The Study of Interlayer Identification Based on Well Logging Curve Units
Abstract
:1. Introduction
2. Construction of Logging Curve Units
2.1. Logging Curve Units
2.2. Model Construction
3. Interlayer Identification of Logging Curves
3.1. Single-Well Interlayer Distribution
3.2. Inter-Well Interlayer Distribution
4. Remaining Oil Prediction Application
4.1. Numerical Model Construction
4.2. Study of Remaining Oil Distribution Patterns
4.2.1. Small-Scale Interlayers
4.2.2. Combined Effects of Structure and Barrier Interlayers
4.3. Remaining Oil Distribution Models
4.3.1. Dome Oil and Bottom Dome Oil
4.3.2. Cap Oil
5. Conclusions
- (1)
- An automated interlayer identification framework was established by integrating multi-source logging data and dynamic activity-based layering methods. This framework achieves 90% interlayer identification accuracy, significantly improving efficiency over traditional manual interpretation. It provides an automated solution for quantitative characterization of reservoir heterogeneity. The method has been successfully applied to 3D interlayer modeling in the P Oilfield, demonstrating its engineering applicability.
- (2)
- The dominant controlling factors of remaining oil distribution were analyzed, revealing the impacts of small-scale interlayers and interlayer–structure interactions. Three typical remaining oil distribution patterns were identified: dome oil, bottom dome oil, and cap oil. These findings provide theoretical support for optimizing well placement and development strategies.
- (3)
- Future research will incorporate mineralogical data (e.g., thin-section analysis) and machine learning algorithms to enhance interlayer boundary prediction. This approach will be extended to reservoirs with complex diagenetic facies to achieve intelligent interlayer identification.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mahdi, T.A.; Aqrawi, A.A.M. Sequence Stratigraphic Analysis of the Mid-Cretaceous Mishrif Formation, Southern Mesopotamian Basin, Iraq. J. Pet. Geol. 2014, 37, 287–312. [Google Scholar] [CrossRef]
- Lin, C.; Hou, L.; Dong, C.; Zhang, J. Identification of interlayers using geostatistical methods: A case study of the third section of the Sha Formation in the western depression of the Liaohe River. Pet. Geol. Exp. 1997, 19, 245–251. [Google Scholar]
- Karp, J.C.; Lowe, D.K.; Marusov, N. Horizontal Barriers for Controlling Water Coning. J. Pet. Technol. 1962, 14, 783–790. [Google Scholar] [CrossRef]
- Huang, S.; Kang, B.; Cheng, L.; Zhou, W.; Chang, S. Quantitative Characterization of Interlayer Interference and Productivity Prediction of Directional Wells in the Multilayer Commingled Production of Ordinary Offshore Heavy Oil Reservoirs. Pet. Explor. Dev. 2015, 42, 533–540. [Google Scholar] [CrossRef]
- Makhatova, M.; Ozkan, E. A Practical Model for Pressure- and Rate-Transient Behavior of Stacked Horizontal Wells in Unconventional Reservoirs. In The Unconventional Resources Technology Conference; American Association of Petroleum Geologists: Houston, TX, USA, 2024. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, X.-S.; Chen, Z.-Y.; Xia, Z.-M.; Xiao, C.-W. Numerical Investigation of Production Characteristics and Interlayer Interference during Co-Production of Natural Gas Hydrate and Shallow Gas Reservoir. Appl. Energy 2024, 354, 122219. [Google Scholar] [CrossRef]
- Tan, J.; Chen, J.; Zhang, Z.; Liu, C.; Zhang, W. Identification of Interlayer in Strong Bottom Water Reservoir and Its Influence on Development Effect. J. Geosci. Environ. Prot. 2022, 10, 132–138. [Google Scholar] [CrossRef]
- Luo, H.; Deng, H.; Xiao, H.; Geng, S.; Hou, F.; Luo, G.; Li, Y. A Transient-Pressure-Based Numerical Approach for Interlayer Identification in Sand Reservoirs. Fluid Dyn. Mater. Process. 2024, 20, 641–659. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, Y.; Cai, L.; Fang, Z.; Li, C. Detection Performance and Grading-Selection-Based Inversion of Low-Frequency Alternating Current Resistivity Logging in Moderate-High Resistance Formations. SPE J. 2023, 28, 355–370. [Google Scholar] [CrossRef]
- Omrani, S.; Tavakoli, V. Influences of Geological and Petrophysical Attributes on Electrical Resistivity–Based Reserve Evaluation: Enhancing Carbonate Reservoir Classification, Permian-Triassic Reservoirs of Southern Iran. SPE J. 2024, 29, 5352–5371. [Google Scholar] [CrossRef]
- Figiel, M.; Lewandowska-Smierzchalska, J. Identification of Strata from Irregularities in Well Logs Using Chaos Quantifiers. SPE J. 2022, 27, 1770–1781. [Google Scholar] [CrossRef]
- Jarzyna, J.A.; Bala, M.J.; Mortimer, Z.M.; Puskarczyk, E. Reservoir Parameter Classification of a Miocene Formation Using a Fractal Approach to Well Logging, Porosimetry and Nuclear Magnetic Resonance. Geophys. Prospect. 2013, 61, 1006–1021. [Google Scholar] [CrossRef]
- Hill, E.J.; Uvarova, Y. Identifying the Nature of Lithogeochemical Boundaries in Drill Holes. J. Geochem. Explor. 2018, 184, 167–178. [Google Scholar] [CrossRef]
- Xu, C.; Bayer, W.S.; Wunderle, M.; Bansal, A. Normalizing Gamma-Ray Logs Acquired from a Mixture of Vertical and Horizontal Wells in the Haynesville Shale. Petrophysics—SPWLA J. Form. Eval. Reserv. Descr. 2016, 57, 638–643. [Google Scholar]
- Schlanser, K.; Grana, D.; Campbell-Stone, E. Lithofacies Classification in the Marcellus Shale by Applying a Statistical Clustering Algorithm to Petrophysical and Elastic Well Logs. Interpretation 2016, 4, SE31–SE49. [Google Scholar] [CrossRef]
- Maalouf, E.; Torres-Verdin, C. Interpretation of Borehole Sonic Measurements Acquired in Vertical Transversely Isotropic Formations Penetrated by Vertical Wells. Geophysics 2018, 83, D187–D202. [Google Scholar] [CrossRef]
- Han, M.; Li, G.; Chen, J. Assimilating Microseismic and Well-Test Data by Use of EnKF for Accurate Reservoir Characterization. SPE J. 2015, 20, 186–201. [Google Scholar] [CrossRef]
- Zhang, L.; Li, R.; Deng, H.; Fu, M.; Hu, L.; Guo, X.; Xie, X.; Zhao, C. Identification, Distribution Characteristics, and Effects on Production of Interlayers in Carbonate Reservoirs: A Case Study from the Cretaceous Mishrif Formation in Halfaya Oilfield, Iraq. J. Pet. Sci. Eng. 2021, 202, 108571. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Carr, T.R. Integrated Data-Driven 3D Shale Lithofacies Modeling of the Bakken Formation in the Williston Basin, North Dakota, United States. J. Pet. Sci. Eng. 2019, 177, 1072–1086. [Google Scholar] [CrossRef]
- Fu, C.; Xie, Y.; Wang, H.; Song, L.; Duan, R.; Yuan, Z.; Xu, W.; Chen, G. Types and Sedimentary Genesis of Barriers and Interlayers in the Composite Turbidite Sand Bodies of a Deep-Water Canyon: A Case Study of the Central Canyon in the Qiongdongnan Basin. Nat. Gas Ind. B 2023, 10, 511–521. [Google Scholar] [CrossRef]
- Yi, J.; Li, H.; Shan, X.; Hao, G.; Yang, H.; Wang, Q.; Xu, P.; Ren, S. Division and Identification of Vertical Reservoir Units in Archaeozoic Metamorphic Buried Hill of Bozhong Sag, Bohai Bay Basin, East China. Pet. Explor. Dev. 2022, 49, 1282–1294. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Chen, J.; Li, L.; Ren, L.; Meng, L.; Wang, W.; Wan, Y.; Lu, Y.; Chen, H. Methods of Division of Development Unit for Thick Carbonate Reservoir—A Case Study of the Mishrif Formation, a Oilfield, Middle East. Geofluids 2024, 2024, 7361600. [Google Scholar] [CrossRef]
- Singh, H.; Seol, Y.; Myshakin, E.M. Automated Well-Log Processing and Lithology Classification by Identifying Optimal Features through Unsupervised and Supervised Machine-Learning Algorithms. SPE J. 2020, 25, 2778–2800. [Google Scholar] [CrossRef]
- Liu, H.; Peng, S.; Xia, H.; Tang, H. Mathematic characteristics of Well LoggingCurve Unit and quantitative identification of sedimentary miscrofacies. China Offshore Oil Gas 2004, 16, 45–50. [Google Scholar]
- Zhang, Q.; Ge, Y.; Li, Y. Automatic interlayer identification method based on gradient and Bayesian discriminant method. J. Heilongjiang Univ. Sci. Technol. 2015, 25, 177–181. [Google Scholar]
- Yi, J. Automatic Geologic Zonation Using Activity Layering Method. J. Oil Gas Technol. 2007, 29, 78–81. [Google Scholar]
- Wang, J.; Liu, H.; Xu, J.; Zhang, H. Formation Mechanism and Distribution Law of Remaining Oil in Fracture-Cavity Reservoir. Pet. Explor. Dev. 2012, 39, 624–629. [Google Scholar] [CrossRef]
- Ghazi, S.; Mountney, N.P. Facies and Architectural Element Analysis of a Meandering Fluvial Succession: The Permian Warchha Sandstone, Salt Range, Pakistan. Sediment. Geol. 2009, 221, 99–126. [Google Scholar] [CrossRef]
- Munawar, M.J.; Lin, C.; Chunmei, D.; Zhang, X.; Zhao, H.; Xiao, S.; Azeem, T.; Zahid, M.A.; Ma, C. Architecture and Reservoir Quality of Low-Permeable Eocene Lacustrine Turbidite Sandstone from the Dongying Depression, East China. Open Geosci. 2018, 10, 87–112. [Google Scholar] [CrossRef]
- Xue, Y.; Cheng, L. The Influence of Interlayer of Bottom Water Reservoirs during the Development Stage. Pet. Sci. Technol. 2013, 31, 849–855. [Google Scholar] [CrossRef]
- Zhao, L.; Liang, H.; Zhang, X.; Chen, L.; Wang, J.; Cao, H.; Song, X. Relationship between Sandstone Architecture and Remaining Oil Distribution Pattern: A Case of the Kumkol South Oilfield in South Turgay Basin, Kazakstan. Pet. Explor. Dev. 2016, 43, 474–483. [Google Scholar] [CrossRef]
- Liu, T.; Fawad, N.; Li, C.; Li, H.; He, R.; Xu, J.; Ahmad, Q.A. Physical Simulation of Remaining Oil Distribution in the 3rd-Order Architecture Unit in Beach Sand Reservoir. Front. Earth Sci. 2023, 10, 1108525. [Google Scholar] [CrossRef]
- Feng, C.; Bao, Z.; Yang, L.; Si, X.; Xu, G.; Han, X. Reservoir Architecture and Remaining Oil Distribution of Deltaic Front Underwater Distributary Channel. Pet. Explor. Dev. 2014, 41, 358–364. [Google Scholar] [CrossRef]
- Chen, X.; Xiao, P.; Duan, R.K.; Lv, W.R.; Zhang, X.; Chen, G.N. Study on flow unit division and remaining oil tapping in deep-water turbidite gas injection reservoir. Unconv. Oil Gas 2023, 10, 103–111. [Google Scholar]
- Xie, P.; Yin, Y.; Li, W.; Li, F.; Zhao, L. Distribution of Remaining Oil Based on a Single Sand Body Analysis: A Case Study of Xingbei Oilfield. J. Pet. Explor. Prod. Technol. 2018, 8, 1159–1167. [Google Scholar] [CrossRef]
- Sun, P.; Fang, H.; Xu, Z.; Wang, C.; Xu, H.; Lu, M. Siliciclastic Depositional Model within a Subsurface Coastal Parasequence Based on Barriers and Baffles—An Application to the Donghe Sandstone Member in the Hudson Oilfield, Tarim Basin, NW China. J. Pet. Sci. Eng. 2020, 195, 107947. [Google Scholar] [CrossRef]
- Han, R.; Liu, Q.; Jiang, T.; Xu, H.; Xu, Z.; Zhao, L.; Lei, C.; Zhang, P. Feature, Origin and Distribution of Calcareous Interlayers: A Case of Carboniferous Donghe Sandstone in Hade Oil Field, Tarim Basin, NW China. Pet. Explor. Dev. 2014, 41, 475–484. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Zhang, L.; Wu, Z.; Lao, M.; Li, H.; Wu, T. Geological Characteristics and Tectonic Settings of Mesozoic Continental Margin Magmatic Arc in Pearl River Mouth Basin. Earth Sci. 2022, 47, 2317–2327. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, D.; Zhou, S.; Wang, H.; Deng, Y.; Liu, E.; Song, G. Sedimentological and Diagenetic Effects on Petrophysical Characteristics and Hydraulic Flow Units of Zhujiang Sandstones in the Pearl River Mouth Basin, South China Sea. Energy 2023, 282, 128942. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, L.; Wu, Z.; Li, H.; Lei, S.; Yu, S.; Lao, M. Characteristics and dynamic background of pre-existing fractures in pre-Cenozoic of Pearl River Mouth Basin: Cases of Huizhou Sag and Panyu 4 Depression. Marine Geol. Front. 2022, 38, 54–62. [Google Scholar] [CrossRef]
- Chang, M.; Deng, R.; Wang, H.; Xie, B.; Zhao, Z. Research on the Normalisation Method of Logging Curves: Taking XJ Oilfield as an Example. Appl. Math. Nonlinear Sci. 2021, 6, 99–110. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, Q.; Jiang, Q.; Wang, Z.; Qiu, Z.; Liu, K.; Kong, C.; Liu, C.; Zhang, X. Correction Method for Logging Curves in Clay-Rich Tight Glutenite Reservoir: Upper Wuerhe Formation in Mahu Oilfield, China. Energies 2022, 15, 7119. [Google Scholar] [CrossRef]
- Wang, X.; Hou, J.; Liu, Y.; Ji, L.; Sun, J. Studying Reservoir Heterogeneity by Analytic Hierarchy Process and Fuzzy Logic, Case Study of Es1x Formation of the Wang Guan Tun Oilfield, China. J. Pet. Sci. Eng. 2017, 156, 858–867. [Google Scholar] [CrossRef]
Threshold | Manually Identified Interlayer Number | Automatically Identified Interlayer Number | Error |
---|---|---|---|
0.5 | 563 | 1087 | 93.07% |
0.55 | 563 | 946 | 68.03% |
0.6 | 563 | 803 | 42.63% |
0.65 | 563 | 691 | 22.74% |
0.7 | 563 | 571 | 3.55% |
0.75 | 563 | 551 | −2.13% |
0.8 | 563 | 403 | −28.42% |
0.85 | 563 | 381 | −32.33% |
0.9 | 563 | 129 | −77.09% |
Number | Top Depth of Curve Unit | Bottom Depth of Curve Element | Interlayer Development Status | |
---|---|---|---|---|
1 | 1609.2 | 1610.5 | 0.591 | Sandstone section |
2 | 1610.5 | 1611.7 | 0.565 | Sandstone section |
3 | 1611.7 | 1613.1 | 0.767 | Interlayer development |
4 | 1613.1 | 1615.9 | 0.579 | Sandstone section |
5 | 1615.9 | 1618.5 | 0.891 | Interlayer development |
6 | 1618.5 | 1620.8 | 0.224 | Sandstone section |
7 | 1620.8 | 1623.1 | 0.149 | Sandstone section |
8 | 1623.1 | 1624.9 | 0.155 | Sandstone section |
9 | 1624.9 | 1626.2 | 0.079 | Sandstone section |
10 | 1626.2 | 1628.0 | 0.425 | Sandstone section |
11 | 1628.0 | 1629.3 | 0.547 | Sandstone section |
12 | 1629.3 | 1630.7 | 0.548 | Sandstone section |
13 | 1630.7 | 1631.9 | 0.737 | Interlayer development |
14 | 1631.9 | 1634.9 | 0.829 | Interlayer development |
Threshold | Manually Identified Interlayer Number | Automatically Identified Interlayer Number |
---|---|---|
Reservoir Characteristics | Reservoir Burial Depth (m) | −1438~−1822 |
Initial Formation Pressure (MPa) | 14.7~18.1 | |
Saturation Pressure (MPa) | 0.207~0.752 | |
Reservoir Temperature (°C) | 68.2~82.2 | |
Permeability (10−3 μm2) | 1255.8~6042.7 | |
Porosity (%) | 21.5~31.5 | |
Rock Compressibility Coefficient (MPa−1) | 4.859 | |
Fluid Characteristics | Surface Crude Oil Density (g/cm3) | 0.90~0.96 |
Formation Crude Oil Viscosity (mPa·s) | 31.71~137.98 | |
Initial Solution Gas–Oil Ratio (m3/m3) | 0.03~1.07 | |
Crude Oil Volume Factor | 1.037~1.043 | |
Crude Oil Compressibility Coefficient (MPa−1) | 7.73 × 10−4~1.03 × 10−3 | |
Water Density (g/cm3) | 1.029 | |
Water Viscosity (mPa·s) | 0.3 | |
Water Compressibility Coefficient (MPa−1) | 4.375 × 10−4 | |
Gas Relative Density | 0.86~1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Li, J.; Lei, Y.; Fan, Z.; Suo, M.; Wang, Q.; Liu, X.; Xue, Y. The Study of Interlayer Identification Based on Well Logging Curve Units. Processes 2025, 13, 425. https://doi.org/10.3390/pr13020425
Chen S, Li J, Lei Y, Fan Z, Suo M, Wang Q, Liu X, Xue Y. The Study of Interlayer Identification Based on Well Logging Curve Units. Processes. 2025; 13(2):425. https://doi.org/10.3390/pr13020425
Chicago/Turabian StyleChen, Shoumin, Junjian Li, Yan Lei, Zhi Fan, Ma Suo, Qin Wang, Xiaoqi Liu, and Yongchao Xue. 2025. "The Study of Interlayer Identification Based on Well Logging Curve Units" Processes 13, no. 2: 425. https://doi.org/10.3390/pr13020425
APA StyleChen, S., Li, J., Lei, Y., Fan, Z., Suo, M., Wang, Q., Liu, X., & Xue, Y. (2025). The Study of Interlayer Identification Based on Well Logging Curve Units. Processes, 13(2), 425. https://doi.org/10.3390/pr13020425