Red Light Enhanced Nitrogen Removal Efficiency by Bacterial–Algae Biofilm Reactor in Recirculating Aquaculture Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction and Operation of RASs
2.2. Water Quality Measurement
2.3. Biofilm Parameters Analysis
2.4. Scanning Electron Microscope (SEM)
2.5. High-Throughput Sequencing
2.6. Statistical Analysis
3. Results and Discussion
3.1. Light Wavelengths Altered Nitrogen Removal Efficiency
3.1.1. Ammonia Removal Performance
3.1.2. Nitrite Accumulation Control
3.1.3. Nitrate Transformation Efficiency
3.1.4. Environmental Indicators
3.2. Light Wavelengths Shifted the Biomass and Microbial Community Composition
3.2.1. Effects of Light Wavelengths on Biomass and Chlorophyll a Content
3.2.2. Effect of Light Wavelengths on the Bacterial–Algal Community
3.3. Light Wavelength Featured EPSs
3.3.1. EPS Content and Composition
3.3.2. Dissolved Organic Matter in EPSs
3.3.3. Surface Morphology of Carriers
3.4. Light Wavelength Affected Gene Abundance and Metabolic Pathways
3.4.1. Differences in Abundance of Photosynthetic and Nitrogen Metabolism Enzymes
3.4.2. Alterations in Key Metabolic Pathways
3.5. Reconstruction of Nitrogen Metabolism Pathways
3.5.1. Enhanced Photosynthesis Efficiency by Supplementary Light
3.5.2. Impact of Lighting on Bacterial Nitrogen Metabolism
3.5.3. Role of EPSs in Substrate Exchange and Biofilm Formation
4. Conclusions
- (1)
- Nitrogen removal performance: Red consistently enhanced ammonia removal efficiency and stabilized the nitrification pathway, particularly under high nitrogen loading, by enabling faster recovery and suppressing nitrite accumulation.
- (2)
- Microbial community structure: Red enriched functional algal and bacterial groups such as Scenedesmus, Bosea, and Nitrospirota, which supported efficient carbon fixation, nitrification, and denitrification.
- (3)
- EPS and gene regulation: Red promoted EPS secretion and increased the abundance of genes related to photosynthesis, biofilm formation, and nitrogen metabolism, thereby strengthening microbial cooperation and system stability.
- (4)
- Mechanistic insight: The superiority of red light was attributed to its spectral alignment with chlorophyll a, enhancing oxygen release, supporting nitrifiers, and maintaining balanced ammonia → nitrite → nitrate conversion.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; eBush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. Publisher Correction: A 20-year retrospective review of global aquaculture. Nature 2021, 595, E36. [Google Scholar] [CrossRef]
- Shitu, A.; Liu, G.; Muhammad, A.I.; Zhang, Y.; Tadda, M.A.; Qi, W.; Liu, D.; Ye, Z.; Zhu, S. Recent advances in application of moving bed bioreactors for wastewater treatment from recirculating aquaculture systems: A review. Aquac. Fish. 2022, 7, 244–258. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2018, 63, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Kamali, S.; Ward, V.C.A.; Ricardez-Sandoval, L. Dynamic modeling of recirculating aquaculture systems: Effect of management strategies and water quality parameters on fish performance. Aquac. Eng. 2022, 99, 102294. [Google Scholar] [CrossRef]
- Sikora, M.; Nowosad, J.; Kucharczyk, D. Nitrogen compound oxidation rate in recirculation systems using three biological filter medias in rearing common carp (Cyprinus carpio L.) juveniles. Aquaculture 2022, 547, 737532. [Google Scholar] [CrossRef]
- Li, H.; Cui, Z.; Cui, H.; Bai, Y.; Yin, Z.; Qu, K. Hazardous substances and their removal in recirculating aquaculture systems: A review. Aquaculture 2023, 569, 739399. [Google Scholar] [CrossRef]
- Matishov, G.; Meskhi, B.; Rudoy, D.; Olshevskaya, A.; Shevchenko, V.; Golovko, L.; Maltseva, T.; Odabashyan, M.; Teplyakova, S. Using BioFloc Technology to Improve Aquaculture Efficiency. Fishes 2025, 10, 144. [Google Scholar] [CrossRef]
- Mali, P.; Ghosh, S.; Dash, G.; Chowdhury, S. Effects of different carbon-to-nitrogen ratios on Nile Tilapia Oreochromis niloticus in the biofloc rearing system. Fish. Sci. 2024, 90, 239–256. [Google Scholar] [CrossRef]
- Vishwakarma, V. Impact of environmental biofilms: Industrial components and its remediation. J. Basic Microbiol. 2020, 60, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Preena, P.G.; Rejish Kumar, V.J.; Singh, I.S.B. Nitrification and denitrification in recirculating aquaculture systems: The processes and players. Rev. Aquacult. 2021, 13, 2053–2075. [Google Scholar] [CrossRef]
- Yu, Y.-B.; Lee, J.-H.; Choi, J.-H.; Choi, Y.-J.; Ahn, H.-J.; Kim, J.-H. The application and future of biofloc technology (BFT) in aquaculture industry: A review. J. Environ. Manag. 2023, 342, 118237. [Google Scholar] [CrossRef]
- Fleckenstein, L.J.; Tierney, T.W.; Ray, A.J. Comparing biofloc, clear-water, and hybrid recirculating nursery systems (Part II): Tilapia (Oreochromix niloticus) production and water quality dynamics. Aquac. Eng. 2018, 82, 80–85. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Fan, L.; Zhou, W. A Review on the Use of Microalgae for Sustainable Aquaculture. Appl. Sci. 2019, 9, 2377. [Google Scholar] [CrossRef]
- Sun, X.; Li, X.; Tang, S.; Lin, K.; Zhao, T.; Chen, X. A review on algal-bacterial symbiosis system for aquaculture tail water treatment. Sci. Total Environ. 2022, 847, 157620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gong, W.J.; Zeng, W.C.; Chen, R.; Lin, D.; Li, G.; Liang, H. Bacterial-algae biofilm enhance MABR adapting a wider COD/N ratios wastewater: Performance and mechanism. Sci. Total Environ. 2021, 781, 146663. [Google Scholar] [CrossRef]
- Ji, B.; Fan, S.; Liu, Y. A continuous-flow non-aerated microalgal-bacterial granular sludge process for aquaculture wastewater treatment under natural day-night conditions. Bioresour. Technol. 2022, 350, 126914. [Google Scholar] [CrossRef]
- Abakari, G.; Luo, G.; Kombat, E.O. Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquac Fish. 2021, 6, 441–447. [Google Scholar] [CrossRef]
- Wang, S.; Jin, Z.; Chen, Z.; Zhang, W.L.; Liu, M.T.; Zhang, X.Y.; Zhang, Y.; Liu, T.T.; Shen, Z.Y. Effect of light wavelengths on algal-bacterial symbiotic particles (ABSP): Nitrogen removal, physicochemical properties, community structure. J. Clean. Prod. 2023, 429, 139465. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, Z.C.; Bee, M.; Gibson, V.; Wei, L.; Huang, X.; Liu, C.X. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor. J. Hazard. Mater. 2018, 349, 135–142. [Google Scholar] [CrossRef]
- Liao, Y.; Bian, J.; Miao, S.; Zhang, D.; Abulitipu, A.; Pang, P.C.; Bai, L.; Liu, L. Regulation of denitrification performance and microbial topology by lights: Insight into wavelength effects towards microbiota. Water Res. 2023, 232, 119434. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Z.; Lu, B.; Guo, G.Y.; Zhao, C.Y.; Liu, J.; Zhao, Y.J. Effect of different microalgae-bacterium-fungus symbiont technologies on nutrient removal from aquaculture wastewater and biogas upgrading under a variety of mixed light wavelengths. Algal Res. 2024, 79, 103486. [Google Scholar] [CrossRef]
- Jia, H.; Yuan, Q. Ammonium removal using algae–bacteria consortia: The effect of ammonium concentration, algae biomass, and light. Biodegradation 2017, 29, 105–115. [Google Scholar] [CrossRef]
- Esteves, A.F.; Soares, O.S.G.P.; Vilar, V.J.P.; Pires, J.C.M.; Gonçalves, A.L. The Effect of Light Wavelength on CO2 Capture, Biomass Production and Nutrient Uptake by Green Microalgae: A Step Forward on Process Integration and Optimisation. Energies 2020, 13, 333. [Google Scholar] [CrossRef]
- Kim, T.-H.; Lee, Y.; Han, S.-H.; Hwang, S.-J. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour. Technol. 2013, 130, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Wicker, R.J.; Autio, H.; Daneshvar, E.; Sarkar, B.; Bolan, N.; Kumar, V.; Bhatnagar, A. The effects of light regime on carbon cycling, nutrient removal, biomass yield, and polyhydroxybutyrate (PHB) production by a constructed photosynthetic consortium. Bioresour. Technol. 2022, 363, 127912. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zheng, R.; Feng, Y.M.; Du, W.R.; Xie, C.; Gu, Y.Q.; Liu, S.T. Anammox bacteria adapt to long-term light irradiation in photogranules. Water Res. 2023, 241, 120144. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.M.; Liu, X.G.; Liu, C.; Cheng, G.F.; Shen, H.Y. Influence of photoinhibition on nitrification by ammonia-oxidizing microorganisms in aquatic ecosystems. Rev. Environ. Sci. Bio-Technol. 2020, 19, 531–542. [Google Scholar] [CrossRef]
- Nishi, K.; Akizuki, S.; Toda, T.; Matsuyama, T.; Ida, J. Development of light-shielding hydrogel for nitrifying bacteria to prevent photoinhibition under strong light irradiation. Process Biochem. 2020, 94, 359–364. [Google Scholar] [CrossRef]
- Gatamaneni Loganathan, B.; Orsat, V.; Lefsrud, M.; Sen Wu, B. A comprehensive study on the effect of light quality imparted by light-emitting diodes (LEDs) on the physiological and biochemical properties of the microalgal consortia of Chlorella variabilis and Scenedesmus obliquus cultivated in dairy wastewater. Bioprocess Biosyst. Eng. 2020, 43, 1445–1455. [Google Scholar] [CrossRef]
- Maltsev, Y.; Maltseva, K.; Kulikovskiy, M.; Maltseva, S. Influence of Light Conditions on Microalgae Growth and Content of Lipids, Carotenoids, and Fatty Acid Composition. Biology 2021, 10, 1060. [Google Scholar] [CrossRef]
- Kang, D.; Kim, K.; Jang, Y.; Moon, H.; Ju, D.; Kwon, G.; Jahng, D. Nutrient removal and community structure of wastewater-borne algal-bacterial consortia grown in raw wastewater with various wavelengths of light. Int. Biodeterior. Biodegrad. 2018, 126, 10–20. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, L.; Luo, X.; Zheng, Z. Effects of various LED light wavelengths and intensities on the performance of purifying synthetic domestic sewage by microalgae at different influent C/N ratios. Ecol. Eng. 2013, 51, 24–32. [Google Scholar] [CrossRef]
- Su, Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef]
- Zheng, R.; Feng, Y.; Kong, L.; Wu, X.; Zhou, J.; Liu, S.; Zhang, L. Blue-light irradiation induced partial nitrification. Water Res. 2024, 254, 121381. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Gu, Z.; Mou, H.; Sun, H. Stimulating carbon and nitrogen metabolism of Chlorella pyrenoidosa to treat aquaculture wastewater and produce high-quality protein in plate photobioreactors. Sci. Total Environ. 2023, 878, 163061. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Zhang, S.; Hou, Y.; Wang, J.M.; Chen, X.; Zhang, A.; Liu, Y.; Li, Z. Formation characteristics of algal-bacteria granular sludge under low-light environment: From sludge characteristics, extracellular polymeric substances to microbial community. Bioresour. Technol. 2023, 376, 128851. [Google Scholar] [CrossRef]
- Jin, Y.R.; Zhan, W.; Wu, R.; Han, Y.H.; Yang, S.S.; Ding, J.; Ren, N.Q. Insight into the roles of microalgae on simultaneous nitrification and denitrification in microalgal-bacterial sequencing batch reactors: Nitrogen removal, extracellular polymeric substances, and microbial communities. Bioresour. Technol. 2023, 379, 129038. [Google Scholar] [CrossRef]
- Fan, Z.; Zhou, X. Decoding the Role of Extracellular Polymeric Substances in Enhancing Nitrogen Removal from High-Ammonia and Low-C/N Wastewater in a Sequencing Batch Packed-Bed Biofilm Reactor. Polymers 2023, 15, 1510. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Yu, G.; Liu, Z.; Lu, Y.; Li, Q. Start-up of the completely autotrophic nitrogen removal over nitrite process with a submerged aerated biological filter and the effect of inorganic carbon on nitrogen removal and microbial activity. Bioresour. Technol. 2018, 254, 347–352. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, H.; Park, J.; Takagi, T. MetaGene: Prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 2006, 34, 5623–5630. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Kume, A.; Akitsu, T.; Nasahara, K.N. Why is chlorophyll b only used in light-harvesting systems? J. Plant Res. 2018, 131, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Agostini, A.; Bína, D.; Barcyte, D.; Bortolus, M.; Elias, M.; Carbonera, D.; Litvin, R. Eustigmatophyte model of red-shifted chlorophyll a absorption in light-harvesting complexes. Commun. Biol. 2024, 7, 1406. [Google Scholar] [CrossRef]
- Luimstra, V.M.; Schuurmans, J.M.; de Carvalho, C.F.M.; Matthijs, H.C.P.; Hellingwerf, K.J.; Huisman, H. Exploring the low photosynthetic efficiency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynth. Res. 2019, 141, 291–301. [Google Scholar] [CrossRef]
- Sun, J.F.; Shang, M.H.; Zang, X.N. Response surface optimization of light conditions for organic matter accumulation in two different shapes of Arthrospira platensis. Front. Nutr. 2023, 9, 1047685. [Google Scholar] [CrossRef]
- Yang, M.Z.; Qiu, S.; Wang, L.F.; Chen, Z.P.; Hu, Y.B.; Guo, J.H.; Ge, S.J. Effect of short-term light irradiation with varying energy densities on the activities of nitrifiers in wastewater. Water Res. 2022, 216, 118291. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sopory, S.K. Effect of phytochrome and kinetin on nitrite reductase-activity in Zea-mays. Plant Cell Physiol. 1987, 28, 447–454. [Google Scholar]
- Signore, A.; Bell, L.; Santamaria, P.; Wagstaff, C.; Labeke, M. Red Light Is Effective in Reducing Nitrate Concentration in Rocket by Increasing Nitrate Reductase Activity and Contributes to Increased Total Glucosinolates Content. Front. Plant Sci. 2020, 11, 604. [Google Scholar] [CrossRef]
- Song, Y.; Lan, Y.H.; Li, K.; Qiao, D.R.; Cao, Y.; Xu, H. Regulation of a novel DsGATA1 from Dunaliella salina on the synthesis of carotenoids under red light. Appl. Microbiol. Biotechnol. 2024, 108, 82. [Google Scholar] [CrossRef]
- Kang, C.D.; Lee, J.S.; Park, T.H.; Sim, S.J. Complementary limiting factors of astaxanthin synthesis during photoautotrophic induction of Haematococcus pluvialis: C/N ratio and light intensity. Appl. Microbiol. Biotechnol. 2007, 74, 987–994. [Google Scholar] [CrossRef]
- Ghosh, A.; Sangtani, R.; Samadhiya, K.; Kiran, B. Maximizing intrinsic value of microalgae using multi-parameter study: Conjoint effect of organic carbon, nitrate, and phosphate supplementation. Clean Technol. Environ. Policy 2023, 25, 537–549. [Google Scholar] [CrossRef]
- Jiménez, E.; Giménez, J.B.; Ruano, M.V.; Ferrer, J.; Serralta, J. Effect of pH and nitrite concentration on nitrite oxidation rate. Bioresour. Technol. 2011, 102, 8741–8747. [Google Scholar] [CrossRef] [PubMed]
- DeForest, J.L.; Otuya, R.K. Soil nitrification increases with elevated phosphorus or soil pH in an acidic mixed mesophytic deciduous forest. Soil Biol. Biochem. 2020, 142, 107716. [Google Scholar] [CrossRef]
- Dong, C.C.; Zhang, H.B.; Yang, Y.J.; He, X.Y.; Liu, L.; Fu, J.K.; Shi, J.Q.; Wu, Z.X. Physiological and transcriptomic analyses to determine the responses to phosphorus utilization in Nostoc sp. Harmful Algae 2019, 84, 10–18. [Google Scholar] [CrossRef]
- Roldan-Prieto, P.; Torres-Serra, O.; Bilbao, J.; Suárez-Álvarez, S.; Blanco-Rayón, E.; Seoane, S. Combined effect of LED light color and nitrogen source on growth, pigments composition and oxidative stress in Arthrospira platensis. Algal Res. 2024, 79, 103470. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Li, X.J.; Li, Y.H.; Liu, S.Q.; Chen, Y.R.; Jia, M.; Wang, X.; Zhang, L.; Gao, Q.P.; Zhang, L.; et al. Regulation of different light conditions for efficient biomass production and protein accumulation of Spirulina platensis. J. Oceanol. Limnol. 2024, 42, 174–186. [Google Scholar] [CrossRef]
- Li, L.M.; Wu, Y.H.; Acheampong, A.; Huang, Q. Red light promotes autotrophic growth of Haematococcus pluvialis with improved carbonic anhydrase activity and CO2 utilization. Aquaculture 2023, 571, 739462. [Google Scholar] [CrossRef]
- Chaiwong, C.; Koottatep, T.; Polprasert, C. Effects of specific wavelengths of lights on performance of biofilm photobioreactor for treating septic tank effluent. J. Water Process Eng. 2021, 40, 101907. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Parlevliet, D.A.; Laird, D.W.; Alameh, K.; Moheimani, N.R. Light management technologies for increasing algal photobioreactor efficiency. Algal Res. 2019, 39, 101433. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, Z. Performance of mixed LED light wavelengths on biogas upgrade and biogas fluid removal by microalga Chlorella sp. Appl. Energy 2014, 113, 1008–1014. [Google Scholar] [CrossRef]
- Ma, X.; Mi, Y.; Zhao, C.; Wei, Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. Sci. Total Environ. 2022, 806, 151387. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Q. Microalgae-based nitrogen bioremediation. Algal Res. 2020, 46, 101775. [Google Scholar] [CrossRef]
- Chen, S.X.; Li, X.; Ma, X.L.; Qing, R.W.; Chen, Y.W.; Zhou, H.Z.; Yu, Y.D.; Li, J.J.; Tan, Z.L. Lighting the way to sustainable development: Physiological response and light control strategy in microalgae-based wastewater treatment under illumination. Sci. Total Environ. 2023, 903, 166298. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, L. Responses of microorganisms to different wavelengths of light radiation during green waste composting. Sci. Total Environ. 2024, 920, 171021. [Google Scholar] [CrossRef] [PubMed]
- Rahman, T.T.; Jiang, T.; Zhang, C.; Rao, Y.; Sims, E.C.; Hou, L. Diatoms in wastewater treatment: Potentials, applications, and values of biomass. Crit. Rev. Environ. Sci. Technol. 2023, 54, 557–580. [Google Scholar] [CrossRef]
- Chaib, N.; Dzizi, S.; Kaddeche, H.; Noune, F. Performance of a Fixed-Bed Bioreactor Using Diatom Biofilms for Wastewater Bioremediation. CLEAN—Soil Air Water 2021, 49, 2000282. [Google Scholar] [CrossRef]
- Mkpuma, V.O.; Moheimani, N.R.; Ennaceri, H. Biofilm and suspension-based cultivation of microalgae to treat anaerobic digestate food effluent (ADFE). Sci. Total Environ. 2024, 924, 171320. [Google Scholar] [CrossRef]
- Hu, H.; Wu, D.-D.; Yu, L.; Hu, Y.; Meng, F.-L.; Wei, D. Pollutants removal, microbial community shift and oleic acid production in symbiotic microalgae–bacteria system. Bioresour. Technol. 2023, 370, 128535. [Google Scholar] [CrossRef]
- Zhang, B.; Lens, P.N.L.; Shi, W.; Zhang, R.J.; Zhang, Z.Q.; Guo, Y.; Bao, X.; Cui, F.Y. Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem. Eng. J. 2018, 334, 2373–2382. [Google Scholar] [CrossRef]
- Chrismas, N.A.M.; Williamson, C.J.; Yallop, M.L.; Anesio, A.M.; Sánchez-Baracaldo, P. Photoecology of the Antarctic cyanobacterium Leptolyngbya sp. BC1307 brought to light through community analysis, comparative genomics and in vitro photophysiology. Mol. Ecol. 2018, 27, 5279–5293. [Google Scholar] [CrossRef]
- de Araujo, E.D.; Patel, J.; de Araujo, C.; Rogers, S.P.; Short, S.M.; Campbell, D.A.; Espie, G.S. Physiological characterization and light response of the CO2-concentrating mechanism in the filamentous cyanobacterium Leptolyngbya sp. CPCC 696. Photosynth. Res. 2011, 109, 85–101. [Google Scholar] [CrossRef]
- Prabha, S.; Vijay, A.K.; Devarajan, A.; Georgr, B. Concurrent purification of phycobiliproteins from Leptolyngbya sp. and their selective enhancement in response to different wavelengths of LED light. Bioresour. Technol. Rep. 2023, 21, 101299. [Google Scholar] [CrossRef]
- Lu, Y.; Kronzucker, H.J.; Shi, W. Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters. Environ. Pollut. 2021, 287, 117587. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wang, L. Multi-omics analysis reveals structure and function of biofilm microbial communities in a pre-denitrification biofilter. Sci. Total Environ. 2021, 757, 143908. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.X.; Zhou, Z.; Wang, K.C.; Qiu, Z.; Zhi, H.; Yuan, Y.; Zhang, Y.B.; Jiang, Y.X.; Zhao, X.D.; Wang, Z.W. Coupling ammonia nitrogen adsorption and regeneration unit with a high-load anoxic/aerobic process to achieve rapid and efficient pollutants removal for wastewater treatment. Water Res. 2020, 170, 115280. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Zhou, Z.; Yu, S.Q.; Qiang, J.X.; Yuan, Y.; Qin, Y.J.; Xiao, K.Q.; Zhao, X.D.; Wu, Z.C. Compact wastewater treatment process based on abiotic nitrogen management achieved high-rate and facile pollutants removal. Bioresour. Technol. 2021, 330, 124991. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Li, M.; Wang, H.Y.; Li, Y.; Peng, H.J.; Feng, J.P. Microbial community and function evaluation in the start-up period of bioaugmented SBR fed with aniline wastewater. Bioresour. Technol. 2021, 319, 124148. [Google Scholar] [CrossRef]
- Shitu, A.; Zhang, Y.; Danhassan, U.A.; Usman, M.; Fei, Z.Y.; Zhang, J.H.; Wang, X.Y.; Liu, Y.H. Synergistic effect of chitosan-based sludge aggregates CS@NGS inoculum accelerated the start-up of biofilm reactor treating aquaculture effluent: Insights into performance, microbial characteristics, and functional genes. Chemosphere 2022, 303, 135097. [Google Scholar] [CrossRef]
- Lu, S.; Li, Y.; Liu, X.; Cheng, G.; Yuan, Z.; Wu, F. Influence of Light Irradiation on Nitrification in Microalgal–Bacterial Systems for Treating Wastewater. Processes 2023, 11, 3453. [Google Scholar] [CrossRef]
- Fallahi, A.; Rezvani, F.; Asgharnejad, H.; Khorshidi Nazloo, E.; Hajinajaf, N.; Higgins, B. Interactions of microalgae-bacteria consortia for nutrient removal from wastewater: A review. Chemosphere 2021, 272, 129878. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.J.; Li, H.X.; Sun, P.; Fu, R.Y.; Bai, Z.J.; Zhang, G.M.; Sun, L.; Wei, Y.J. Development and challenges of emerging biological technologies for algal-bacterial symbiosis systems: A review. Bioresour. Technol. 2024, 413, 131459. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, J. Rapid formation of biofilm grown on gas-permeable membrane induced by famine incubation. Biochem. Eng. J. 2017, 121, 156–162. [Google Scholar] [CrossRef]
- Wang, B.B.; Liu, X.T.; Chen, J.M.; Peng, D.C.; He, F. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: The impacts of polymerization degree of proteinaceous substrates. Water Res. 2018, 129, 133–142. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Yue, J.; Song, Z.; Li, M.; Wang, N.; Liu, J.; Guo, H.; Li, B. Metagenomic analysis revealed the mechanism of extracellular polymeric substances on enhanced nitrogen removal in coupled MABR systems with low C/N ratio containing salinity. J. Environ. Chem. Eng. 2023, 11, 109599. [Google Scholar] [CrossRef]
- Sun, L.; Bai, Z.; Yang, Q.; Fu, R.Y.; Li, H.X.; Li, X.H. In situ assessment of the initial phase of wastewater biofilm formation: Effect of the presence of algae in an aerobic bacterial biofilm system. Water Res. 2024, 253, 121283. [Google Scholar] [CrossRef]
- He, Z.W.; Liu, W.Z.; Wang, L.; Yang, C.X.; Guo, Z.C.; Zhou, A.J.; Liu, J.Y.; Wang, A.J. Role of extracellular polymeric substances in enhancement of phosphorus release from waste activated sludge by rhamnolipid addition. Bioresour. Technol. 2016, 202, 59–66. [Google Scholar] [CrossRef]
- Niu, X.-Z.; Croué, J.-P. Photochemical production of hydroxyl radical from algal organic matter. Water Res. 2019, 161, 11–16. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, X.; Cao, X.W.; Li, S.H. Accelerating anammox nitrogen removal in lowintensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis. Sci. Total Environ. 2022, 817, 152989. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, H.; Zhang, X.; Ji, B. Microalgal-bacterial granular sludge under constant dark and weak light conditions: Morphology, performance and microbial community. Algal Res. 2023, 71, 103050. [Google Scholar] [CrossRef]
- Wang, X.; Hong, Y. Microalgae Biofilm and Bacteria Symbiosis in Nutrient Removal and Carbon Fixation from Wastewater: A Review. Curr. Pollut. Rep. 2022, 8, 128–146. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, L.Y.; Xu, K.; Huang, H.; Ren, H.Q. Algae Biofilm Reduces Microbe-Derived Dissolved Organic Nitrogen Discharges: Performance and Mechanisms. Environ. Sci. Technol. 2021, 55, 6227–6238. [Google Scholar] [CrossRef]
- Zheng, C.; He, T.; Wang, C.; Zhang, M.; Yang, L.; Yang, L. Key enzymes, functional genes, and metabolic pathways of the nitrogen removal-related microorganisms. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1672–1691. [Google Scholar] [CrossRef]
- Anyanwu, R.C.; Rodriguez, C.; Durrant, A.; Zhang, M.M.; Yang, L.; Yang, L. Evaluation of Growth Rate and Biomass Productivity of Scenedesmus quadricauda and Chlorella vulgaris under Different LED Wavelengths and Photoperiods. Sustainability 2022, 14, 6108. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, K.; Wang, X.; Yan, J.R.; Zhu, H.Y.; Zhang, N.; Wang, Y.T.; Zhao, Q.; Liu, Y.N.; Bu, X. Manipulation of artificial light environment improves plant biomass and fruit nutritional quality in tomato. J. Adv. Res. 2024, 75, 79–93. [Google Scholar] [CrossRef]
- Qian, W.; Ma, B.; Li, X.; Zhang, Q.; Peng, Y.Z. Long-term effect of pH on denitrification: High pH benefits achieving partial-denitrification. Bioresour. Technol. 2019, 278, 444–449. [Google Scholar] [CrossRef]
- Krämer, K.; Brock, J.; Heyer, A.G. Interaction of Nitrate Assimilation and Photorespiration at Elevated CO2. Front. Plant Sci. 2022, 13, 897924. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.-W.; Ding, F.; Zhang, B.-L.; Liu, W.-C.; Huang, Z.-H.; Fan, S.-H.; Feng, Y.-R.; Lu, Y.-T.; Hua, W. Hydrogen peroxide sulfenylates and inhibits the photorespiratory enzyme PGLP1 to modulate plant thermotolerance. Plant Commun. 2024, 5, 100852. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.Y.; Gregory, L.M.; Weise, S.E.; Walker, B.J. Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine and serine during photorespiration. Nat. Plants 2023, 9, 169–178. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Cui, Q.; Ni, S. Nitrogen recovery through fermentative dissimilatory nitrate reduction to ammonium (DNRA): Carbon source comparison and metabolic pathway. Chem. Eng. J. 2022, 441, 135938. [Google Scholar] [CrossRef]
- Zhao, W.; Bi, X.; Peng, Y.; Bai, M. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic mechanisms, applications and influencing factors. Chemosphere 2022, 307, 135675. [Google Scholar] [CrossRef]
- Amaro, H.M.; Salgado, E.M.; Nunes, O.C.; Pires, J.C.M.; Esteves, A.F. Microalgae systems—Environmental agents for wastewater treatment and further potential biomass valorisation. J. Environ. Manag. 2023, 337, 117678. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.M.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Microalgae-bacteria consortium for wastewater treatment and biomass production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, G.; Li, W.; Ding, Y.; You, H.; Zhu, J.; Leng, H.R.; Xu, C.; Xing, X.D.; Xu, J.Y.; et al. The characteristic evolution and formation mechanism of hybrid microalgae biofilm and its application in mariculture wastewater treatment. J. Environ. Chem. Eng. 2023, 11, 109645. [Google Scholar] [CrossRef]
- Zhi, M.; Zhao, Y.; Zeng, X.; Maddela, N.; Xiao, Y.; Chen, Y.; Prasad, R.; Zhou, Z. Filamentous cyanobacteria and hydrophobic protein in extracellular polymeric substances facilitate algae—Bacteria aggregation during partial nitrification. Int. J. Biol. Macromol. 2023, 251, 126379. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, C.; Tang, Y.; Liu, B. A novel hypothermic strain, Pseudomonas reactans WL20-3 with high nitrate removal from actual sewage, and its synergistic resistance mechanism for efficient nitrate removal at 4 °C. Bioresour. Technol. 2023, 385, 129389. [Google Scholar] [CrossRef]
- An, X.; Li, N.; Zhang, S.; Han, Y.; Zhang, Q. Integration of proteome and metabolome profiling to reveal heat stress response and tolerance mechanisms of Serratia sp. AXJ-M for the bioremediation of papermaking black liquor. J. Hazard. Mater. 2023, 450, 131092. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Chen, C.; Tang, Y.; Liu, B. Multi-omics analysis to reveal key pathways involved in low C/N ratio stress response in Pseudomonas sp. LW60 with superior nitrogen removal efficiency. Bioresour. Technol. 2023, 389, 129812. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef]
- Govindjee Shevela, D. Adventures with cyanobacteria: A personal perspective. Front. Plant Sci. 2011, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xu, Y.; Chen, S.; Ma, X.X.; Wang, H.; Hou, L.J.; Sun, L.K. Inorganic carbon limitation decreases ammonium removal and N2O production in the algae-nitrifying bacteria symbiosis system. Sci. Total Environ. 2024, 928, 172440. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, Y.; Chen, S.; Guo, N.N.; Xiang, P.; Lin, S.T.; Bai, Y.; Hu, X.F.; Zhang, Z. Evaluating the role of algae in algal-bacterial granular sludge: Nutrient removal, microbial community and granular characteristics. Bioresour. Technol. 2022, 365, 128165. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; He, L.; Zhou, J.; Shi, S.H.; He, X.J.; Fan, X.; Wang, Y.M.; He, Q. Biologically induced phosphate precipitation in heterotrophic nitrification processes of different microbial aggregates: Influences of nitrogen removal metabolisms and extracellular polymeric substances. Bioresour. Technol. 2022, 356, 127319. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Qu, W.; Xie, P.; Xie, Y.P.; Chang, J.S.; Ho, S.H. Role of nitrogen transport for efficient energy conversion potential in low carbon and high nitrogen/phosphorus wastewater by microalgal-bacterial system. Bioresour. Technol. 2022, 351, 127019. [Google Scholar] [CrossRef]
- Ji, B. Towards environment-sustainable wastewater treatment and reclamation by the non-aerated microalgal-bacterial granular sludge process: Recent advances and future directions. Sci. Total Environ. 2022, 806 Pt 4, 150707. [Google Scholar] [CrossRef]







| Metric | Red | Blue | Red–Blue | White |
|---|---|---|---|---|
| NH4+-N removal (Stage III, %) | 82.8 ± 6.6 a | 47.0 ± 30.6 b | 74.0 ± 17.0 a | 46.5 ± 24.8 b |
| NH4+-N removal (Stage IV, %) | 52.2 ± 41.1 a | 22.7 ± 56.8 b | 50.1 ± 44.2 a | 3.4 ± 75.1 c |
| Peak NO2−-N (Stage III mg·L−1) | 0.120 a | 0.831 | 0.334 | 0.387 |
| Peak NO2−-N (Stage IV mg·L−1) | 0.775 a | 5.317 | 5.048 | 2.843 |
| Final NO3−-N (Stage III mg·L−1) | 14.77 | 20.74 | 15.19 | 22.22 |
| Final NO3−-N (Stage IV mg·L−1) | 62.74 | 70.47 | 68.32 | 70.61 |
| Biomass (Stage IV mg·ball−1) | 61.67 | 32.67 | 31.67 | 40.67 |
| Chl-a (Stage IV mg·ball−1) | 0.506 | 0.201 | 0.226 | 0.278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Li, Q.; Jiang, L.; Huang, Q.; Liang, J.; Zhou, Y.; Lv, M.; Wen, L.; Li, Y.; Ao, Q.; et al. Red Light Enhanced Nitrogen Removal Efficiency by Bacterial–Algae Biofilm Reactor in Recirculating Aquaculture Systems. Processes 2025, 13, 3594. https://doi.org/10.3390/pr13113594
Jiang W, Li Q, Jiang L, Huang Q, Liang J, Zhou Y, Lv M, Wen L, Li Y, Ao Q, et al. Red Light Enhanced Nitrogen Removal Efficiency by Bacterial–Algae Biofilm Reactor in Recirculating Aquaculture Systems. Processes. 2025; 13(11):3594. https://doi.org/10.3390/pr13113594
Chicago/Turabian StyleJiang, Wenqiang, Qingfeng Li, Linyuan Jiang, Qunxin Huang, Junneng Liang, Yating Zhou, Mingji Lv, Luting Wen, Yijian Li, Qiuwei Ao, and et al. 2025. "Red Light Enhanced Nitrogen Removal Efficiency by Bacterial–Algae Biofilm Reactor in Recirculating Aquaculture Systems" Processes 13, no. 11: 3594. https://doi.org/10.3390/pr13113594
APA StyleJiang, W., Li, Q., Jiang, L., Huang, Q., Liang, J., Zhou, Y., Lv, M., Wen, L., Li, Y., Ao, Q., Wang, S., & Yang, X. (2025). Red Light Enhanced Nitrogen Removal Efficiency by Bacterial–Algae Biofilm Reactor in Recirculating Aquaculture Systems. Processes, 13(11), 3594. https://doi.org/10.3390/pr13113594
