varietal differences in the ease of astringency removal by carbon dioxide gas and ethanol vapor treatments among Oriental astringent persimmons of Japanese and Chinese origin. Sci. Hortic. 2002, 94, 63–72. [Google Scholar] [CrossRef]
- Salvador, A.; Arnal, L.; Besada, C.; Larrea, V.; Hernando, I.; Perez-Munuera, I. Reduced effectiveness of the treatment for removing astringency in persimmon fruit when stored at 15 degrees C: Physiological and micro structural study. Postharvest Biol. Technol. 2008, 49, 340–347. [Google Scholar] [CrossRef]
- Monteiro, M.F.; AGUILA, J.S.D.; Pessoa, C.D.O.; Kluge, R.A. Vacuum packaging is efficient to remove astringency and to maintain the firmness of ‘Giombo’ persimmon. Rev. Bras. De Frutic. 2017, 39, e-129. [Google Scholar] [CrossRef]
- Zhu, Q.G.; Wang, M.M.; Gong, Z.Y.; Fang, F.; Sun, N.J.; Li, X.; Grierson, D.; Yin, X.R.; Chen, K.S. Involvement of DkTGA1 Transcription Factor in Anaerobic Response Leading to Persimmon Fruit Postharvest De-Astringency. PLoS ONE 2016, 11, 13. [Google Scholar] [CrossRef]
- Edagi, F.K.; Chiou, D.G.; Terra, F.d.A.M.; Sestari, I.; Kluge, R.A. Astringency removal of ‘Giombo’ persimmon with ethanol sub-doses. Ciênc. Rural. 2009, 39, 2022–2028. [Google Scholar] [CrossRef]
- Lu, Y.; Bennick, A. Interaction of tannin with human salivary proline-rich proteins. Arch. Oral Biol. 1998, 43, 717–728. [Google Scholar] [CrossRef]
- Soares, S.; García-Estévez, I.; Ferrer-Galego, R.; Brás, N.F.; Brandão, E.; Silva, M.; Teixeira, N.; Fonseca, F.; Sousa, S.F.; Ferreira-da-Silva, F. Study of human salivary proline-rich proteins interaction with food tannins. Food Chem. 2018, 243, 175–185. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Guerreiro, C.; Soares, S.; Mateus, N.; de Freitas, V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020, 25, 2590. [Google Scholar] [CrossRef]
- Poncet-Legrand, C.; Edelmann, A.; Putaux, J.-L.; Cartalade, D.; Sarni-Manchado, P.; Vernhet, A. Poly (L-proline) interactions with flavan-3-ols units: Influence of the molecular structure and the polyphenol/protein ratio. Food Hydrocoll. 2006, 20, 687–697. [Google Scholar] [CrossRef]
- Edelmann, A.; Lendl, B. Toward the optical tongue: Flow-through sensing of tannin−protein interactions based on FTIR spectroscopy. J. Am. Chem. Soc. 2002, 124, 14741–14747. [Google Scholar] [CrossRef] [PubMed]
- Jöbstl, E.; O’Connell, J.; Fairclough, J.P.A.; Williamson, M.P. Molecular model for astringency produced by polyphenol/protein interactions. Biomacromolecules 2004, 5, 942–949. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Smith, P.A. Tannin quantification in red grapes and wine: Comparison of polysaccharide-and protein-based tannin precipitation techniques and their ability to model wine astringency. J. Agric. Food Chem. 2008, 56, 5528–5537. [Google Scholar] [CrossRef]
- Siebert, K.J. Haze formation in beverages. LWT Food Sci. Technol. 2006, 39, 987–994. [Google Scholar] [CrossRef]
- Tsurunaga, Y.; Onda, M. Effects of soy milk and condensed milk on astringency removal, astringency recurrence, appearance, and syneresis in persimmon paste. Acta Hortic. 2022, 1338, 365–374. [Google Scholar] [CrossRef]
- Tsurunaga, Y.; Takahashi, T.; Kanou, M.; Onda, M.; Ishigaki, M. Removal of astringency from persimmon paste via polysaccharide treatment. Heliyon 2022, 8, e10716. [Google Scholar] [CrossRef]
- Mamet, T.; Ge, Z.-Z.; Zhang, Y.; Li, C.-M. Interactions between highly galloylated persimmon tannins and pectins. Int. J. Biol. Macromol. 2018, 106, 410–417. [Google Scholar] [CrossRef]
- Mamet, T.; Yao, F.; Li, K.-K.; Li, C.-M. Persimmon tannins enhance the gel properties of high and low methoxyl pectin. LWT 2017, 86, 594–602. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, S.; Liao, T.; Shu, X.; Guo, D.; Huang, Y.; Yang, X.; Wang, Q.; Chen, X. Polysaccharide selection and mechanism for prevention of protein–polyphenol haze formation in beverages. J. Food Sci. 2020, 85, 3776–3785. [Google Scholar] [CrossRef]
- Soares, S.; Mateus, N.; de Freitas, V. Carbohydrates Inhibit Salivary Proteins Precipitation by Condensed Tannins. J. Agric. Food Chem. 2012, 60, 3966–3972. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.L.; Swain, T. The inhibition of enzymes by tannins. Phytochemistry 1965, 4, 185–192. [Google Scholar] [CrossRef]
- Chung, H.S.; Kim, H.S.; Lee, Y.G.; Seong, J.H. Effect of deastringency treatment of intact persimmon fruits on the quality of fresh-cut persimmons. Food Chem. 2015, 166, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, T.; Dufour, D.; Moreno, I.X.; Ceballos, H. Comparison of Pasting and Gel Stabilities of Waxy and Normal Starches from Potato, Maize, and Rice with Those of a Novel Waxy Cassava Starch under Thermal, Chemical, and Mechanical Stress. J. Agric. Food Chem. 2010, 58, 5093–5099. [Google Scholar] [CrossRef] [PubMed]
- Beck, K.; Brodsky, B. Supercoiled protein motifs: The collagen triple-helix and the α-helical coiled coil. J. Struct. Biol. 1998, 122, 17–29. [Google Scholar] [CrossRef]
- Matsuo, T.; Ito, S. The chemical structure of kaki-tannin from immature fruit of the persimmon (Diospyros kaki L.). Agric. Biol. Chem. 1978, 42, 1637–1643. [Google Scholar]
- Goto, Y.; Watanabe, O. Development of inhibitory technique for astringency recurrence in astringent persimmon fruit. Nippon. Shokuhin Kagaku Kogaku Kaishi = J. Jpn. Soc. Food Sci. Technol. 2010, 57, 220–223. [Google Scholar] [CrossRef]
- Butler, L.G.; Riedl, D.J.; Lebryk, D.; Blytt, H. Interaction of proteins with sorghum tannin: Mechanism, specificity and significance. J. Am. Oil Chem. Soc. 1984, 61, 916–920. [Google Scholar] [CrossRef]
- Amorim, C.; Alves, E.G.; Rodrigues, T.H.S.; Bender, R.J.; Canuto, K.M.; Garruti, D.S.; Antoniolli, L.R. Volatile compounds associated to the loss of astringency in ‘Rama Forte’ persimmon fruit. Food Res. Int. 2020, 136, 109570. [Google Scholar] [CrossRef]
- Del Bubba, M.; Giordani, E.; Pippucci, L.; Cincinelli, A.; Checchini, L.; Galvan, P. Changes in tannins, ascorbic acid and sugar content in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 2009, 22, 668–677. [Google Scholar] [CrossRef]
- Inari, T.; Tomoyeda, M. Consideration on the Removal of Astringency in the Persimmons (Part 2) Insolubility of Tannins and Changes of the Related Enzyme Activities. J. Home Econ. Jpn. 1992, 43, 271–276. [Google Scholar]
- Noypitak, S.; Terdwongworakul, A.; Krisanapook, K.; Kasemsumran, S. Evaluation of astringency and tannin content in ‘Xichu’ persimmons using near infrared spectroscopy. Int. J. Food Prop. 2015, 18, 1014–1028. [Google Scholar] [CrossRef]
- Taira, S. Astringency in persimmon. In Fruit Analysis; Springer: Berlin/Heidelberg, Germany, 1996; pp. 97–110. [Google Scholar]
- Das, P.R.; Eun, J.-B. Removal of astringency in persimmon fruits (Diospyros kaki) subjected to different freezing temperature treatments. J. Food Sci. Technol. 2021, 58, 3154–3163. [Google Scholar] [CrossRef] [PubMed]
- González, C.M.; Gil, R.; Moraga, G.; Salvador, A. Natural drying of astringent and non-astringent persimmon “Rojo Brillante”. Drying kinetics and physico-chemical properties. Foods 2021, 10, 647. [Google Scholar] [CrossRef] [PubMed]
- Tsurunaga, Y.; Onda, M.; Takahashi, T. Effect of heating methods on astringency recurrence, syneresis, and physical properties of persimmon paste. J. Food Sci. Technol. 2021, 58, 4616–4625. [Google Scholar] [CrossRef]
- Taboada, D.; García-Hernández, J.; Ortolá, M.D.; Castelló, M.L. Astringent and non-astringent persimmon cremogenates made with different thickeners. Int. J. Food Sci. Technol. 2024, 59, 1051–1062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsurunaga, Y. Effect of Collagen Peptide and Polysaccharide Combination on Astringency Elimination, Appearance, and Syneresis in Persimmon Paste. Processes 2025, 13, 438. https://doi.org/10.3390/pr13020438
Tsurunaga Y. Effect of Collagen Peptide and Polysaccharide Combination on Astringency Elimination, Appearance, and Syneresis in Persimmon Paste. Processes. 2025; 13(2):438. https://doi.org/10.3390/pr13020438
Chicago/Turabian StyleTsurunaga, Yoko. 2025. "Effect of Collagen Peptide and Polysaccharide Combination on Astringency Elimination, Appearance, and Syneresis in Persimmon Paste" Processes 13, no. 2: 438. https://doi.org/10.3390/pr13020438
APA StyleTsurunaga, Y. (2025). Effect of Collagen Peptide and Polysaccharide Combination on Astringency Elimination, Appearance, and Syneresis in Persimmon Paste. Processes, 13(2), 438. https://doi.org/10.3390/pr13020438