Metallogels as Supramolecular Platforms for Biomedical Applications: A Review
Abstract
1. Introduction
2. Drug Delivery and Anticancer Applications
3. Antibacterial, Antioxidant, and Wound Healing Metallogels
4. Biosensing, Luminescent, and Imaging Metallogels
5. Biocompatible Scaffolds and Tissue Engineering
6. Future Perspectives and Translational Challenges
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AIE | Aggregation-Induced Emission |
| AA | Ascorbic Acid |
| ALHS(s) | Artificial Light-Harvesting System(s) |
| AzoPz | Arylazopyrazole (molecular photoswitch) |
| BAX | Bcl-2-associated X Protein (pro-apoptotic marker) |
| BCL2 | B-cell Lymphoma 2 (anti-apoptotic protein) |
| BDP/BODIPY | Boron-dipyrromethene (fluorescent dye) |
| BIPY | 2,2′-Bipyridine-4,4′-dicarboxaldehyde |
| CMCS | Carboxymethyl Chitosan |
| CuG/PdG/Ru(II)G5 | Copper/Palladium/Ruthenium-based metallogel |
| DIC | Diclofenac |
| DMF | N,N-Dimethylformamide |
| DMSO | Dimethyl Sulfoxide |
| DOX | Doxorubicin |
| ECM | Extracellular Matrix |
| EDX | Energy-Dispersive X-ray Spectroscopy |
| ESI-MS | Electrospray Ionization Mass Spectrometry |
| FESEM | Field Emission Scanning Electron Microscopy |
| FEN | Fenoprofen |
| FITC | Fluorescein Isothiocyanate |
| FLU | Flufenamic Acid |
| FT-IR | Fourier Transform Infrared Spectroscopy |
| GEM | Gemcitabine |
| GMP | Good Manufacturing Practice |
| GMP/5′-GMP | Guanosine-5′-Monophosphate |
| G5 | Low-molecular-weight carboxylic acid gelator |
| H6L | 5,5′,5″-(1,3,5-Triazine-2,4,6-triyl)tris(azanediyl)triisophthalate |
| HEK 293 | Human Embryonic Kidney 293 cell line |
| Hg-SA | Mercury(II)-Succinic Acid Metallogel |
| HRTEM | High-Resolution Transmission Electron Microscopy |
| IC50 | Half Maximal Inhibitory Concentration |
| IBU | Ibuprofen |
| ImF | Imidazole-functionalized Phenylalanine |
| L2 | 5-Azido-N,N′-dipyridin-3-yl-isophthalamide (ligand) |
| MCF-7 | Human Breast Cancer Cell Line |
| MEC | Meclofenamic Acid |
| MEF | Mefenamic Acid |
| Mg-Tetrakis | Mg(II)-Tetrakis(2-hydroxyethyl)ethylenediamine Hydrogel |
| MOC | Metal–Organic Cage |
| MOF | Metal–Organic Framework |
| MOG | Manganese(II)-Based Metallohydrogel |
| MOG_IND | MOG loaded with Indomethacin |
| MOG_GEM | MOG loaded with Gemcitabine |
| MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide Assay |
| NAP | Naproxen |
| Ni-AA/Co-AA | Nickel/Cobalt Adipic Acid Metallogel |
| Ni/Zn/Cu/Fe | Nickel/Zinc/Copper/Iron (metal centres) |
| NOXA | Phorbol-12-myristate-13-acetate-induced protein 1 (pro-apoptotic marker) |
| NSAIDs | Non-Steroidal Anti-Inflammatory Drugs |
| NMR | Nuclear Magnetic Resonance |
| P | Bi-benzimidazole compound (light-harvesting donor) |
| PBS | Phosphate-Buffered Saline |
| Pd(II) | Palladium(II) |
| Pd2L24 | Palladium-based metal–organic cage |
| PCA | Principal Component Analysis |
| PXRD | Powder X-ray Diffraction |
| RAW 264.7 | Murine Macrophage Cell Line |
| Rh6G | Rhodamine 6G |
| ROS | Reactive Oxygen Species |
| Ru(II)L | Ruthenium(II) complex released from Ru(II)G5 gel |
| SH-SY5Y | Human Neuroblastoma Cell Line |
| TABTA | N(1),N(3),N(5)-tris(4-aminophenyl)benzene-1,3,5-tricarboxamide |
| TEM | Transmission Electron Microscopy |
| Th4+/Tb3+ | Thorium(IV)/Terbium(III) |
| THTA-G | Tripodal Hydrogel (TH + TA co-assembly) |
| TH/TA | Tri-(isoniazid-4-yl)- and Tri-(pyridine-4-yl)-functionalized Trimesic Derivatives |
| Tetrakis | N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine |
| UV–vis | Ultraviolet–Visible Spectroscopy |
| VRE | Vancomycin-Resistant Enterococcus |
| Zn(II)-NSAID | Zinc(II)-Non-Steroidal Anti-Inflammatory Drug Complex |
| Zn2+/Cu2+/Mn2+/Mg2+ | Metal Ions: Zinc, Copper, Manganese, Magnesium |
| Zr4+ | Zirconium(IV) |
| XRD | X-ray Diffraction |
References
- Liu, Z.; Zhao, X.; Chu, Q.; Feng, Y. Recent Advances in Stimuli-Responsive Metallogels. Molecules 2023, 28, 2274. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.Y.Y.; Yam, V.W.W. Recent Advances in Metallogels. Chem. Soc. Rev. 2013, 42, 1540–1567. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, J.; Kjøniksen, A.L.; Wang, W.; Zhang, Y.; Ma, J. Metallogels: Availability, Applicability, and Advanceability. Adv. Mater. 2019, 31, 1806204. [Google Scholar] [CrossRef]
- Mikhailidi, A.; Ungureanu, E.; Belosinschi, D.; Tofanica, B.-M.; Volf, I. Cellulose-Based Metallogels—Part 3: Multifunctional Materials. Gels 2023, 9, 878. [Google Scholar] [CrossRef]
- Mondal, S.; Ray, J.; Sarma, D. Metallogels as Functional Catalysts: Bridging Soft Materials with Sustainable Transformations. ChemCatChem 2025, 17, e00640. [Google Scholar] [CrossRef]
- Case, D.R.; Zubieta, J.; P Doyle, R. The Coordination Chemistry of Bio-Relevant Ligands and Their Magnesium Complexes. Molecules 2020, 25, 3172. [Google Scholar] [CrossRef]
- Sutar, P.; Kumar Maji, T. Recent Advances in Coordination-Driven Polymeric Gel Materials: Design and Applications. Dalton Trans. 2020, 49, 7658–7672. [Google Scholar] [CrossRef]
- Peptide Supramolecular Self-Assembly: Regulatory Mechanism, Functional Properties, and Its Application in Foods. J. Agric. Food Chem. 2024, 72, 5526–5541. [CrossRef]
- Nazarova, A.; Shurpik, D.; Padnya, P.; Mukhametzyanov, T.; Cragg, P.; Stoikov, I. Self-Assembly of Supramolecular Architectures by the Effect of Amino Acid Residues of Quaternary Ammonium Pillar [5]Arenes. Int. J. Mol. Sci. 2020, 21, 7206. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Clavijo, D.F.C.; Medina, E.; Sinche, F.; Santiago Vispo, N.; Dahoumane, S.A.; Alexis, F. Biomedical Science to Tackle the COVID-19 Pandemic: Current Status and Future Perspectives. Molecules 2020, 25, 4620. [Google Scholar] [CrossRef] [PubMed]
- Vicidomini, C.; Roviello, G.N. Therapeutic Convergence in Neurodegeneration: Natural Products, Drug Repurposing, and Biomolecular Targets. Biomolecules 2025, 15, 1333. [Google Scholar] [CrossRef]
- Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of Protein Binding by a Nucleopeptide Based on a Thyminedecorated L-Diaminopropanoic Acid through CD and In Silico Studies. Curr. Med. Chem. 2021, 28, 5004–5015. [Google Scholar] [CrossRef]
- Panja, P.; Ghosh, U.; Sil, A.; K Patra, S. A Highly Selective Cu2+-Coordination Triggered Multi-Stimuli Responsive and Functional Metallogel of Bis-Terpyridyl-Based Low Molecular Weight (LMW) Gelator. Dalton Trans. 2025, 54, 14687–14700. [Google Scholar] [CrossRef]
- Preet, K.; Kumar, R.; Kaur, L.; Roy, S.; Sahoo, S.C.; Salunke, D.B. Competition in Formation of Stimuli-Responsive Metallogel and Coordination Polymers from a Single Precursor: Synthesis, Characterization and Catalytic Application. J. Mol. Struct. 2024, 1310, 138316. [Google Scholar] [CrossRef]
- Costanzo, M.; Roviello, G.N. Precision Therapeutics Through Bioactive Compounds: Metabolic Reprogramming, Omics Integration, and Drug Repurposing Strategies. Int. J. Mol. Sci. 2025, 26, 10047. [Google Scholar] [CrossRef]
- Fu, H.L.-K.; Yam, V.W.-W. Supramolecular Metallogels of Platinum(II) and Gold(III) Complexes. Chem. Lett. 2018, 47, 605–610. [Google Scholar] [CrossRef]
- Singha, T.; Pal, B.; Majumdar, S.; Lepcha, G.; Pal, I.; Ray, P.P.; Dey, B.; Datta, P.K. Optical Nonlinearity of Semiconducting Cd(II) Metallogel in the Femtosecond Regime with Two-, Three-, and Four-Photon Absorption. ACS Appl. Opt. Mater. 2024, 2, 474–484. [Google Scholar] [CrossRef]
- Pal, I.; Pathak, N.K.; Majumdar, S.; Lepcha, G.; Dey, A.; Yatirajula, S.K.; Tripathy, U.; Dey, B. Solvent-Driven Variations of Third-Order Nonlinear Thermo-Optical Features of Glutaric Acid-Directed Self-Healing Supramolecular Ni(II) Metallogels. Langmuir 2023, 39, 16584–16595. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Zhu, S.; Qu, M.; Liu, R.; Song, G.; Zhu, H. 1,3,5-Triazine-Based Pt(II) Metallogel Material: Synthesis, Photophysical Properties, and Optical Power-Limiting Performance. J. Phys. Chem. C 2019, 123, 15685–15692. [Google Scholar] [CrossRef]
- Shi, H.; Li, R.; Ren, Y.; Gan, S.; Zhu, S.; Liu, R. Synthesis, Self-Healing and Optical Power Limiting Properties of Pt(II) Metallogel Based on Reversible Quadruple Hydrogen Bonding. Dye. Pigment. 2025, 242, 112980. [Google Scholar] [CrossRef]
- Majumdar, S.; Sil, S.; Sahu, R.; Ghosh, M.; Lepcha, G.; Dey, A.; Mandal, S.; Pratim Ray, P.; Dey, B. Electronic Charge Transport Phenomena Directed Smart Fabrication of Metal-Semiconductor Based Electronic Junction Device by a Supramolecular Mn(II)-Metallogel. J. Mol. Liq. 2021, 338, 116769. [Google Scholar] [CrossRef]
- Dhibar, S.; Dey, A.; Majumdar, S.; Ghosh, D.; Mandal, A.; Pratim Ray, P.; Dey, B. A Supramolecular Cd(Ii)-Metallogel: An Efficient Semiconductive Electronic Device. Dalton Trans. 2018, 47, 17412–17420. [Google Scholar] [CrossRef]
- Sedghiniya, S.; Soleimannejad, J.; Blake, A.J. A Low Molecular Weight Zr(IV) Metallogel for Protein Delivery. Mater. Today Commun. 2021, 27, 102448. [Google Scholar] [CrossRef]
- Choudhary, P.; Gaur, R.; Rambabu, D.; Dhir, A.; Gupta, A.; Pooja. Copper Metallogel as Potential Drug Carrier for Anti-Inflammatory Drugs. ChemistrySelect 2021, 6, 9139–9143. [Google Scholar] [CrossRef]
- dos Santos Batista, J.G.; Vigilato Rodrigues, M.Á.; de Freitas, L.F.; Moreira Fonseca, A.C.; de Souza Rodrigues, A.; Cunha da Cruz, C.P.; Thipe, V.C.; Lugão, A.B. Copper-Based Nanomaterials for Biologically Relevant Compounds. In Copper-Based Nanomaterials in Organic Transformations; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2024; Volume 1466, pp. 305–338. [Google Scholar]
- Biswas, P.; Dastidar, P. Anchoring Drugs to a Zinc(II) Coordination Polymer Network: Exploiting Structural Rationale toward the Design of Metallogels for Drug-Delivery Applications. Inorg. Chem. 2021, 60, 3218–3231. [Google Scholar] [CrossRef] [PubMed]
- Afzal, S.; Maswal, M.; Lone, M.S.; Ashraf, U.; Mushtaq, U.; Dar, A.A. Metal–Ligand-Based Thixotropic Self-Healing Poly (Vinyl Alcohol) Metallohydrogels: Their Application in pH-Responsive Drug Release and Selective Adsorption of Dyes. J. Mater. Res. 2021, 36, 3293–3308. [Google Scholar] [CrossRef]
- Borah, S.T.; Mondal, A.; Das, B.; Saha, S.; Das Sarma, J.; Gupta, P. β-Cyclodextrin Encapsulated Platinum(II)-Based Nanoparticles: Photodynamic Therapy and Inhibition of the NF-κB Signaling Pathway in Glioblastoma. ACS Appl. Bio Mater. 2025, 8, 3331–3342. [Google Scholar] [CrossRef]
- Xu, J.; Wang, J.; Ye, J.; Jiao, J.; Liu, Z.; Zhao, C.; Li, B.; Fu, Y. Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics. Adv. Sci. 2021, 8, 2101101. [Google Scholar] [CrossRef] [PubMed]
- Dhibar, S.; Some, S.; Pal, S.; Laha, R.; Kaith, P.; Trivedi, A.; Bhattacharjee, S.; N Nthunya, L.; O Ajiboye, T.; Kumar Panja, S.; et al. Investigating the Potent Antimicrobial Properties of a Supramolecular Zn(Ii)-Metallogel Formed from an Isophthalic Acid-Based Low Molecular Weight Gelator. RSC Adv. 2025, 15, 27544–27550. [Google Scholar] [CrossRef]
- Dhibaris, S.; Pal, S.; Some, S.; Karmakar, K.; Saha, R.; Bhattacharjee, S.; Roy, A.; Jyoti Ray, S.; O Ajiboye, T.; Dam, S.; et al. Efficient Antimicrobial Applications of Two Novel Supramolecular Metallogels Derived from a l (+)-Tartaric Acid Low Molecular Weight Gelator. RSC Adv. 2024, 14, 26354–26361. [Google Scholar] [CrossRef]
- Fortunato, A.; Mba, M. Metal Cation Triggered Peptide Hydrogels and Their Application in Food Freshness Monitoring and Dye Adsorption. Gels 2021, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.A.; Piepenbrock, M.-O.M.; Lloyd, G.O.; Clarke, N.; Howard, J.A.K.; Steed, J.W. Anion-Switchable Supramolecular Gels for Controlling Pharmaceutical Crystal Growth. Nat. Chem. 2010, 2, 1037–1043. [Google Scholar] [CrossRef]
- Anh, H.T.P.; Huang, C.-M.; Huang, C.-J. Intelligent Metal-Phenolic Metallogels as Dressings for Infected Wounds. Sci. Rep. 2019, 9, 11562. [Google Scholar] [CrossRef]
- Legrand, A.; Liu, L.-H.; Royla, P.; Aoyama, T.; Craig, G.A.; Carné-Sánchez, A.; Urayama, K.; Weigand, J.J.; Lin, C.-H.; Furukawa, S. Spatiotemporal Control of Supramolecular Polymerization and Gelation of Metal-Organic Polyhedra. J. Am. Chem. Soc. 2021, 143, 3562–3570. [Google Scholar] [CrossRef]
- Piepenbrock, M.-O.M.; Clarke, N.; Steed, J.W. Metal Ion and Anion-Based “Tuning” of a Supramolecular Metallogel. Langmuir 2009, 25, 8451–8456. [Google Scholar] [CrossRef] [PubMed]
- Lepcha, G.; Pal, B.; Majumdar, S.; Ahmed, K.T.; Pal, I.; Biswas, S.R.; Ray, P.P.; Dey, B. Ni(II) and Zn(II)-Metallogel-Based Anti-Bacterial Scaffolds for Fabricating Light-Responsive Junction-Type Semiconducting Diodes with Non-Ohmic Conduction Mechanism. Mater. Adv. 2023, 4, 2595–2603. [Google Scholar] [CrossRef]
- Yee, Z.L. Human Hair Keratin Gradient Metallogel and Their Applications for Wound Healing. Ph.D. Thesis, Nanyang Technological University, Singapore, 2024. [Google Scholar]
- Puttreddy, R.; Thongrom, B.; Rautiainen, J.M.; Lahtinen, M.; Kukkonen, E.; Haag, R.; Moilanen, J.O.; Lundell, J.; Rissanen, K. Free-Standing Supramolecular Pyridine N-Oxide-Silver(I) Metallogels. Adv. Mater. 2025, 37, e2502818. [Google Scholar] [CrossRef]
- Dhibar, S.; Halder, S.; Pal, S.; Kumari, D.; Karmakar, K.; Saha, R.; Bhattacharjee, S.; Mohan, A.; Ajiboye, T.O.; Ray, S.J.; et al. Development of a Bioactive Supramolecular Cobalt(II)-Metallogel for Antimicrobial and Semiconducting Microelectronic Device Applications. Langmuir 2025, 41, 16777–16785. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, A.K.; Rohilla, K.; Verma, N.; Sharma, B. A Multistimuli Responsive and Self-Healing Zn(Ii)-Inosine Supramolecular Metal-Organic Gel: Phase Selective Gelation and Application as a Light-Responsive Schottky Barrier Diode. Nanoscale Adv. 2025, 7, 1923–1936. [Google Scholar] [CrossRef]
- Sarkar, K.; Dastidar, P. Rational Approach Towards Designing Metallogels From a Urea-Functionalized Pyridyl Dicarboxylate: Anti-Inflammatory, Anticancer, and Drug Delivery. Chem. Asian J. 2019, 14, 194–204. [Google Scholar] [CrossRef]
- Roviello, G.N.; Roviello, V.; Autiero, I.; Saviano, M. Solid Phase Synthesis of TyrT, a Thymine–Tyrosine Conjugate with Poly(A) RNA-Binding Ability. RSC Adv. 2016, 6, 27607–27613. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Liu, S.-N.; Wu, L.-H.; Cai, S.-L.; Zheng, S.-R. Strategies for the Construction of Functional Materials Utilizing Presynthesized Metal-Organic Cages (MOCs). ChemPlusChem 2022, 87, e202200172. [Google Scholar] [CrossRef]
- Zeng, Q.-W.; Hu, L.; Niu, Y.; Wang, D.; Kang, Y.; Jia, H.; Dou, W.-T.; Xu, L. Metal-Organic Cages for Gas Adsorption and Separation. Chem. Commun. 2024, 60, 3469–3483. [Google Scholar] [CrossRef]
- Guan, J.; Du, J.; Sun, Q.; He, W.; Ma, J.; Hassan, S.U.; Wu, J.; Zhang, H.; Zhang, S.; Liu, J. Metal-Organic Cages Improving Microporosity in Polymeric Membrane for Superior CO2 Capture. Sci. Adv. 2025, 11, eads0583. [Google Scholar] [CrossRef]
- Bera, S.; Dutta, A.; Dastidar, P. Developing Supramolecular Metallogel Derived from Pd2L4 Cage Molecule for Delivering an Anti-Cancer Drug to Melanoma Cell B16−F10. Chem.–Asian J. 2024, 19, e202400419. [Google Scholar] [CrossRef]
- Bera, S.; Datta, H.K.; Dastidar, P. Nitrile-Containing Terpyridyl Zn(II)-Coordination Polymer-Based Metallogelators Displaying Helical Structures: Synthesis, Structures, and “Druglike” Action against B16-F10 Melanoma Cells. ACS Appl. Mater. Interfaces 2023, 15, 25098–25109. [Google Scholar] [CrossRef]
- Saha, D.; Talukdar, D.; Pal, I.; Majumdar, S.; Lepcha, G.; Sadhu, S.; Yatirajula, S.K.; Das, G.; Dey, B. Mechanically Flexible Self-Healing Mg(II)-Metallogel: Approach of Triggering the ROS-Induced Apoptosis in Human Breast Cancer Cells. Langmuir 2024, 40, 19816–19829. [Google Scholar] [CrossRef]
- Dutta, M.; Banerjee, S.; Mandal, M.; Bhattacharjee, M. A Self-Healable Metallohydrogel for Drug Encapsulations and Drug Release. RSC Adv. 2023, 13, 15448–15456. [Google Scholar] [CrossRef]
- Malviya, N.; Sonkar, C.; Ganguly, R.; Bhattacherjee, D.; Bhabak, K.P.; Mukhopadhyay, S. Novel Approach to Generate a Self-Deliverable Ru(II)-Based Anticancer Agent in the Self-Reacting Confined Gel Space. ACS Appl. Mater. Interfaces 2019, 11, 47606–47618. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.; Datta, H.K.; Dastidar, P. Multi-NSAID-Based Zn(II) Coordination Complex-Derived Metallogelators/Metallogels as Plausible Multi-Drug Self-Delivery Systems. Chem. Commun. 2022, 58, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Dastidar, P. Designing Metallogelators Derived from NSAID-Based Zn(II) Coordination Complexes for Drug-Delivery Applications. Chem. Asian J. 2020, 15, 3558–3567. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pérez, R.; Newman-Portela, A.M.; Ruiz-Fresneda, M.A. Emerging Global Trends in Next-Generation Alternatives to Classic Antibiotics for Combatting Multidrug-Resistant Bacteria. J. Clean. Prod. 2024, 478, 143895. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Yan, Z.; Ji, S.; Xiao, S.; Gao, J. Metal Nanoparticle Hybrid Hydrogels: The State-of-the-Art of Combining Hard and Soft Materials to Promote Wound Healing. Theranostics 2024, 14, 1534–1560. [Google Scholar] [CrossRef] [PubMed]
- Clarkin, O.M.; Wu, B.; Cahill, P.A.; Brougham, D.F.; Banerjee, D.; Brady, S.A.; Fox, E.K.; Lally, C. Novel Injectable Gallium-Based Self-Setting Glass-Alginate Hydrogel Composite for Cardiovascular Tissue Engineering. Carbohydr. Polym. 2019, 217, 152–159. [Google Scholar] [CrossRef]
- Brady, S.A.; Fox, E.K.; Lally, C.; Clarkin, O.M. Optimisation of a Novel Glass-Alginate Hydrogel for the Treatment of Intracranial Aneurysms. Carbohydr. Polym. 2017, 176, 227–235. [Google Scholar] [CrossRef]
- Umesh; Chandran, V.C.; Saha, P.; Nath, D.; Bera, S.; Bhattacharya, S.; Pal, A. A Hydrogel Based on Fe(II)-GMP Demonstrates Tunable Emission, Self-Healing Mechanical Strength and Fenton Chemistry-Mediated Notable Antibacterial Properties. Nanoscale 2024, 16, 13050–13060. [Google Scholar] [CrossRef]
- Dhibar, S.; Pal, S.; Some, S.; Karmakar, K.; Saha, R.; Bhattacharjee, S.; Kumari, D.; Mohan, A.; Ajiboye, T.O.; Ray, S.J.; et al. Exploring the Efficient Antimicrobial Applications of a Novel Supramolecular Hg(II)-Metallogel Derived from Succinic Acid Acting as a Low Molecular Weight Gelator. RSC Adv. 2025, 15, 5214–5219. [Google Scholar] [CrossRef]
- Dhibar, S.; Pal, S.; Karmakar, K.; Hafiz, S.A.; Bhattacharjee, S.; Roy, A.; Rahaman, S.K.M.; Ray, S.J.; Dam, S.; Saha, B. Two Novel Low Molecular Weight Gelator-Driven Supramolecular Metallogels Efficient in Antimicrobial Activity Applications. RSC Adv. 2023, 13, 32842–32849. [Google Scholar] [CrossRef]
- Pal, I.; Majumdar, S.; Lepcha, G.; Ahmed, K.T.; Yatirajula, S.K.; Bhattacharya, S.; Chakravarti, R.; Bhattacharya, B.; Biswas, S.R.; Dey, B. Exploration of Variable Solvent Directed Self-Healable Supramolecular M(II)-Metallogels (M = Co, Ni, Zn) of Azelaic Acid: Investigating Temperature-Dependent Ion Conductivity and Antibacterial Efficiency. ACS Appl. Bio Mater. 2023, 6, 5442–5457. [Google Scholar] [CrossRef]
- Lepcha, G.; Majumdar, S.; Pal, B.; Ahmed, K.T.; Pal, I.; Satpati, B.; Biswas, S.R.; Dey, B. Suberic Acid-Based Supramolecular Metallogels of Ni(II), Zn(II), and Cd(II) for Anti-Pathogenic Activity and Semiconducting Diode Fabrication. Langmuir 2023, 39, 7469–7483. [Google Scholar] [CrossRef]
- Bora, A.; Munjal, R.; Chakraborty, A.; Meena, L.; Chathangad, S.N.; Sadhukhan, S.; Mukhopadhyay, S. Design and Synthesis of Ibuprofen-Based Self-Deliverable Hybrid Gel Systems: Stabilization of Silver Nanoparticles, Antibacterial and Self-Healing Properties. ACS Appl. Bio Mater. 2025, 8, 6159–6176. [Google Scholar] [CrossRef] [PubMed]
- Some, S.; Das, P.; Pal, S.; Dhibar, S.; Kumari, D.; Bhattacharjee, S.; Ray, S.J.; Ajiboye, T.O.; Dam, S.; Ray, P.P.; et al. Development of a Semiconducting Supramolecular Copper(II)–Metallogel for Antimicrobial and Microelectronic Device Applications. RSC Adv. 2025, 15, 18392–18402. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bhattacharyya, T.; Khanra, S.; Banerjee, R.; Dash, J. Nucleoside-Derived Metallohydrogel Induces Cell Death in Leishmania Parasites. ACS Infect. Dis. 2023, 9, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Mikhailidi, A.; Volf, I.; Belosinschi, D.; Tofanica, B.-M.; Ungureanu, E. Cellulose-Based Metallogels—Part 1: Raw Materials and Preparation. Gels 2023, 9, 390. [Google Scholar] [CrossRef]
- Kuosmanen, R.; Rissanen, K.; Sievänen, E. Steroidal Supramolecular Metallogels. Chem. Soc. Rev. 2020, 49, 1977–1998. [Google Scholar] [CrossRef]
- Li, X.; Jin, Y.; Zhu, N.; Yin, J.; Jin, L.Y. Recent Developments of Fluorescence Sensors Constructed from Pillar[n]Arene-Based Supramolecular Architectures Containing Metal Coordination Sites. Sensors 2024, 24, 1530. [Google Scholar] [CrossRef] [PubMed]
- Panja, S.; Panja, A.; Ghosh, K. Supramolecular Gels in Cyanide Sensing: A Review. Mater. Chem. Front. 2021, 5, 584–602. [Google Scholar] [CrossRef]
- Moral, R.; Das, G. An Expedition towards Designing of Luminescent Supramolecular Metallogels for Chemosensing Applications. Inorganica Chim. Acta 2025, 581, 122635. [Google Scholar] [CrossRef]
- Mehwish, N.; Dou, X.; Zhao, Y.; Feng, C.-L. Supramolecular Fluorescent Hydrogelators as Bio-Imaging Probes. Mater. Horiz. 2019, 6, 14–44. [Google Scholar] [CrossRef]
- Das, A.K.; Gavel, P.K. Low Molecular Weight Self-Assembling Peptide-Based Materials for Cell Culture, Antimicrobial, Anti-Inflammatory, Wound Healing, Anticancer, Drug Delivery, Bioimaging and 3D Bioprinting Applications. Soft Matter 2020, 16, 10065–10095. [Google Scholar] [CrossRef]
- Gnaim, S.; Scomparin, A.; Eldar-Boock, A.; Bauer, C.R.; Satchi-Fainaro, R.; Shabat, D. Light Emission Enhancement by Supramolecular Complexation of Chemiluminescence Probes Designed for Bioimaging. Chem. Sci. 2019, 10, 2945–2955. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, X.; Zhou, Q.; Lu, S.; Zhang, X.; Liao, Y.; Yang, Y.; Wang, H. Carboxymethyl Chitosan–promoted Luminescence of Lanthanide Metallogel and Its Application in Assay of Multiple Metal Ions. Carbohydr. Polym. 2021, 263, 117986. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Zhu, W.; Zhao, Q.; Qu, W.-J.; Yao, H.; Wei, T.-B.; Lin, Q. Th4+ Tuned Aggregation-Induced Emission: A Novel Strategy for Sequential Ultrasensitive Detection and Separation of Th4+ and Hg2. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117926. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, Y.; Ren, T.; Tang, J.; Gao, Y.; Geng, Y.; Zhang, J.; Ma, X. Construction of Artificial Light-Harvesting Systems Based on Aggregation-Induced Emission Type Supramolecular Self-Assembly Metallogels. Langmuir 2023, 39, 1103–1110. [Google Scholar] [CrossRef]
- Sallee, A.; Ghebreyessus, K. Photoresponsive Zn2+-Specific Metallohydrogels Coassembled from Imidazole Containing Phenylalanine and Arylazopyrazole Derivatives. Dalton Trans. 2020, 49, 10441–10451. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Dong, X.; Xiong, Y.; Zhou, Q.; Lu, S.; Liao, Y.; Yang, Y.; Wang, H. A Heat-Set Lanthanide Metallogel Capable of Emitting Stable Luminescence under Thermal, Mechanical and Water Stimuli. Dalton Trans. 2020, 49, 2827–2832. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Shen, F.-J.; Li, Y.-J.; Pang, X.-L.; Zhang, C.; Ren, J.-J.; Yu, X.-D. A Zr-Cluster Based Thermostable, Self-Healing and Adaptive Metallogel with Chromogenic Properties Responds to Multiple Stimuli with Reversible Radical Interaction. Chem. Commun. 2020, 56, 2439–2442. [Google Scholar] [CrossRef] [PubMed]
- Dey, B.; Saha, D.; Bhattacharjee, B.; Sadhu, S.; Dey, R.; Yatirajula, S.K.; Chakrovorty, A.; Samadder, A. Self-Repairing Metallosupramolecular Soft Flexible Scaffolds with Different Gel-Immobilized Media: Study of Rheo-Reversibile Systems toward Cytochrome c and Bcl2 Protein-Mediated Apoptotic Cascades in Cancer Cells. Langmuir 2025, 41, 21107–21124. [Google Scholar] [CrossRef] [PubMed]
- Picci, G.; Caltagirone, C.; Garau, A.; Lippolis, V.; Milia, J.; Steed, J.W. Metal-Based Gels: Synthesis, Properties, and Applications. Coord. Chem. Rev. 2023, 492, 215225. [Google Scholar] [CrossRef]
- Janarthanan, G.; Noh, I. Recent Trends in Metal Ion Based Hydrogel Biomaterials for Tissue Engineering and Other Biomedical Applications. J. Mater. Sci. Technol. 2021, 63, 35–53. [Google Scholar] [CrossRef]
- Tian, R.; Qiu, X.; Yuan, P.; Lei, K.; Wang, L.; Bai, Y.; Liu, S.; Chen, X. Fabrication of Self-Healing Hydrogels with On-Demand Antimicrobial Activity and Sustained Biomolecule Release for Infected Skin Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 17018–17027. [Google Scholar] [CrossRef] [PubMed]
- Yavvari, P.S.; Pal, S.; Kumar, S.; Kar, A.; Awasthi, A.K.; Naaz, A.; Srivastava, A.; Bajaj, A. Injectable, Self-Healing Chimeric Catechol-Fe(III) Hydrogel for Localized Combination Cancer Therapy. ACS Biomater. Sci. Eng. 2017, 3, 3404–3413. [Google Scholar] [CrossRef]
- Swamy, B.Y.; Yun, Y.-S. In Vitro Release of Metformin from Iron (III) Cross-Linked Alginate–Carboxymethyl Cellulose Hydrogel Beads. Int. J. Biol. Macromol. 2015, 77, 114–119. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Xue, H.; Li, L.; Liu, X.; Yang, L.; Gu, Z.; Cheng, Y.; Li, Y.; Huang, Q. An Injectable All-Small-Molecule Dynamic Metallogel for Suppressing Sepsis. Mater. Horiz. 2023, 10, 1789–1794. [Google Scholar] [CrossRef]
- Su, W.-T.; Chou, W.-L.; Chou, C.-M. Osteoblastic Differentiation of Stem Cells from Human Exfoliated Deciduous Teeth Induced by Thermosensitive Hydrogels with Strontium Phosphate. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 52, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Feng, Q.; Xu, J.; Xu, X.; Tian, F.; . Yeung, K.W.K.; Bian, L. Self-Assembled Injectable Nanocomposite Hydrogels Stabilized by Bisphosphonate-Magnesium (Mg2+) Coordination Regulates the Differentiation of Encapsulated Stem Cells via Dual Crosslinking. Adv. Funct. Mater. 2017, 27, 1701642. [Google Scholar] [CrossRef]



| Ligand | Gelation Class | Metal Centre(s) | Encapsulated or Active Drug(s) | Biomedical Application | Ref. |
|---|---|---|---|---|---|
| 3,3′-bispyridyl-bis-amide derivative | Low-molecular-weight gelator | Pd2+ | Doxorubicin (DOX) | Drug delivery | [47] |
| 1,3- dipyridin-3-ylurea | Low-molecular-weight gelator | Zn2+ | Ibuprofen, Naproxen, Fenoprofen, Diclofenac, Meclofenamic acid, Mefenamic acid | Drug delivery and cell-imaging | [26] |
| nitrile-functionalized terpyridyl/dicarboxylic acids | Low-molecular-weight gelator | Cu+/Zn2+ | Self-delivery (no external drug) | Drug delivery | [48] |
| N,N,N′N′-tetrakis- (2-hydroxy-ethyl)ethylenediamine | Low-molecular-weight gelator | Mg2+ | No external drug (intrinsic anticancer activity) | Therapy | [49] |
| 2-hydroxy-benzyl)amino aspartic acid | Low-molecular-weight gelator | Mn2+ | Indomethacin (IND) and Gemcitabine (GEM) | Drug delivery | [50] |
| 3,5-bis((4-(cyanomethyl)phenyl)carbamoyl)benzoic acid | Low-molecular-weight gelator | Ru2+ | Self-delivery (Ru complex formed in situ) | Drug delivery | [51] |
| 3-pyridyl amide ligand derived from a non-steroidal-anti-inflammatory-drug | Low-molecular-weight gelator | Zn2+ | Multi-NSAID coordination (no additional drug) | Drug delivery | [52] |
| N-phenyl-3-pyridylamide and N-phenyl-4-pyridylamide/ non-steroidal-anti-inflammatory-drug | Low-molecular-weight gelator | Zn2+ | No external drug (NSAID coordinated) | Therapy | [53] |
| System/ Composition | Metal Centre(s) | Key Molecular Components/Mechanism | Stimuli/Functional Property and Key Application | Ref. |
|---|---|---|---|---|
| H6L/Tb3+/CMCS hybrid metallogel | Tb3+ | 5,5′,5″-(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)triisophthalate (H6L) + carboxymethyl chitosan (CMCS) | pH-responsive luminescence (×9 quantum yield, lifetime). Photonic and biosensing metal-ion detection. | [74] |
| THTA-G/Th4+ metallogel | Th4+/Hg2+ | Tripodal acylhydrazine (TH) + amide (TA) co-assembly | Th4+-triggered AIE “turn-on” fluorescence. Ion sensing and separation. | [75] |
| P–Al3+ metallogel (ALHS) | Al3+ | Bi-benzimidazole compound (P) + Rh6G/BODIPY energy acceptors | AIE and donor–acceptor energy transfer processes. Artificial Light-Harvesting Systems (ALHSs). | [76] |
| Zn2+-based hybrid photoresponsive metallogel | Zn2+ | Imidazole-functionalized phenylalanine (ImF) + arylazopyrazole (AzoPz) | UV light-triggered reversible gel–sol. Photo-responsive optical and controlled-release systems. | [77] |
| Heat-set H6L/Tb3+ metallogel | Tb3+ | Multicarboxylate ligand H6L | Anti-counterfeiting and optical sensing | [78] |
| Zr4+-cluster-based metallogel | Zr4+ | One-pot solvothermal synthesis; metal cluster coordination | Light-, amine-, electric-, and metal-responsiveness. Electrochromic devices and corrosion-sensing | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scognamiglio, P.L.; Tesauro, D.; Roviello, G.N. Metallogels as Supramolecular Platforms for Biomedical Applications: A Review. Processes 2025, 13, 3671. https://doi.org/10.3390/pr13113671
Scognamiglio PL, Tesauro D, Roviello GN. Metallogels as Supramolecular Platforms for Biomedical Applications: A Review. Processes. 2025; 13(11):3671. https://doi.org/10.3390/pr13113671
Chicago/Turabian StyleScognamiglio, Pasqualina Liana, Diego Tesauro, and Giovanni N. Roviello. 2025. "Metallogels as Supramolecular Platforms for Biomedical Applications: A Review" Processes 13, no. 11: 3671. https://doi.org/10.3390/pr13113671
APA StyleScognamiglio, P. L., Tesauro, D., & Roviello, G. N. (2025). Metallogels as Supramolecular Platforms for Biomedical Applications: A Review. Processes, 13(11), 3671. https://doi.org/10.3390/pr13113671

